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Overview

@ What is an RKHS?
@ Reproducing kernel
@ Inner product between features
@ Positive definite function
@ Moore-Aronszajn Theorem

© Mercer representation of RKHS
@ Integral operator
@ Mercer’s theorem
@ Relation between # and Ly(X; )

© Operations with kernels
@ Sum and product
@ Constructing new kernels
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Outline

Will discuss three distinct concepts:
e reproducing kernel
@ inner product between features (kernel)

@ positive definite function
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Outline

Will discuss three distinct concepts:
e reproducing kernel
@ inner product between features (kernel)
@ positive definite function

...and then show that they are all equivalent.
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What is an RKHS? Reproducing kernel
Outline

@ What is an RKHS?
@ Reproducing kernel

© Mercer representation of RKHS

© Operations with kernels
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What is an RKHS? Reproducing kernel

Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions ¥ : X — R defined on a non-empty
set X. A function k : X x X — R is called a reproducing kernel of H if it

satisfies
o Vx € X, ke=k(-,x)€EH,
o Vx e X, Vf € H, (f, k(-,x))y = f(x) (the reproducing property).
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What is an RKHS? Reproducing kernel

Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions ¥ : X — R defined on a non-empty
set X. A function k : X x X — R is called a reproducing kernel of H if it

satisfies
o Vx € X, ke=k(-,x)€EH,
o Vx e X, Vf € H, (f, k(-,x))y = f(x) (the reproducing property).

In particular, for any x,y € X,
k(X>Y) = <k('7)/) ) k('7X)>’H = <k('7x)7k('¢Y)>H-
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Ferxieiins bermsl
Reproducing kernel of an RKHS

Theorem

If it exists, reproducing kernel is unique.

Theorem

‘H is a reproducing kernel Hilbert space if and only if it has a reproducing
kernel.
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What is an RKHS? Inner product between features
Outline

@ What is an RKHS?

@ Inner product between features

© Mercer representation of RKHS

© Operations with kernels
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What is an RKHS? Inner product between features

Functions representable as inner products

Definition (Kernel)

A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that
k(x,y) = (#(x), d(y)) £-
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What is an RKHS? Inner product between features

Functions representable as inner products

Definition (Kernel)

A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that
k(x,y) = (¢(x), 8(y)) #-

@ note that we dropped 'reproducing’, as F may not be an RKHS.
e ¢ : X — Fis called a feature map,
@ F is called a feature space.
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i s bt Gasimme
Functions representable as inner products

Definition (Kernel)

A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that

k(X7y) = <¢(X)7 ¢(}’)>f

@ note that we dropped 'reproducing’, as F may not be an RKHS.
e ¢ : X — Fis called a feature map,
@ F is called a feature space.

Corollary
Every reproducing kernel is a kernel.

Proof.
We can take (Aronszajn) feature map ¢ : x — k(-,x). Then,
k(x,y) = (k(-,x),k(-,¥))n, i.e., RKHS H is a feature space. O
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i s bt Gasimme
Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x, y)?

k(x,y) = xiyi+xays +2xixy1y2
vi
[ X % V2ax | vi
V2y1y2

vi
va
Yiy2
yiy2

2 2
[ X1 X2 X1 X2 X1 X2 ]

so we can use the feature maps ¢(x) = (xZ,x3,v2x1x2) or

b(x) = [ 32 X3 xix» x1xo |, with feature spaces H = R® or 71 = R

v
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i s bt Gasimme
Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x, y)?

k(x,y) = xiyi+x3y3 + 2xaxyy:

vi
= [xl2 x5 V2xixe ][ A ]
\6}/1_)/2
vi
vi
Yiy2
yiy2

2 2
= [ X1 X2 X1 X2 X1 X2 ]

so we can use the feature maps ¢(x) = (xZ,x3,v2x1x2) or

b(x) = [ 32 X3 xix» x1xo |, with feature spaces H = R® or 71 = R

v

Not RKHS!
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WIEIREEV RN GEYEl  Positive definite function

Outline

@ What is an RKHS?

@ Positive definite function

© Mercer representation of RKHS

© Operations with kernels
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WIEIREEV RN GEYEl  Positive definite function

Positive definite functions

Definition (Positive definite functions)
A symmetric function h : X x X — R is positive definite if
Vn>1, V(al,...a,,) € R", V(Xl,...,Xn) e X",

n

n
Z Z a,-ajh(x,-,xj-) =a'Ha > 0.

i=1 j=1

The function h(-,-) is strictly positive definite if for mutually distinct x;, the
equality holds only when all the a; are zero.
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WIEIREEV RN GEYEl  Positive definite function

Kernels are positive definite

Every inner product is a positive definite function, and more generally:
Fact

Every kernel is a positive definite function. J
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WIEIREEV RN GEYEl  Positive definite function

So far

reproducing kernel = kernel = positive definite
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WIEIREEV RN GEYEl  Positive definite function

So far

reproducing kernel = kernel = positive definite

Is every positive definite function a reproducing kernel for some RKHS?
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What is an RKHS? Moore-Aronszajn Theorem
Outline

@ What is an RKHS?

@ Moore-Aronszajn Theorem

© Mercer representation of RKHS

© Operations with kernels
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let k: X x X — R be positive definite. There is a unique RKHS
H C R* with reproducing kernel k.
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March 11, 2012 15 / 45



What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite

set of all kernels: RY**
1-1
—

set of all subspaces of RY with continuous evaluation:
Hilb(RY)
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WMleere-roezEn Tieers
Moore-Aronszajn Theorem

Starting with a positive def. k, construct a pre-RKHS (an inner product
space of functions) Ho C R? with properties:

@ The evaluation functionals §, are continuous on H,

@ Any Cauchy sequence f, in Hy which converges pointwise to 0 also
converges in Hg-norm to 0.

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012 17 / 45



WMleere-roezEn Tieers
Moore-Aronszajn Theorem (2)

pre-RKHS 7 = span {k(-,x) | x € X'} will be taken to be the set of
functions:

f(X) = Z(X,’k(X,X,’)
i=1
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step |)

Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)n, = DY ibik(x,y),

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

v
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step |)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

<fg = Zzalﬁj Xla)/J

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let Ho be a pre-RKHS space. Define # to be the set of functions f € R*

for which there exists a Cauchy sequence {f,} in Ho converging pointwise
to f. Then, H is an RKHS.
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step |)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)y, = > aiBik(xi,y)),

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

y

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012 20 / 45



What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step |)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)y, = > aiBik(xi,y)),

i=1 j=1

where f = 371, aik(,x;) and g = 3 7, Bik(-,y;), is a valid pre-RKHS.

4

@ The evaluation functionals d, are continuous on Hg

@ Any Cauchy sequence f, in Hgy which converges pointwise to 0 also
converges in Ho-norm to 0
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WMleere-roezEn Tieers
Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists a Cauchy
sequence {f,} € Ho converging pointwise to f.
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists a Cauchy
sequence {f,} € Ho converging pointwise to f.

© We define the inner product between f, g € H as the limit of an inner

product of the Cauchy sequences {f,}, {gn} converging to f and g

respectively. |s this inner product well defined, i.e., independent of the
sequences used?
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WMleere-roezEn Tieers
Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists a Cauchy
sequence {f,} € Ho converging pointwise to f.
© We define the inner product between f, g € H as the limit of an inner
product of the Cauchy sequences {f,}, {gn} converging to f and g
respectively. |s this inner product well defined, i.e., independent of the
sequences used?
@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?
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WMleere-roezEn Tieers
Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists a Cauchy
sequence {f,} € Ho converging pointwise to f.

© We define the inner product between f, g € H as the limit of an inner
product of the Cauchy sequences {f,}, {gn} converging to f and g
respectively. |s this inner product well defined, i.e., independent of the
sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?
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WMleere-roezEn Tieers
Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists a Cauchy
sequence {f,} € Ho converging pointwise to f.

© We define the inner product between f, g € H as the limit of an inner
product of the Cauchy sequences {f,}, {gn} converging to f and g
respectively. |s this inner product well defined, i.e., independent of the
sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?

Q Is H complete (i.e., is it a Hilbert space)?
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WMleere-roezEn Tieers
Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists a Cauchy
sequence {f,} € Ho converging pointwise to f.

© We define the inner product between f, g € H as the limit of an inner
product of the Cauchy sequences {f,}, {gn} converging to f and g
respectively. |s this inner product well defined, i.e., independent of the
sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?
Q Is H complete (i.e., is it a Hilbert space)?

o (1)+(2)+(3)+(4) = H is RKHS!
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WMleere-roezEn Tieers
Non-uniqueness of feature representation

Example

Consider X = R?, and k(x,y) = (x, y)?

k(x,y) = xiyi+x3y3: +2xxny.

= [x12 x22 \/§X1X2:| Y2
V2y1y»
vi
2 2 }/22

= Xi X3 X1X2 X1X

[ 1 2 1X2  X1X2 ] o
yiy2

so we can use the feature maps ¢(x) = [ x? x3 V2xix2 | or

(x) = | x¥ x5 xixo xixo |, with feature spaces H = R or H = R

v
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WMleere-roezEn Tieers
Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x, y)?

k(x,y) = xiyi+xiy3 + 2xaxayiy2

Vi
= [X12 X22 V2x1x2 ][ )/22 ]
V2y1y»

vi
Vi
yiy2
yiy2

2 2
1 X2 X1X2 X1X2]

so we can use the feature maps ¢(x) = [ x? x3 V2xix2 | or

p(x) =[x x2 xixo xixo |, with feature spaces H = R® or H{ = R*.

<

‘H and H are not RKHS - RKHS of & is unique
Foundations of RKHS March 11, 2012 22 /45



WMleere-roezEn Tieers
Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(@(x), 0(V))gs = ayi +bys +cV2nys = kely) = (ke ky )y,
P(x) =
[a: x2 b=x3 ¢ =V2x1x }
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What is an RKHS? Moore-Aronszajn Theorem

Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(@), 60w = 3y +by3 +cV2y1ys = kly) = (ke b))y,

P(x) =
[a: x2 b=x3 c:ﬂxlxz}

)., =i+ b +enp+dnye = k)= (haky,
o(x) =

[5:X12 b=x3 &=xx d:xlxz}

/\
S
—_
x
:—/
2
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WMleere-roezEn Tieers
Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(@), 60w = 3y +by3 +cV2y1ys = kly) = (ke b))y,

P(x) =
[a: x2 b=x3 c:ﬂxlxz}

= k(y) = (ke kb,

S
S
—
X
:—/
=X
<
N
~———
S
Il
e
S
+
o~
S
+
o
=
S
+
Q2
=
S

[5:x12 b=x3 &=xx d:xlxz}

@ But what remains unique?
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What is an RKHS? Moore-Aronszajn Theorem

Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(@), 60w = 3y +by3 +cV2y1ys = kly) = (ke b))y,

P(x) =
[a: x2 b=x3 c:ﬂxlxz}

(6060.60)) , =at +b +enp+dny = kdy) = (ke kdy,

[ 3= x2 l~):x22 ¢ = x1% g/:xlxz }
@ But what remains unique?

o Kernel and its RKHS!
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite

all kernels fox
1-1
<

all function spaces with continuous evaluation Hilb(R?)
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Mercer representation of RKHS Integral operator
Outline

@ What is an RKHS?

© Mercer representation of RKHS
@ Integral operator

© Operations with kernels
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
e nor on k (apart from it being a positive definite function)
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
e nor on k (apart from it being a positive definite function)

@ Now, assume that:
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)

e nor on k (apart from it being a positive definite function)
@ Now, assume that:

o X is a compact metric space (with metric dy)

e such as [a, b], continuity=-uniform continuity
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Mercer representation of RKHS Integral operator
Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
e nor on k (apart from it being a positive definite function)

@ Now, assume that:
o X is a compact metric space (with metric dy)

e such as [a, b], continuity=-uniform continuity

o k: X x X — Ris a continuous positive definite function
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let v be a finite Borel measure on X'. For the linear map
Sk : L2(XI/) — C(X)

(Skf) (x /k x,y)f(y)dv(y), f € Ly(X;v),

its composition Ty = I o S¢ with the inclusion /¢ : C(X) — Lo(X;v) is
said to be the integral operator of k.
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let v be a finite Borel measure on X'. For the linear map
Sk : L2(XI/) — C(X)

(Skf) (x /k x,y)f(y)dv(y), f € Ly(X;v),

its composition Ty = I o S¢ with the inclusion /¢ : C(X) — Lo(X;v) is
said to be the integral operator of k.

Ty : Ly(X;v) — L(X;v)
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let v be a finite Borel measure on X'. For the linear map
Sk : L2(XI/) — C(X)

(Skf) (x /k x,y)f(y)dv(y), f € Ly(X;v),

its composition Ty = I o S¢ with the inclusion /¢ : C(X) — Lo(X;v) is
said to be the integral operator of k.

Ty Ly(X;v) — L(Xv)
Tk # Sk (Skf) (x) is defined, while (Txf) (x) is not!
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Integral operator of a kernel (2)

T. = ISk
Ly (X5v) La(X;v)

Sk

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012
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Properties of integral operator

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
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Properties of integral operator

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
@ k positive definite = Ty positive: (f, Txf) >0
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Properties of integral operator

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)
@ k positive definite = Ty positive: (f, Txf) >0

@ k continuous = Ty compact: if {f,}is bounded, then{T#,} has a
convergent subsequence
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Properties of integral operator

o k symmetric = T self-adjoint: (f, Txg) = (T«f,g)

@ k positive definite = Ty positive: (f, Txf) >0

@ k continuous = Ty compact: if {f,}is bounded, then{T#,} has a
convergent subsequence

Theorem (Spectral theorem)

Let F be a Hilbert space,and T : F — F a compact, self-adjoint operator.
There is an at most countable ONS {ej} jey of F and {A;}, ; with
[A1] > |2 > -+ > 0 converging to zero such that

TF =Y X(f.e)re, fEF.
JjeJ
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Mercer representation of RKHS Mercer’s theorem

Outline

@ What is an RKHS?

© Mercer representation of RKHS

@ Mercer's theorem

© Operations with kernels
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

Let X be a compact metric space and k: X x X — R a continuous kernel.
Fix a finite measure v on X’ with suppr = X. Integral operator Ty is then
compact, positive and self-adjoint on Ly(X'; v), so there exist ONS {&} jc;
and {\;},, (strictly positive eigenvalues; J at most countable).
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Let X be a compact metric space and k: X x X — R a continuous kernel.
Fix a finite measure v on X’ with suppr = X. Integral operator Ty is then
compact, positive and self-adjoint on Ly(X'; v), so there exist ONS {&} jc;
and {\;},, (strictly positive eigenvalues; J at most countable).

Theorem (Mercer’s theorem)

Vx,y € X with convergence uniform on X x X:

k(xy) = D Ne(x)eily).

jed
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem

Let X be a compact metric space and k: X x X — R a continuous kernel.
Fix a finite measure v on X’ with suppr = X. Integral operator Ty is then
compact, positive and self-adjoint on Ly(X'; v), so there exist ONS {&} jc;
and {\;},, (strictly positive eigenvalues; J at most countable).

Theorem (Mercer’s theorem)

Vx,y € X with convergence uniform on X x X:

k(xy) = D Ne(x)eily).

jed

@ & is an equivalence class in the ONS of Ly(&X;v)
° = )\j_15kéj € C(X) is a continuous function in the class &;:
1~ 1\ ~ ~
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (2)

k(x,y) = > Aei(x)eily)

jed

= ({Viet} {VAsW)}) .
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (2)

k(x,y) = > Aei(x)eily)

jed
= ({WWeta}. {Vae}),..,
Another (Mercer) feature map:
b X — 2(J))

¢ x = {\/)Tjej(x)}

jed

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012

32 / 45



Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (2)

k(x,y) = > Aei(x)eily)

jed
= ({Viet} {VAsW)}) .
Another (Mercer) feature map:
b X — 2(J))
¢:x {\@ej(X)}jEJ
Z’\//\»jej(X)‘z

jed

= k(x,x) < o0
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (3)

1/2 1/2

> /v | _Z Ve
H{%/Vfi} V k(x, x).

2(J)

™
=
o
—~~
X
AN
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Mercer representation of RKHS Mercer’s theorem

Mercer's theorem (3)

1/2 1/2

Z\aj/ﬁjf -Z\ﬁjej(x)f
H{aj/\F} V k(x, x).

2(J)
>_jeyajej is a well defined function on X

™
=

o
—~~
X
AN

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012 33 /45



Mercer representation of RKHS Mercer’s theorem

Mercer representation of RKHS

Theorem

Let X be a compact metric space and k : X x X — R a continuous kernel.
Define:

H = f:Zajej ; {aj/\/yj} e’y ,

JjeJ

with inner product:

<Z ajej,ijej> = LI)I
H Jj€J

JjeJ JjeJ

Then H is the RKHS of k.
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Mercer representation of RKHS Mercer’s theorem

Mercer representation of RKHS

Theorem

Let X be a compact metric space and k : X x X — R a continuous kernel.
Define:

H = f:Zajej ; {aj/\/yj} e’y ,

JjeJ

with inner product:

<Z ajej,ijej> = LI)I
H Jj€J

JjeJ JjeJ

Then H is the RKHS of k.

Does not depend on v !
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Mercer representation of RKHS Relation between H; and Ly (X;v)
Outline

@ What is an RKHS?

© Mercer representation of RKHS

@ Relation between # and Ly(X; )

© Operations with kernels
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

Assume {&};_, is ONB of Lo(X;v), and write f(j) = (f, &),

Tif =Y NF()E,  fela(Xiv)

jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

Assume {&};_, is ONB of Lo(X;v), and write f(j) = (f, &),

Tif =Y NF()E,  fela(Xiv)

jed
T2 =" UNFG)E, e LX)
jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

Assume {&};_, is ONB of Lo(X;v), and write f(j) = (f, &),

Tif =Y NF()E,  fela(Xiv)

jed
T2 =" UNFG)E, e LX)
jed

He = {f—Zajej ; {aj/\/yj}EEZ(J)}

jes

SO =113 <00 {Fi)} € 20) = 3 VAFl)es € Ha

jed jed

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012 36 / 45



Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

felyx;v) & {f(J)} eP()) &5 ST UNFG)e € My

jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

fel(Xi) &5 {Fi)} e ) &5 3 Vafl)e € He

jed

80, = ({700} a0, = YO p M

jed
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Mercer representation of RKHS Relation between H; and Ly (X;v)
My and Ly(X;v)

fel(Xi) &5 {Fi)} e ) &5 3 Vafl)e € He

jed

.00, = ({10} 160)),, Zf“’ VAE0)

T,i/2 induces an isometric isomorphism between
span{& :j € J} CLa(X;v) and Hy (and both are isometrically
isomorphic to £2(J)).
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el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed
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el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed

= Z VA (ﬁq(x)) &

jed
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el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed

)= VA (Vi) ¢

jed

Hi > k(- %xﬁ{\/»ej }662 J)

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012 38 /45



el betem fitp el La(leh o)
Canonical feature map

fel(x) &5 {Fi)} e ) 5 3 Vi) € He

jed

)= VA (Vi) ¢

jed
Hi > k(- %xﬁ{\/»ej }662 J)

Mercer feature map gives Fourier coefficients of the Aronszajn feature map.
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(O IYELTN PRV YOI Sum and product
Outline

@ What is an RKHS?

© Mercer representation of RKHS

© Operations with kernels
@ Sum and product
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Sirn rmd] prechs
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X', and oo > 0 is a scalar, then ak, ki + k>
are kernels.
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Sirn rmd] prechs
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X', and oo > 0 is a scalar, then ak, ki + k>
are kernels.

o A difference of kernels is not necessarily a kernel! This is because we
cannot have ki(x,x) — ka(x,x) = (p(x), #(x)),, < 0.
@ This gives the set of all kernels the geometry of a closed convex cone.
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Sirn rmd] prechs
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X', and oo > 0 is a scalar, then ak, ki + k>
are kernels.

o A difference of kernels is not necessarily a kernel! This is because we
cannot have ki(x,x) — ka(x,x) = (p(x), #(x)),, < 0.
@ This gives the set of all kernels the geometry of a closed convex cone.

Higrke = Hig + Hiy ={h + 1 A €Hyy, o € Hyy }
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Sirn rmd] prechs
Operations with kernels (2)

Fact (Product of kernels)
If ki and ko are kernels on X and ), then k = ki ® ko, given by:

k((6y),(Xsy") = kil x)ka(y,y")
is a kernel on X x Y. If X =), then k = ky - ko, given by:

k(x,x) = ki(x,x)ka(x,x")

is a kernel on X.

D. Sejdinovic, A. Gretton (Gatsby Unit) Foundations of RKHS March 11, 2012 41 / 45



Sirn rmd] prechs
Operations with kernels (2)

Fact (Product of kernels)
If ki and ko are kernels on X and ), then k = ki ® ko, given by:

k((6y),(Xsy") = kil x)ka(y,y")
is a kernel on X x Y. If X =), then k = ky - ko, given by:

k(x,x) = ki(x,x)ka(x,x")

is a kernel on X.

Hk1®k2 = Hkl ® sz
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(O IYELTN PRV YOI Sum and product

Summary

all kernels RY*¥
1-1
—

all function spaces with continuous evaluation Hilb(R?)
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(O IYELTN PRV YOI Sum and product

Summary

all kernels RY*¥
1-1
—

all function spaces with continuous evaluation Hilb(R?)

bijection between RY** and Hilb(RY) preserves geometric
structure
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Operations with kernels Constructing new kernels
Outline

@ What is an RKHS?

© Mercer representation of RKHS

© Operations with kernels

@ Constructing new kernels
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:

o trivial (linear) kernel on R? is k(x, x") = (x, x')
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
o forany p(t) = amt™ + -+ + a1t + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on RY
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc >0

e f(t) has Taylor series with non-negative coefficients
= k(x,x') = f((x,x')) is a kernel on RY
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Operations with kernels Constructing new kernels

Kernels on RY

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
o forany p(t) = amt™ + -+ + a1t + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on RY
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc >0
e f(t) has Taylor series with non-negative coefficients
= k(x,x') = f((x,x')) is a kernel on RY
e exponential kernel: k(x,x’) = exp(o (x,x’)), for o > 0
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:

e polynomial kernel: k(x,x") = ({x,x') +¢)™, forc >0

e exponential kernel: k(x,x") = exp(o (x,x’)), for o > 0
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Operations with kernels Constructing new kernels
Gaussian kernel

Let ¢ : RY — R, ¢(x) = exp(—c ||x||?). Then, k is representable as an
inner product in R:

k(x,x") = ¢(x)p(x") = exp(—a ||x||?) exp(—c HX/H2) kernel!
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Operations with kernels Constructing new kernels
Gaussian kernel

Let ¢ : RY — R, ¢(x) = exp(—c ||x||?). Then, k is representable as an
inner product in R:

k(x,x") = ¢(x)p(x") = exp(—a ||x||?) exp(—c HX/H2) kernel!

kgauss(xyxl) = I;(X7X/)keXP(X7X,)
= exp (—U [HXH2 + HX'H2 -2 <x,x’>]>

= exp (—0’ Hx - x’Hz) kernel!
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