Foundations of Reproducing Kernel Hilbert Spaces II Advanced Topics in Machine Learning

D. Sejdinovic, A. Gretton

Gatsby Unit

March 11, 2012

Overview

- 🚺 What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Will discuss three distinct concepts:

- reproducing kernel
- inner product between features (kernel)
- positive definite function

Will discuss three distinct concepts:

- reproducing kernel
- inner product between features (kernel)
- positive definite function

...and then show that they are all equivalent.

- 🚺 What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any
$$x, y \in \mathcal{X}$$
, $k(x,y) = \langle k(\cdot,y), k(\cdot,x) \rangle_{\mathcal{H}} = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}$.

→□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQで

Reproducing kernel of an RKHS

Theorem

If it exists, reproducing kernel is unique.

Theorem

H is a reproducing kernel Hilbert space if and only if it has a reproducing kernel.

- What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Functions representable as inner products

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \to \mathcal{F}$, such that $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

Functions representable as inner products

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \to \mathcal{F}$, such that $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

- ullet note that we dropped 'reproducing', as ${\mathcal F}$ may not be an RKHS.
- ϕ : $\mathcal{X} \to \mathcal{F}$ is called a **feature map**,
- \bullet \mathcal{F} is called a **feature space**.

Functions representable as inner products

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi: \mathcal{X} \to \mathcal{F}$, such that $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$

- ullet note that we dropped 'reproducing', as ${\mathcal F}$ may not be an RKHS.
- $\phi: \mathcal{X} \to \mathcal{F}$ is called a **feature map**,
- \mathcal{F} is called a **feature space**.

Corollary

Every reproducing kernel is a kernel.

Proof.

We can take (Aronszajn) feature map $\phi: x \mapsto k(\cdot, x)$. Then,

Non-uniqueness of feature representation

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x,y) = \langle x,y \rangle^2$

$$k(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = [x_1^2 \ x_2^2 \ x_1x_2 \ x_1x_2 \]$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

Non-uniqueness of feature representation

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x, y) = \langle x, y \rangle^2$

$$k(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

Not RKHS!

- 🕕 What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Positive definite functions

Definition (Positive definite functions)

A symmetric function $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if $\forall n \geq 1, \ \forall (a_1, \dots a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j h(x_i, x_j) = \mathbf{a}^\top \mathbf{H} \mathbf{a} \geq 0.$$

The function $h(\cdot, \cdot)$ is *strictly* positive definite if for mutually distinct x_i , the equality holds only when all the a_i are zero.

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥

Kernels are positive definite

Every inner product is a positive definite function, and more generally:

Fact

Every kernel is a positive definite function.

So far

reproducing kernel \implies kernel \implies positive definite

So far

reproducing kernel \implies kernel \implies positive definite

Is every positive definite function a reproducing kernel for some RKHS?

- 🕕 What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Theorem (Moore-Aronszajn)

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be positive definite. There is a **unique RKHS** $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

Summary

reproducing kernel \iff kernel \iff positive definite

Summary

reproducing kernel \iff kernel \iff positive definite set of all kernels: $\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$ set of all subspaces of $\mathbb{R}^{\mathcal{X}}$ with continuous evaluation: $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

Starting with a positive def. k, construct a **pre-RKHS** (an inner product space of functions) $\mathcal{H}_0 \subset \mathbb{R}^{\mathcal{X}}$ with properties:

- **1** The evaluation functionals δ_x are continuous on \mathcal{H}_0 ,
- ② Any Cauchy sequence f_n in \mathcal{H}_0 which converges pointwise to 0 also converges in \mathcal{H}_0 -norm to 0.

pre-RKHS $\mathcal{H}_0 = span\{k(\cdot,x) \mid x \in \mathcal{X}\}$ will be taken to be the set of functions:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$$



- ◆□ ▶ ◆圖 ▶ ◆ ≣ ▶ ◆ ■ ● ◆ 9 Q @

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span\{k(\cdot,x) \,|\, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span\{k(\cdot,x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let \mathcal{H}_0 be a pre-RKHS space. Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists a Cauchy sequence $\{f_n\}$ in \mathcal{H}_0 converging **pointwise** to f. Then, \mathcal{H} is an RKHS.

4 D > 4 A > 4 B > 4 B > B = 40 0

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span\{k(\cdot,x) \,|\, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where
$$f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$$
 and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span\{k(\cdot,x) \,|\, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where
$$f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$$
 and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

- lacktriangledown The evaluation functionals $\delta_{\scriptscriptstyle X}$ are continuous on \mathcal{H}_0
- ② Any Cauchy sequence f_n in \mathcal{H}_0 which converges pointwise to 0 also converges in \mathcal{H}_0 -norm to 0

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣り(で

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists a Cauchy sequence $\{f_n\} \in \mathcal{H}_0$ converging **pointwise** to f.

① We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?

- ① We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?

- We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- Are the evaluation functionals still continuous on H?

- We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- ullet Are the evaluation functionals still continuous on ${\cal H}$?
- Is \mathcal{H} complete (i.e., is it a Hilbert space)?

- ① We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- ② An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- ullet Are the evaluation functionals still continuous on \mathcal{H} ?
- Is \mathcal{H} complete (i.e., is it a Hilbert space)?
 - $(1)+(2)+(3)+(4) \Longrightarrow \mathcal{H}$ is RKHS!

Non-uniqueness of feature representation

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x,y) = \langle x,y \rangle^2$

$$k(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix}$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

4 D > 4 A > 4 B > 4 B > B = 900

Example

Consider
$$\mathcal{X} = \mathbb{R}^2$$
, and $k(x, y) = \langle x, y \rangle^2$

$$k(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & x_1 x_2 & x_1 x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1 y_2 \\ y_1 y_2 \end{bmatrix}.$$

so we can use the feature maps $\phi(x) = \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix}$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

 ${\mathcal H}$ and ${ ilde{\mathcal H}}$ are not RKHS - RKHS of k is unique

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ ○壹 ※ 夕へ○

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} = ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} = k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}}$$

$$\phi(x) = \begin{bmatrix} a = x_{1}^{2} & b = x_{2}^{2} & c = \sqrt{2}x_{1}x_{2} \end{bmatrix}$$

 There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} = ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} = k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}}$$

$$\phi(x) = \begin{bmatrix} a = x_{1}^{2} & b = x_{2}^{2} & c = \sqrt{2}x_{1}x_{2} \end{bmatrix}$$

$$\left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} = \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 = k_x(y) = \left\langle k_x, k_y \right\rangle_{\mathcal{H}_k}$$

$$\tilde{\phi}(x) = \begin{bmatrix} \tilde{a} = x_1^2 & \tilde{b} = x_2^2 & \tilde{c} = x_1x_2 & \tilde{d} = x_1x_2 \end{bmatrix}$$

 There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\begin{split} \langle \phi(x), \phi(y) \rangle_{\mathbb{R}^3} &= ay_1^2 + by_2^2 + c\sqrt{2}y_1y_2 &= k_x(y) = \langle k_x, k_y \rangle_{\mathcal{H}_k} \\ \phi(x) &= \\ \left[a = x_1^2 \quad b = x_2^2 \quad c = \sqrt{2}x_1x_2 \right] \end{split}$$

$$\begin{split} \left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} &= \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 &= k_x(y) = \left\langle k_x, k_y \right\rangle_{\mathcal{H}_k} \\ \tilde{\phi}(x) &= \\ \left[\tilde{a} = x_1^2 \quad \tilde{b} = x_2^2 \quad \tilde{c} = x_1x_2 \quad \tilde{d} = x_1x_2 \right] \end{split}$$

• But what remains unique?

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q G

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\begin{split} \langle \phi(x), \phi(y) \rangle_{\mathbb{R}^{3}} &= ay_{1}^{2} + by_{2}^{2} + c\sqrt{2}y_{1}y_{2} &= k_{x}(y) = \langle k_{x}, k_{y} \rangle_{\mathcal{H}_{k}} \\ \phi(x) &= \\ \left[a = x_{1}^{2} \quad b = x_{2}^{2} \quad c = \sqrt{2}x_{1}x_{2} \right] \end{split}$$

$$\begin{split} \left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} &= \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 &= k_x(y) = \left\langle k_x, k_y \right\rangle_{\mathcal{H}_k} \\ \tilde{\phi}(x) &= \\ \left[\tilde{a} = x_1^2 \quad \tilde{b} = x_2^2 \quad \tilde{c} = x_1x_2 \quad \tilde{d} = x_1x_2 \right] \end{split}$$

- But what remains unique?
- Kernel and its RKHS!

Summary

reproducing kernel \iff kernel \iff positive definite

Summary

reproducing kernel \iff kernel \iff positive definite all kernels $\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$ $\stackrel{1-1}{\longleftrightarrow}$

all function spaces with continuous evaluation $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

Outline

- 🕕 What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - \bullet nor on k (apart from it being a positive definite function)

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)
- Now, assume that:

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)
- Now, assume that:
 - \mathcal{X} is a compact metric space (with metric $d_{\mathcal{X}}$)
 - such as [a, b], continuity \Rightarrow uniform continuity

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)
- Now, assume that:
 - ullet $\mathcal X$ is a compact metric space (with metric $d_{\mathcal X}$)
 - such as [a, b], continuity \Rightarrow uniform continuity
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *continuous* positive definite function

Integral operator of a kernel

Definition (Integral operator)

Let ν be a finite Borel measure on \mathcal{X} . For the linear map

$$S_k: L_2(\mathcal{X}; \nu) \rightarrow \mathcal{C}(\mathcal{X}),$$

 $(S_k f)(x) = \int k(x, y) f(y) d\nu(y), f \in L_2(\mathcal{X}; \nu),$

its composition $T_k = I_k \circ S_k$ with the inclusion $I_k : \mathcal{C}(\mathcal{X}) \hookrightarrow L_2(\mathcal{X}; \nu)$ is said to be the *integral operator* of k.

Integral operator of a kernel

Definition (Integral operator)

Let ν be a finite Borel measure on \mathcal{X} . For the linear map

$$S_k: L_2(\mathcal{X}; \nu) \rightarrow \mathcal{C}(\mathcal{X}),$$

 $(S_k f)(x) = \int k(x, y) f(y) d\nu(y), f \in L_2(\mathcal{X}; \nu),$

its composition $T_k = I_k \circ S_k$ with the inclusion $I_k : \mathcal{C}(\mathcal{X}) \hookrightarrow L_2(\mathcal{X}; \nu)$ is said to be the *integral operator* of k.

$$T_k: L_2(\mathcal{X}; \nu) \rightarrow L_2(\mathcal{X}; \nu)$$

Integral operator of a kernel

Definition (Integral operator)

Let ν be a finite Borel measure on \mathcal{X} . For the linear map

$$S_k: L_2(\mathcal{X}; \nu) \rightarrow \mathcal{C}(\mathcal{X}),$$

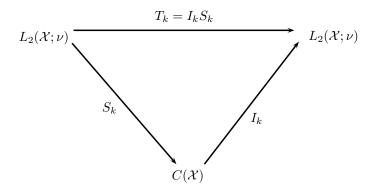
 $(S_k f)(x) = \int k(x, y) f(y) d\nu(y), f \in L_2(\mathcal{X}; \nu),$

its composition $T_k = I_k \circ S_k$ with the inclusion $I_k : \mathcal{C}(\mathcal{X}) \hookrightarrow L_2(\mathcal{X}; \nu)$ is said to be the *integral operator* of k.

$$T_k: L_2(\mathcal{X}; \nu) \rightarrow L_2(\mathcal{X}; \nu)$$

 $T_k \neq S_k$: $(S_k f)(x)$ is defined, while $(T_k f)(x)$ is **not**!

Integral operator of a kernel (2)



• k symmetric $\implies T_k$ self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$

- k symmetric $\implies T_k$ self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$
- k positive definite $\implies T_k$ positive: $\langle f, T_k f \rangle \ge 0$

- k symmetric $\implies T_k$ self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$
- k positive definite $\implies T_k$ positive: $\langle f, T_k f \rangle \geq 0$
- k continuous $\Longrightarrow T_k$ compact: if $\{f_n\}$ is bounded, then $\{Tf_n\}$ has a convergent subsequence

- k symmetric $\implies T_k$ self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$
- k positive definite $\implies T_k$ positive: $\langle f, T_k f \rangle \ge 0$
- k continuous $\Longrightarrow T_k$ compact: if $\{f_n\}$ is bounded, then $\{Tf_n\}$ has a convergent subsequence

Theorem (Spectral theorem)

Let $\mathcal F$ be a Hilbert space,and $T:\mathcal F\to\mathcal F$ a compact, self-adjoint operator. There is an at most countable ONS $\{e_j\}_{j\in J}$ of $\mathcal F$ and $\{\lambda_j\}_{j\in J}$ with $|\lambda_1|\geq |\lambda_2|\geq \cdots >0$ converging to zero such that

$$\mathcal{T}f = \sum_{j \in J} \lambda_j \left\langle f, e_j
ight
angle_{\mathcal{F}} e_j, \qquad f \in \mathcal{F}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ●

Outline

- What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Mercer's theorem

Let \mathcal{X} be a compact metric space and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel. Fix a finite measure ν on \mathcal{X} with $supp\nu = \mathcal{X}$. Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).

Mercer's theorem

Let $\mathcal X$ be a compact metric space and $k: \mathcal X \times \mathcal X \to \mathbb R$ a continuous kernel. Fix a finite measure ν on $\mathcal X$ with $supp \nu = \mathcal X$. Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal X; \nu)$, so there exist ONS $\{\tilde e_j\}_{j\in J}$ and $\{\lambda_j\}_{j\in J}$ (strictly positive eigenvalues; J at most countable).

Theorem (Mercer's theorem)

 $\forall x,y \in \mathcal{X}$ with convergence uniform on $\mathcal{X} \times \mathcal{X}$:

$$k(x,y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y).$$

Mercer's theorem

Let \mathcal{X} be a compact metric space and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel. Fix a finite measure ν on \mathcal{X} with $supp\nu = \mathcal{X}$. Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).

Theorem (Mercer's theorem)

 $\forall x,y \in \mathcal{X}$ with convergence uniform on $\mathcal{X} \times \mathcal{X}$:

$$k(x,y) = \sum_{i \in J} \lambda_j e_j(x) e_j(y).$$

- \tilde{e}_i is an equivalence class in the ONS of $L_2(\mathcal{X}; \nu)$
- $e_j = \lambda_j^{-1} S_k \tilde{e}_j \in \mathcal{C}(\mathcal{X})$ is a continuous function in the class \tilde{e}_j : $I_k e_j = \lambda_j^{-1} T_k \tilde{e}_j = \lambda_j^{-1} \lambda_j \tilde{e}_j = \tilde{e}_j$.

Mercer's theorem (2)

$$k(x,y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y)$$
$$= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)}$$

Mercer's theorem (2)

$$k(x,y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y)$$
$$= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)}$$

Another (Mercer) feature map:

$$\phi: \mathcal{X} \to \ell^2(J)$$

$$\phi: x \mapsto \left\{ \sqrt{\lambda_j} e_j(x) \right\}_{j \in J}$$

Mercer's theorem (2)

$$k(x,y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y)$$
$$= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)}$$

Another (Mercer) feature map:

$$\phi: \mathcal{X} \to \ell^2(J)$$

$$\phi: x \mapsto \left\{ \sqrt{\lambda_j} e_j(x) \right\}_{j \in J}$$

$$\sum_{i \in I} \left| \sqrt{\lambda_i} e_i(x) \right|^2 = k(x, x) < \infty$$

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥
•

Mercer's theorem (3)

• Sum $\sum_{j\in J} a_j e_j(x)$ converges absolutely $\forall x\in\mathcal{X}$ whenever sequence $\left\{\frac{a_j}{\sqrt{\lambda_j}}\right\}\in\ell^2(J)$:

$$\sum_{j \in J} |a_j e_j(x)| \leq \left[\sum_{j \in J} \left| a_j / \sqrt{\lambda_j} \right|^2 \right]^{1/2} \cdot \left[\sum_{j \in J} \left| \sqrt{\lambda_j} e_j(x) \right|^2 \right]^{1/2}$$
$$= \left\| \left\{ a_j / \sqrt{\lambda_j} \right\} \right\|_{\ell^2(J)} \sqrt{k(x, x)}.$$

Mercer's theorem (3)

• Sum $\sum_{j\in J} a_j e_j(x)$ converges absolutely $\forall x\in\mathcal{X}$ whenever sequence $\left\{\frac{a_j}{\sqrt{\lambda_j}}\right\}\in\ell^2(J)$:

$$\sum_{j \in J} |a_j e_j(x)| \leq \left[\sum_{j \in J} \left| a_j / \sqrt{\lambda_j} \right|^2 \right]^{1/2} \cdot \left[\sum_{j \in J} \left| \sqrt{\lambda_j} e_j(x) \right|^2 \right]^{1/2}$$
$$= \left\| \left\{ a_j / \sqrt{\lambda_j} \right\} \right\|_{\ell^2(J)} \sqrt{k(x, x)}.$$

 $\sum_{i \in J} a_i e_i$ is a well defined function on \mathcal{X}

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ · 볼 · ~ ♡ 및 ♡

Mercer representation of RKHS

Theorem

Let \mathcal{X} be a compact metric space and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel. Define:

$$\mathcal{H} = \left\{ f = \sum_{j \in J} a_j e_j : \left\{ a_j / \sqrt{\lambda_j} \right\} \in \ell^2(J) \right\},$$

with inner product:

$$\left\langle \sum_{j\in J} a_j e_j, \sum_{j\in J} b_j e_j \right\rangle_{\mathcal{H}} = \sum_{j\in J} \frac{a_j b_j}{\lambda_j}.$$

Then H. is the RKHS of k.

◆ロト ◆卸ト ◆恵ト ◆恵ト ・恵 ・ めなべ

Mercer representation of RKHS

Theorem

Let \mathcal{X} be a compact metric space and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel. Define:

$$\mathcal{H} = \left\{ f = \sum_{j \in J} a_j e_j : \left\{ a_j / \sqrt{\lambda_j} \right\} \in \ell^2(J) \right\},$$

with inner product:

$$\left\langle \sum_{j \in J} a_j e_j, \sum_{j \in J} b_j e_j \right\rangle_{\mathcal{U}} = \sum_{j \in J} \frac{a_j b_j}{\lambda_j}.$$

Then H. is the RKHS of k.

Does not depend on ν !

←□ → ←□ → ← □ → □ ← ● ← ○ ○

Outline

- 🕕 What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

$$\mathcal{H}_k$$
 and $L_2(\mathcal{X}; \nu)$

Assume
$$\{\tilde{e}_j\}_{j\in J}$$
 is ONB of $L_2(\mathcal{X}; \nu)$, and write $\hat{f}(j) = \langle f, \tilde{e}_j \rangle_{L_2}$

$$T_k f = \sum_{j \in J} \lambda_j \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

$$\mathcal{H}_k$$
 and $L_2(\mathcal{X}; \nu)$

Assume
$$\{\tilde{e}_j\}_{j\in J}$$
 is ONB of $L_2(\mathcal{X}; \nu)$, and write $\hat{f}(j) = \langle f, \tilde{e}_j \rangle_{L_2}$

$$T_k f = \sum_{j\in J} \lambda_j \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

 $T_k^{1/2} f = \sum_{i \in I} \sqrt{\lambda_i} \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$

 \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Assume $\{\tilde{e}_j\}_{j\in J}$ is ONB of $L_2(\mathcal{X}; \nu)$, and write $\hat{f}(j) = \langle f, \tilde{e}_j \rangle_{L_2}$

$$T_k f = \sum_{j \in J} \lambda_j \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

$$T_k^{1/2} f = \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

$$\mathcal{H}_k = \left\{ f = \sum_{j \in J} a_j e_j : \left\{ a_j / \sqrt{\lambda_j} \right\} \in \ell^2(J) \right\}$$

$$\sum_{j\in J} \left| \hat{f}(j) \right|^2 = \|f\|_2^2 < \infty \Rightarrow \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \Rightarrow \quad \sum_{j\in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

 \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

 \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

$$\langle f, g \rangle_{L_2} = \left\langle \left\{ \hat{f}(j) \right\}, \left\{ \hat{g}(j) \right\} \right\rangle_{\ell^2(J)} = \sum_{j \in J} \frac{\sqrt{\lambda_j} \hat{f}(j) \sqrt{\lambda_j} \hat{g}(j)}{\lambda_j}$$

\mathcal{H}_k and $L_2(\mathcal{X};\nu)$

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

$$\langle f, g \rangle_{L_2} = \left\langle \left\{ \hat{f}(j) \right\}, \left\{ \hat{g}(j) \right\} \right\rangle_{\ell^2(J)} = \sum_{j \in J} \frac{\sqrt{\lambda_j} \hat{f}(j) \sqrt{\lambda_j} \hat{g}(j)}{\lambda_j}$$

 $T_{\nu}^{1/2}$ induces an isometric isomorphism between span $\{\tilde{e}_i : j \in J\} \subseteq L_2(\mathcal{X}; \nu)$ and \mathcal{H}_k (and both are isometrically isomorphic to $\ell^2(J)$).

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$
$$k(\cdot, x) = \sum_{j \in J} \sqrt{\lambda_j} \left(\sqrt{\lambda_j} e_j(x) \right) e_j$$

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$
$$k(\cdot, x) = \sum_{j \in J} \sqrt{\lambda_j} \left(\sqrt{\lambda_j} e_j(x) \right) e_j$$
$$\mathcal{H}_k \ni k(\cdot, x) \leftarrow x \rightarrow \left\{ \sqrt{\lambda_j} e_j(x) \right\} \in \ell^2(J)$$

$$f \in L_{2}(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^{2}(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_{j}} \hat{f}(j) e_{j} \in \mathcal{H}_{k}$$
$$k(\cdot, x) = \sum_{j \in J} \sqrt{\lambda_{j}} \left(\sqrt{\lambda_{j}} e_{j}(x) \right) e_{j}$$
$$\mathcal{H}_{k} \ni k(\cdot, x) \leftarrow x \rightarrow \left\{ \sqrt{\lambda_{j}} e_{j}(x) \right\} \in \ell^{2}(J)$$

Mercer feature map gives Fourier coefficients of the Aronszajn feature map.

→□▶ →□▶ → □▶ → □ ♥ ♀ ♥ ♀ ♥

Outline

- What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \geq 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \geq 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_1(x,x)-k_2(x,x)=\langle \phi(x),\phi(x)\rangle_{\mathcal{H}}<0$.
- This gives the set of all kernels the geometry of a closed convex cone.

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \geq 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_1(x,x)-k_2(x,x)=\langle \phi(x),\phi(x)\rangle_{\mathcal{H}}<0$.
- This gives the set of all kernels the geometry of a closed convex cone.

$$\mathcal{H}_{k_1+k_2} = \mathcal{H}_{k_1} + \mathcal{H}_{k_2} = \{f_1 + f_2 : f_1 \in \mathcal{H}_{k_1}, f_2 \in \mathcal{H}_{k_2}\}$$

Operations with kernels (2)

Fact (Product of kernels)

If k_1 and k_2 are kernels on $\mathcal X$ and $\mathcal Y$, then $k=k_1\otimes k_2$, given by:

$$k((x,y),(x',y')) := k_1(x,x')k_2(y,y')$$

is a kernel on $\mathcal{X} imes\mathcal{Y}.$ If $\mathcal{X}=\mathcal{Y},$ then $k=k_1\cdot k_2,$ given by:

$$k(x,x') := k_1(x,x')k_2(x,x')$$

is a kernel on \mathcal{X} .

Operations with kernels (2)

Fact (Product of kernels)

If k_1 and k_2 are kernels on $\mathcal X$ and $\mathcal Y$, then $k=k_1\otimes k_2$, given by:

$$k((x,y),(x',y')) := k_1(x,x')k_2(y,y')$$

is a kernel on $\mathcal{X} imes\mathcal{Y}.$ If $\mathcal{X}=\mathcal{Y},$ then $k=k_1\cdot k_2,$ given by:

$$k(x,x') := k_1(x,x')k_2(x,x')$$

is a kernel on \mathcal{X} .

$$\mathcal{H}_{k_1\otimes k_2}\cong\mathcal{H}_{k_1}\otimes\mathcal{H}_{k_2}$$

Summary

all kernels
$$\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$$

$$\overset{1-1}{\longleftrightarrow}$$
with continuous evaluation

all function spaces with continuous evaluation $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

Summary

all kernels
$$\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$$
 $\stackrel{1-1}{\longleftrightarrow}$

all function spaces with continuous evaluation $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$

bijection between $\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$ and $\mathit{Hilb}(\mathbb{R}^{\mathcal{X}})$ preserves geometric structure

Outline

- What is an RKHS?
 - Reproducing kernel
 - Inner product between features
 - Positive definite function
 - Moore-Aronszajn Theorem
- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- Operations with kernels
 - Sum and product
 - Constructing new kernels

New kernels from old:

ullet trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'
angle$

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'\rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x')=\langle x,x'\rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \ge 0$

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x') = \langle x,x' \rangle$
- for any $p(t) = a_m t^m + \cdots + a_1 t + a_0$ with $a_i > 0$ $\implies k(x,x') = p(\langle x,x'\rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \geq 0$
- f(t) has Taylor series with non-negative coefficients $\implies k(x,x') = f(\langle x,x'\rangle)$ is a kernel on \mathbb{R}^d

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x') = \langle x,x' \rangle$
- for any $p(t) = a_m t^m + \cdots + a_1 t + a_0$ with $a_i > 0$ $\implies k(x,x') = p(\langle x,x'\rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \geq 0$
- f(t) has Taylor series with non-negative coefficients $\implies k(x,x') = f(\langle x,x'\rangle)$ is a kernel on \mathbb{R}^d
- exponential kernel: $k(x, x') = \exp(\sigma \langle x, x' \rangle)$, for $\sigma > 0$

New kernels from old:

• polynomial kernel:
$$k(x,x') = (\langle x,x' \rangle + c)^m$$
, for $c \ge 0$

• exponential kernel: $k(x, x') = \exp(\sigma \langle x, x' \rangle)$, for $\sigma > 0$

Gaussian kernel

Let $\phi: \mathbb{R}^d \to \mathbb{R}$, $\phi(x) = \exp(-\sigma ||x||^2)$. Then, \tilde{k} is representable as an inner product in \mathbb{R} :

$$\tilde{k}(x, x') = \phi(x)\phi(x') = \exp(-\sigma \|x\|^2) \exp(-\sigma \|x'\|^2)$$
 kernel!

Gaussian kernel

Let $\phi: \mathbb{R}^d \to \mathbb{R}$, $\phi(x) = \exp(-\sigma ||x||^2)$. Then, \tilde{k} is representable as an inner product in \mathbb{R} :

$$\tilde{k}(x, x') = \phi(x)\phi(x') = \exp(-\sigma \|x\|^2) \exp(-\sigma \|x'\|^2)$$
 kernel!

$$k_{gauss}(x, x') = \tilde{k}(x, x')k_{exp}(x, x')$$

$$= \exp\left(-\sigma\left[\|x\|^2 + \|x'\|^2 - 2\langle x, x'\rangle\right]\right)$$

$$= \exp\left(-\sigma\|x - x'\|^2\right) \quad \text{kernel!}$$