
Reproducing kernel Hilbert spaces
in Machine Learning

Arthur Gretton

Gatsby Computational Neuroscience Unit,
University College London

Advanced topics in Machine Learning

1/34



Difference in feature means

2/34



Distance between means (1)
Sample (xi )

m
i=1 from p and (yi )

m
i=1 from q . What is the distance

between their means in feature space?







 1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )








2

H

=

*
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj );
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )

+
H

=
1

m2

* mX
i=1

�(xi );
mX

i=1

�(xi )

+
+ : : :

=
1

m2

mX
i=1

mX
j=1

k(xi ; xj ) +
1
n2

nX
i=1

nX
j=1

k(yi ; yj )� 2
mn

mX
i=1

mX
j=1

k(xi ; yj ):

3/34



Distance between means (1)
Sample (xi )

m
i=1 from p and (yi )

m
i=1 from q . What is the distance

between their means in feature space?







 1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )








2

H

=

*
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj );
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )

+
H

=
1

m2

* mX
i=1

�(xi );
mX

i=1

�(xi )

+
+ : : :

=
1

m2

mX
i=1

mX
j=1

k(xi ; xj ) +
1
n2

nX
i=1

nX
j=1

k(yi ; yj )� 2
mn

mX
i=1

mX
j=1

k(xi ; yj ):

3/34



Distance between means (1)
Sample (xi )

m
i=1 from p and (yi )

m
i=1 from q . What is the distance

between their means in feature space?







 1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )








2

H

=

*
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj );
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )

+
H

=
1

m2

* mX
i=1

�(xi );
mX

i=1

�(xi )

+
+ : : :

=
1

m2

mX
i=1

mX
j=1

k(xi ; xj ) +
1
n2

nX
i=1

nX
j=1

k(yi ; yj )� 2
mn

mX
i=1

mX
j=1

k(xi ; yj ):

3/34



Distance between means (1)
Sample (xi )

m
i=1 from p and (yi )

m
i=1 from q . What is the distance

between their means in feature space?







 1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )








2

H

=

*
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj );
1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )

+
H

=
1

m2

* mX
i=1

�(xi );
mX

i=1

�(xi )

+
+ : : :

=
1

m2

mX
i=1

mX
j=1

k(xi ; xj ) +
1
n2

nX
i=1

nX
j=1

k(yi ; yj )� 2
mn

mX
i=1

mX
j=1

k(xi ; yj ):

3/34



Distance between means (2)

Sample (xi )
m
i=1 from p and (yi )

m
i=1 from q . What is the distance

between their means in feature space?







 1
m

mX
i=1

�(xi )� 1
n

nX
j=1

�(yj )








2

H

When �(x ) = x , distinguish means. When �(x ) = [x x 2], distinguish
means and variances.

There are kernels that can distinguish any two distributions

4/34



Kernel Principal Component
Analysis

5/34



PCA (1)

Goal of classical PCA: to find a d-dimensional subspace of a higher
dimensional space (D-dimensional, RD) containing the directions of
maximum variance.

(Figure by K. Fukumizu)

6/34



Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x �.

Pd�(x �) = Pf1�(x �) + : : : + Pfd�(x
�)

is the projection of �(x �) onto one of the first d eigenvectors ff`gd`=1
from kernel PCA (these are orthogonal).
Define the nearest point y� 2 X to this feature space projection as

y� = argmin
y2X
k�(y)� Pd�(x �)k2H :

In many cases, not possible to reduce the squared error to zero, as no single y�

corresponds to exact solution.

7/34



Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x �.

Pd�(x �) = Pf1�(x �) + : : : + Pfd�(x
�)

is the projection of �(x �) onto one of the first d eigenvectors ff`gd`=1
from kernel PCA (these are orthogonal).
Define the nearest point y� 2 X to this feature space projection as

y� = argmin
y2X
k�(y)� Pd�(x �)k2H :

In many cases, not possible to reduce the squared error to zero, as no single y�

corresponds to exact solution.

7/34



Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x �.

Pd�(x �) = Pf1�(x �) + : : : + Pfd�(x
�)

is the projection of �(x �) onto one of the first d eigenvectors ff`gd`=1
from kernel PCA (these are orthogonal).
Define the nearest point y� 2 X to this feature space projection as

y� = argmin
y2X
k�(y)� Pd�(x �)k2H :

In many cases, not possible to reduce the squared error to zero, as no single y�

corresponds to exact solution.

7/34



Applicationof kPCA: image denoising
Projection onto PCA subspace for denoising. kPCA: data may not be
Gaussian distributed, but can lie in a submanifold in input space.

(Figure: K.
Fukumizu)

8/34



What is PCA? (reminder)
First principal component (max. variance)

u1 = arg max
kuk�1

1
n

nX
i=1

0@u>
0@xi � 1

n

nX
j=1

xj

1A1A2

= arg max
kuk�1

u>Cu

where

C =
1
n

nX
i=1

0@xi � 1
n

nX
j=1

xj

1A0@xi � 1
n

nX
j=1

xj

1A> =
1
n

XHX>;

X =
h

x1 : : : xn

i
, H = I � n�11n�n , 1n�n a matrix of ones.

Definition (Principal components)
The pairs (�i ;ui ) are the eigensystem of �iui = Cui :

9/34



PCA in feature space
Kernel version, first principal component:

f1 = arg max
kf kH�1

1
n

nX
i=1

0@*f ; �(xi )� 1
n

nX
j=1

�(xj )

+
H

1A2

= arg max
kf kH�1

1
n

nX
i=1

�
f (xi )� bE(f )

�2

= arg max
kf kH�1

dvar(f ):
We can write

f =
nX

i=1

�i

0@�(xi )� 1
n

nX
j=1

�(xj )

1A =
nX

i=1

�i ~�(xi );

since any component orthogonal to the span of
~�(xi ) := �(xi )� 1

n
Pn

i=1 �(xi ) vanishes.

10/34



PCA in feature space
Kernel version, first principal component:

f1 = arg max
kf kH�1

1
n

nX
i=1

0@*f ; �(xi )� 1
n

nX
j=1

�(xj )

+
H

1A2

= arg max
kf kH�1

1
n

nX
i=1

�
f (xi )� bE(f )

�2

= arg max
kf kH�1

dvar(f ):
We can write

f =
nX

i=1

�i

0@�(xi )� 1
n

nX
j=1

�(xj )

1A =
nX

i=1

�i ~�(xi );

since any component orthogonal to the span of
~�(xi ) := �(xi )� 1

n
Pn

i=1 �(xi ) vanishes.

10/34



PCA in feature space
Kernel version, first principal component:

f1 = arg max
kf kH�1

1
n

nX
i=1

0@*f ; �(xi )� 1
n

nX
j=1

�(xj )

+
H

1A2

= arg max
kf kH�1

1
n

nX
i=1

�
f (xi )� bE(f )

�2

= arg max
kf kH�1

dvar(f ):
We can write

f =
nX

i=1

�i

0@�(xi )� 1
n

nX
j=1

�(xj )

1A =
nX

i=1

�i ~�(xi );

since any component orthogonal to the span of
~�(xi ) := �(xi )� 1

n
Pn

i=1 �(xi ) vanishes.

10/34



PCA in feature space
Kernel version, first principal component:

f1 = arg max
kf kH�1

1
n

nX
i=1

0@*f ; �(xi )� 1
n

nX
j=1

�(xj )

+
H

1A2

= arg max
kf kH�1

1
n

nX
i=1

�
f (xi )� bE(f )

�2

= arg max
kf kH�1

dvar(f ):
We can write

f =
nX

i=1

�i

0@�(xi )� 1
n

nX
j=1

�(xj )

1A =
nX

i=1

�i ~�(xi );

since any component orthogonal to the span of
~�(xi ) := �(xi )� 1

n
Pn

i=1 �(xi ) vanishes.

10/34



How to solve kernel PCA

We can also define an infinite dimensional analog of the covariance:

C =
1
n

nX
i=1

0@�(xi )� 1
n

nX
j=1

�(xj )

1A

0@�(xi )� 1

n

nX
j=1

�(xj )

1A ;

=
1
n

nX
i=1

~�(xi )
 ~�(xi )

where we use the definition

(a 
 b)c := hb; ciH a (1)

this is analogous to the case of finite dimensional vectors,
(ab>)c = (b>c)a .

11/34



How to solve kernel PCA (1)
Eigenfunctions of kernel covariance:

f � = Cf

=

 
1
n

nX
i=1

~�(xi )
 ~�(xi )

!
| {z }

C

f

=
1
n

nX
i=1

~�(xi )

�
~�(xi );

nX
j=1

�j ~�(xj )| {z }
f

�
H

=
1
n

nX
i=1

~�(xi )

0@ nX
j=1

�j ~k(xi ; xj )

1A
~k(xi ; xj ) is the (i ; j )th entry of the matrix ~K := HKH (exercise!).

12/34



How to solve kernel PCA (1)
Eigenfunctions of kernel covariance:

f � = Cf

=

 
1
n

nX
i=1

~�(xi )
 ~�(xi )

!
| {z }

C

f

=
1
n

nX
i=1

~�(xi )

�
~�(xi );

nX
j=1

�j ~�(xj )| {z }
f

�
H

=
1
n

nX
i=1

~�(xi )

0@ nX
j=1

�j ~k(xi ; xj )

1A
~k(xi ; xj ) is the (i ; j )th entry of the matrix ~K := HKH (exercise!).

12/34



How to solve kernel PCA (1)
Eigenfunctions of kernel covariance:

f � = Cf

=

 
1
n

nX
i=1

~�(xi )
 ~�(xi )

!
| {z }

C

f

=
1
n

nX
i=1

~�(xi )

�
~�(xi );

nX
j=1

�j ~�(xj )| {z }
f

�
H

=
1
n

nX
i=1

~�(xi )

0@ nX
j=1

�j ~k(xi ; xj )

1A
~k(xi ; xj ) is the (i ; j )th entry of the matrix ~K := HKH (exercise!).

12/34



How to solve kernel PCA (1)
Eigenfunctions of kernel covariance:

f � = Cf

=

 
1
n

nX
i=1

~�(xi )
 ~�(xi )

!
| {z }

C

f

=
1
n

nX
i=1

~�(xi )

�
~�(xi );

nX
j=1

�j ~�(xj )| {z }
f

�
H

=
1
n

nX
i=1

~�(xi )

0@ nX
j=1

�j ~k(xi ; xj )

1A
~k(xi ; xj ) is the (i ; j )th entry of the matrix ~K := HKH (exercise!).

12/34



How to solve kernel PCA (2)
We can now project both sides of

f`�` = Cf`

onto all of the ~�(xq):D
~�(xq);LHS

E
H

= �`
D
~�(xq); f`

E
H

= �`

nX
i=1

�`i ~k(xq ; xi ) 8q 2 f1 : : :ng

D
~�(xq);RHS

E
H

=
D
~�(xq);Cf`

E
H

=
1
n

nX
i=1

~k(xq ; xi )

0@ nX
j=1

�`j ~k(xi ; xj )

1A 8q 2 f1 : : :ng

Writing this as a matrix equation,

n�`fK�` = fK 2�` n�`�` = fK�`:

13/34



How to solve kernel PCA (2)
We can now project both sides of

f`�` = Cf`

onto all of the ~�(xq):D
~�(xq);LHS

E
H

= �`
D
~�(xq); f`

E
H

= �`

nX
i=1

�`i ~k(xq ; xi ) 8q 2 f1 : : :ng

D
~�(xq);RHS

E
H

=
D
~�(xq);Cf`

E
H

=
1
n

nX
i=1

~k(xq ; xi )

0@ nX
j=1

�`j ~k(xi ; xj )

1A 8q 2 f1 : : :ng

Writing this as a matrix equation,

n�`fK�` = fK 2�` n�`�` = fK�`:

13/34



Eigenfunctions f have unit norm in feature space?

kf k2H
=

* nX
i=1

�i ~�(xi );
nX

i=1

�i ~�(xi )

+
H

=
nX

i=1

nX
j=1

�i�i

D
~�(xi ); ~�(xj )

E
H

=
nX

i=1

nX
j=1

�i�i ~k(xi ; xj )

= �>fK� = n��>� = n�k�k2:

Thus � �=
p

n� (assumed: original eigenvector solution has k�k = 1)

14/34



Eigenfunctions f have unit norm in feature space?

kf k2H
=

* nX
i=1

�i ~�(xi );
nX

i=1

�i ~�(xi )

+
H

=
nX

i=1

nX
j=1

�i�i

D
~�(xi ); ~�(xj )

E
H

=
nX

i=1

nX
j=1

�i�i ~k(xi ; xj )

= �>fK� = n��>� = n�k�k2:

Thus � �=
p

n� (assumed: original eigenvector solution has k�k = 1)

14/34



Eigenfunctions f have unit norm in feature space?

kf k2H
=

* nX
i=1

�i ~�(xi );
nX

i=1

�i ~�(xi )

+
H

=
nX

i=1

nX
j=1

�i�i

D
~�(xi ); ~�(xj )

E
H

=
nX

i=1

nX
j=1

�i�i ~k(xi ; xj )

= �>fK� = n��>� = n�k�k2:

Thus � �=
p

n� (assumed: original eigenvector solution has k�k = 1)

14/34



Eigenfunctions f have unit norm in feature space?

kf k2H
=

* nX
i=1

�i ~�(xi );
nX

i=1

�i ~�(xi )

+
H

=
nX

i=1

nX
j=1

�i�i

D
~�(xi ); ~�(xj )

E
H

=
nX

i=1

nX
j=1

�i�i ~k(xi ; xj )

= �>fK� = n��>� = n�k�k2:

Thus � �=
p

n� (assumed: original eigenvector solution has k�k = 1)

14/34



Eigenfunctions f have unit norm in feature space?

kf k2H
=

* nX
i=1

�i ~�(xi );
nX

i=1

�i ~�(xi )

+
H

=
nX

i=1

nX
j=1

�i�i

D
~�(xi ); ~�(xj )

E
H

=
nX

i=1

nX
j=1

�i�i ~k(xi ; xj )

= �>fK� = n��>� = n�k�k2:

Thus � �=
p

n� (assumed: original eigenvector solution has k�k = 1)

14/34



Projection onto kernel PC

How do you project a new point x � onto the principal component f ?
Assuming kf kH = 1, the projection is

Pf �(x �) = h�(x �); f iH f

=

0@ nX
j=1

�j

D
�(x �); ~�(xj )

E
H

1A
| {z }

h�(x�);f iH

nX
i=1

�i ~�(xi )| {z }
f

=

0@ nX
j=1

�j

 
k(x �; xj )� 1

n

nX
`=1

k(x �; x`)

!1A nX
i=1

�i ~�(xi ):

15/34



Kernel Ridge Regression

16/34



Kernel ridge regression

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Very simple to implement, works well when no outliers.

17/34



Ridge regression: case of RD

We are given n training points in RD :

X =
h

x1 : : : xn

i
2 RD�n y :=

h
y1 : : : yn

i>
Define some � > 0. Our goal is:

a� = arg min
a2RD

 nX
i=1

(yi � x>i a)2 + �kak2
!

= arg min
a2RD

�


y �X>a



2

+ �kak2
�
;

The second term �kak2 is chosen to avoid problems in high
dimensional spaces (see below).

18/34



Ridge regression: solution (1)

Expanding out the above term, we get


y �X>a



2

+ �kak2 = y>y � 2y>X>a + a>XX>a + �a>a

= y>y � 2y>X>a + a>
�
XX> + �I

�
a = (�)

Define b =
�
XX> + �I

�1=2
a

Square root defined since matrix positive definite

XX> may not be invertible eg when D > n , adding �I means we

can write a =
�
XX> + �I

��1=2
b).

19/34



Ridge regression: solution (2)

Complete the square:

(�) =y>y � 2y>X>
�
XX> + �I

��1=2
b + b>b

=y>y +





�XX> + �I
��1=2

Xy � b




2
�




y>X>

�
XX> + �I

��1=2




2

This is minimized when

b� =
�
XX> + �I

��1=2
Xy or

a� =
�
XX> + �I

��1
Xy ;

which is the classic regularized least squares solution.

20/34



Ridge regression solution as sum of training points (1)
We may rewrite this expression in a way that is more
informative,a� =

Pn
i=1 �

�
i xi .

The solution is a linear combination of training points xi .
Proof: Assume D > n (in feature space case D can be very large or
even infinite).
Perform an SVD on X , i.e.

X = USV >;

where

U =
h

u1 : : : uD

i
S =

"
~S 0
0 0

#
V =

h
~V 0

i
:

Here U is D �D and U>U = UU> = ID (subscript denotes unit
matrix size), S is D �D , where ~S has n non-zero entries, and V is
n �D , where ~V > ~V = ~V ~V > = In .

21/34



Ridge regression solution as sum of training points (1)
We may rewrite this expression in a way that is more
informative,a� =

Pn
i=1 �

�
i xi .

The solution is a linear combination of training points xi .
Proof: Assume D > n (in feature space case D can be very large or
even infinite).
Perform an SVD on X , i.e.

X = USV >;

where

U =
h

u1 : : : uD

i
S =

"
~S 0
0 0

#
V =

h
~V 0

i
:

Here U is D �D and U>U = UU> = ID (subscript denotes unit
matrix size), S is D �D , where ~S has n non-zero entries, and V is
n �D , where ~V > ~V = ~V ~V > = In .

21/34



Ridge regression solution as sum of training points (2)
Proof (continued):

a� =
�
XX> + �ID

��1
Xy

=
�
US2U> + �ID

��1
USV >y

= U
�
S2 + �ID

��1
U>USV >y

= U
�
S2 + �ID

��1
SV >y

= US
�
S2 + �ID

��1
V >y

= USV >V| {z }
(a)

�
S2 + �ID

��1
V >y

=
(b)

X (X>X + �In)�1y (2)

22/34



Ridge regression solution as sum of training points (3)

Proof (continued):
(a): both S and V >V are non-zero in same sized top-left block, and
V >V is In in that block.
(b): since

V
�
S2 + �ID

��1
V >

=
h

~V 0
i 24 �~S2 + �In

��1
0

0 (�ID�n)
�1

35" ~V >

0

#

= ~V
�
~S2 + �In

��1
~V >

=
�
X>X + �In

��1
:

23/34



Kernel ridge regression
Use features of �(xi ) in the place of xi :

a� = argmin
a2H

 nX
i=1

(yi � ha ; �(xi )iH)2 + �kak2H
!
:

E.g. for finite dimensional feature spaces,

�p(x ) =

266664
x
x 2

...
x `

377775 �s(x ) =

266666664

sin x
cos x
sin 2x

...
cos `x

377777775
a is a vector of length ` giving weight to each of these features so as
to find the mapping between x and y . Feature vectors can also have
infinite length (more soon).

24/34



Kernel ridge regression: proof
Use previous proof!

X =
h
�(x1) : : : �(xn)

i
:

All of the steps that led us to a� = X (X>X + �In)�1y follow.

XX> =
nX

i=1

�(xi )
 �(xi )

(using tensor notation from kernel PCA), and

(X>X )ij = h�(xi ); �(xj )iH = k(xi ; xj ):

Making these replacements, we get

a� = X (K + �In)�1y

=
nX

i=1

��i �(xi ) �� = (K + �In)�1y :

25/34



Kernel ridge regression: easier proof
We begin knowing a is a linear combination of feature space mappings
of points (representer theorem: later in course)

a =
nX

i=1

�i�(xi ):

Then
nX

i=1

(yi � ha ; �(xi )iH)2 + �kak2H = ky �K�k2 + ��>K�

= y>y � 2y>K�+ �>
�
K 2 + �K

�
�

Differentiating wrt � and setting this to zero, we get

�� = (K + �In)�1y :

Recall: @�>U�
@� = (U + U>)�; @v>�

@� = @�>v
@� = v

26/34



Reminder: smoothness
What does kakH have to do with smoothing?
Example 1: The exponentiated quadratic kernel. Recall

f (x ) =
1X
i=1

f̂`e`(x ); hei ; ej iL2(p) =

Z
X

ei (x )ej (x )p(x )dx =

8<:1 i = j

0 i 6= j :

kf k2H =
1X
`=1

f̂ 2
`

�`
:

e
1
(x)

e
2
(x)

e
3
(x)

27/34



Reminder: smoothness

What does kakH have to do with smoothing?
Example 2: The Fourier series representation:

f (x ) =
1X

l=�1

f̂l exp({lx );

and

hf ; giH =
1X

l=�1

f̂l ĝl

k̂l
:

Thus,

kf k2H = hf ; f iH =
1X

l=�1

���f̂l ���2
k̂l

:

28/34



Parameter selection for KRR

Given the objective

a� = argmin
a2H

 nX
i=1

(yi � ha ; �(xi )iH)2 + �kak2H
!
:

How do we choose

The regularization parameter �?

The kernel parameter: for exponentiated quadratic kernel, � in

k(x ; y) = exp

 
�kx � yk2

�

!
:

29/34



Choice of �

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.6

30/34



Choice of �

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.6

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=10, σ=0.6

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

λ=1e−07, σ=0.6

31/34



Choice of �

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.6

32/34



Choice of �

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.6

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=2

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

λ=0.1, σ=0.1

33/34



Cross validation

Split n data into training set size ntr and test set size nte = n � ntr.

Split training set into m equal chunks of size nval = ntr=m . Call
these Xval;i ;Yval;i for i 2 f1; : : : ;mg
For each �; � pair

� For each Xval;i ;Yval;i

Train ridge regression on remaining trainining set data Xtr n Xval;i and
Ytr n Yval;i ,
Evaluate its error on the validation data Xval;i ; Yval;i

� Average the errors on the validation sets to get the average validation
error for �; �.

Choose ��; �� with the lowest average validation error

Measure the performance on the test set Xte;Yte.

34/34


