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Distance between means (1)

Sample (z;);" ; from p and (y;);"; from g. What is the distance
between their means in feature space?
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Distance between means (1)

Sample (z;);" ; from p and (y;);"; from g. What is the distance
between their means in feature space?
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Distance between means (2)

Sample (z;);~; from p and (y;);~; from g. What is the distance
between their means in feature space?

m n 2
1

3 @) - Y dly)

=1 j=1

H

m When ¢(z) = z, distinguish means. When ¢(z) = [z z2], distinguish
means and variances.

m There are kernels that can distinguish any two distributions
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Kernel Principal Component
Analysis



PCA (1)

Goal of classical PCA: to find a d-dimensional subspace of a higher
dimensional space (D-dimensional, RP ) containing the directions of
maximum variance.
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(Figure by K. Fukumizu)
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Applicationof kPCA: image denoising

What is the purpose of kernel PCA?

We consider the problem of denoising hand-written digits.

7/34



Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.

We are given a noisy digit z*.

Pyp(z*) = Ppo(z*) + ...+ Ppr(z*)

is the projection of ¢(z*) onto one of the first d eigenvectors { fg}g:l
from kernel PCA (these are orthogonal).
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Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.

We are given a noisy digit z*.

Pyp(z*) = Ppo(z*) + ...+ Ppr(z*)

is the projection of ¢(z*) onto one of the first d eigenvectors { fg}g:l
from kernel PCA (these are orthogonal).

Define the nearest point y* € X to this feature space projection as
* = arg min — Pyo(z*)|?, .
Y gy€X||¢(y) ap(z")ll3,

In many cases, not possible to reduce the squared error to zero, as no single y*
corresponds to exact solution.
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Applicationof kPCA: image denoising

Projection onto PCA subspace for denoising. kPCA: data may not be
Gaussian distributed, but can lie in a submanifold in input space.

USPS hand-written digits data:
7191 images of hand-written digits of 16 x 16 pixels.

{1 2RV RONAA 7R2ET10

Sample of original images (not used for experiments)

B e B

Sample of noisy images
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Sample of denoised images (linear PCA)
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Sample of denoised images ( kernel PCA, Gaussian kernel)

Generated by Matlab Stprtool (by V. Franc). (Figure: K.

Fukumizu)
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What is PCA? (reminder)

First principal component (max. variance)

1 1 ’
T

U arg max — U xr, — — T,

' guuusmzl SO BE

7=

= arg max u' Cu

llull<1
where
T
1 & 1 & 1 & 1 T
1=1 1=1 1=1
X = [ T ... Ty, ], H=1-n""1,4n, lnxn a matrix of ones.

Definition (Principal components)

The pairs (A;, u;) are the eigensystem of A\;u; = Cu,.
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PCA in feature space

Kernel version, first principal component:

1 1< i
fi = argu}xl‘lz}gcl - > <<f,¢($z‘) o Z¢($J)>H>

1=1
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PCA in feature space

Kernel version, first principal component:

2
12 18
fi = arguﬁ‘lzxgcl - ; <<f,¢(:v¢) o Z¢($j)>ﬂ>
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PCA in feature space

Kernel version, first principal component:

2
1 1<
fi = arg max ; <<f,¢($¢) - nj21¢<wj>>ﬂ>
1 & Y
= oxg max 3 (f(e:) - B(1)
= argmxtlHls)gclvar(f).
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PCA in feature space

Kernel version, first principal component:

2
1 & 1 &
fi = arguﬁ‘lzxgcl - ; <<f,¢(:v¢) - njzjl¢($j)>ﬂ>

1 ~ 2
= arg max 2::1 (F(=) - B())

= arg max var(f).
g\lfl\wél ()

We can write
n 1 n n .
= > a (¢($¢) - ¢($j)> = aip(m),
i=1 j=1 i=1
since any component orthogonal to the span of

$(z;) = ¢(z;) — 2 2", ¢(z;) vanishes.
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How to solve kernel PCA

We can also define an infinite dimensional analog of the covariance:
1 & 1 1
(s s o).
1 & p
= d(z) ® (i)

n 1=1
where we use the definition

(a®b)c:=(b,c)y a (1)

this is analogous to the case of finite dimensional vectors,
(abT)c = (b"c)a.

11/34



How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

fA=Cf
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fA=Cf
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Eigenfunctions of kernel covariance:
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How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

fA=Cf
=1
C
1 n . ~ n ~

= IIEINCENDD aj¢($y)>

=1 j=1 H

—_———
!

= %st(%) (Z o k(zi, xﬁ)

1=1 J=1

k(z;, z;) is the (4,7)th entry of the matrix K := HKH (exercise!).
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How to solve kernel PCA (2)

We can now project both sides of

fede = Cf
onto all of the ¢(z,):

(8(a0), LHS)_ = A ($(20), 1), = A apk(zgz)  Vae{l..n}

1=1
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How to solve kernel PCA (2)

We can now project both sides of

fede = Cf
onto all of the ¢(z,):

(8(a0), LHS)_ = A ($(20), 1), = A apk(zgz)  Vae{l..n}

1=1

. . 1
(#(z0), RES) = ($(2,), C)., = > (s, ) (Z ay;k(zi, ) )
1=1
Writing this as a matrix equation,

’n}\(Ka( = Kzag ?’L}\ga( = Kag.
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Eigenfunctions f have unit norm in feature space?

I£113,
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Eigenfunctions f have unit norm in feature space?

I£113,
- <Z asp(z), aié(mi)>
i=1 1=1

H
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Eigenfunctions f have unit norm in feature space?

I£113,

n
= 2{: 2{:‘1icxi%(a%’ 13)
1=1j5=1

=a'Ka=nia'a=nl]al?

Thus a < a/ V n}\ (assumed: original eigenvector solution has ||a|| = 1)
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Projection onto kernel PC

How do you project a new point z* onto the principal component f?

Assuming ||f||,, = 1, the projection is

Prp(z®) = ($(z%),f)y f
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Kernel Ridge Regression



Kernel ridge regression
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Very simple to implement, works well when no outliers.
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Ridge regression: case of R”

We are given 7 training points in RZ:

X:[a:l mn}ERDWL yiz[yl yn}T

Define some A > 0. Our goal is:

n
a* = arg min (Z(y —z,'a)? +)\||a||2>

D
a€R -1

= arg il%&% (Hy - XTaH2 -|_)\Ha,H2) ,

The second term A||a||? is chosen to avoid problems in high
dimensional spaces (see below).
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Ridge regression: solution (1)

Expanding out the above term, we get

lv-xTa" +2al> = vTy-2v"XTa+a XX a+ 2" a

= y'ly—2y' X'a+a' (XXT+)\I) a = (%)

= Define b= (XX + ,\1)1/2 a

m Square root defined since matrix positive definite

® XX may not be invertible eg when D > n, adding A means we
can write a = (XXT + )\I)il/z b).
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Ridge regression: solution (2)

Complete the square:

—-1/2
(*) =y y -2y XT (XXT + ,\1) b7
2

—yTy+ H (XXT+ ,\1)71/2 Xy — sz - ‘ T XT (XX + ,\I)’l/2

This 1s minimized when
—~1/2
bt = (XXT T )\I) 2 Xy or
-1
a* = (XX—r —I-)\I) Xy,

which is the classic regularized least squares solution.
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Ridge regression solution as sum of training points (1)

We may rewrite this expression in a way that is more
informative,a* = Y27, ol ;.

The solution is a linear combination of training points z;.
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Ridge regression solution as sum of training points (1)

We may rewrite this expression in a way that is more
informative,a* = Y, alz;.
The solution is a linear combination of training points z;.

Proof: Assume D > n (in feature space case D can be very large or
even infinite).

Perform an SVD on X, i.e.

X =USV",
where
v=[w . w] S:li g] v=[7 o]

Here Uis Dx Dand U'U=UU" =Ip (subscript denotes unit
matrix size), S is D x D, where S has n non-zero entries, and V is
nxD,where VIV =VVT =1I,.
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Ridge regression solution as sum of training points (2)
Proof (continued):
ot = (XXxT+ADp) Xy
- (U32 U+ ,\ID)*l Usv Ty
= U(S*+alp) UTUSVTy

= U(S*+aIp) sVTy

US (8 +Mp)  Vy

T 2 1T
Usv V(S +)\ID) VTy
(a)
= X(XTX 4+, ty (2)

—
~
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Ridge regression solution as sum of training points (3)

Proof (continued):

(a): both S and VT V are non-zero in same sized top-left block, and
V'V is I, in that block.

(b): since
-1
V(824 aIp) VT

[ (2an)T 0| l vl ]

-7 O][ 0 (AIpn)™" |

(8 4+25) 77

—(xTx+ ,\In)*1 .
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Kernel ridge regression

Use features of ¢(z;) in the place of z;:

a* = argmin (Z (a,(z:))g)’ —l—AHaH%) .

aEH i1

E.g. for finite dimensional feature spaces,

i sinz |
5 coszT
T .
¢p($) — : ¢s($) — | sin2z
e :
T L cosfz |

a is a vector of length £ giving weight to each of these features so as
to find the mapping between = and y. Feature vectors can also have
infinite length (more soon).
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Kernel ridge regression: proof

Use previous proof!
X=[ @) ... ¢z)].
All of the steps that led us to a* = X (X ' X + \I,) "'y follow.
XXT =5 ¢(z) ® ¢(x:)
i=1

(using tensor notation from kernel PCA), and

(X" X) g = ($(2:), $(2)))5, = ki, 7).
Making these replacements, we get

a* = X(K—F)\In)*ly

= Y o aid(m) of=(K+AL) 'y
1=1
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Kernel ridge regression: easier proof

We begin knowing a is a linear combination of feature space mappings
of points (representer theorem: later in course)

a=> ap(z)
=1

Then

n

> (% = (a,¢(2i))4)” + Allall3,

1=1

ly — Ka|®> + da’ Ka

= yly—2y' Ka+a' (K2 + AK) a

Differentiating wrt o and setting this to zero, we get

o = (K + M)y,

. 8o Ua _ T 9v'a _ 8aTy _
Recall: 95> = (U + U ')a, B = Tt =
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Reminder: smoothness

What does ||a||3 have to do with smoothing?
Example 1: The exponentiated quadratic kernel. Recall

1 i=j
0 i#j.

e1<x>+
71 = 2%, WL\ N

e - -
ea(x)\/¥
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Reminder: smoothness

What does ||a||3 have to do with smoothing?

Example 2: The Fourier series representation:

f@)= 3 fexpluiz)

=0
and .
o= 3 4
Thus,
< |f

IflZ = Hu= D2 =

l=—00



Parameter selection for KRR

Given the objective

n
*
a = ar min
& acH (Z

1=1

How do we choose

m The regularization parameter A7

(@, ¢(:))3) +>\||a||'2ﬂ> -

m The kernel parameter: for exponentiated quadratic kernel, ¢ in

k(z,y) = exp (

—llz — yl?

).
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Choice of A

A=0.1, 6=0.6
1
05f ® o
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Choice of A

A=0.1, 6=0.6 A=10, 6=0.6 A=1e-07, 6=0.6

31/34



Choice of o
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Choice of o

A=0.1, 0=0.6 A=0.1, 6=2 A=0.1, 6=0.1
1 1
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Cross validation

Split n data into training set size my; and test set size nte = n — My,.
Split training set into m equal chunks of size nyy = m;/m. Call
these Xyali, Yval,; for 2 € {1,...,m}

For each A, o pair

For each Xvai,, Yval,i

m Train ridge regression on remaining trainining set data X \ Xva1,; and
Ytr \ Yval,z,
m Evaluate its error on the validation data Xvai s, Yval,s

Average the errors on the validation sets to get the average validation
error for A, 0.

Choose \*,g* with the lowest average validation error

Measure the performance on the test set Xie, Yie.
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