Reproducing kernel Hilbert spaces in Machine Learning

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Advanced topics in Machine Learning

Difference in feature means

Distance between means (1)

Sample $\left(x_{i}\right)_{i=1}^{m}$ from p and $\left(y_{i}\right)_{i=1}^{m}$ from q. What is the distance between their means in feature space?

$$
\left\|\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\|_{\mathcal{H}}^{2}
$$

Distance between means (1)

Sample $\left(x_{i}\right)_{i=1}^{m}$ from p and $\left(y_{i}\right)_{i=1}^{m}$ from q. What is the distance between their means in feature space?

$$
\begin{aligned}
& \left\|\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right), \frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\rangle_{\mathcal{H}}
\end{aligned}
$$

Distance between means (1)

Sample $\left(x_{i}\right)_{i=1}^{m}$ from p and $\left(y_{i}\right)_{i=1}^{m}$ from q. What is the distance between their means in feature space?

$$
\begin{aligned}
& \left\|\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right), \frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\frac{1}{m^{2}}\left\langle\sum_{i=1}^{m} \phi\left(x_{i}\right), \sum_{i=1}^{m} \phi\left(x_{i}\right)\right\rangle+\ldots
\end{aligned}
$$

Distance between means (1)

Sample $\left(x_{i}\right)_{i=1}^{m}$ from p and $\left(y_{i}\right)_{i=1}^{m}$ from q. What is the distance between their means in feature space?

$$
\begin{aligned}
& \left\|\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right), \frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\frac{1}{m^{2}}\left\langle\sum_{i=1}^{m} \phi\left(x_{i}\right), \sum_{i=1}^{m} \phi\left(x_{i}\right)\right\rangle+\ldots \\
& =\frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} k\left(x_{i}, x_{j}\right)+\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} k\left(y_{i}, y_{j}\right)-\frac{2}{m n} \sum_{i=1}^{m} \sum_{j=1}^{m} k\left(x_{i}, y_{j}\right) .
\end{aligned}
$$

Distance between means (2)

Sample $\left(x_{i}\right)_{i=1}^{m}$ from p and $\left(y_{i}\right)_{i=1}^{m}$ from q. What is the distance between their means in feature space?

$$
\left\|\frac{1}{m} \sum_{i=1}^{m} \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(y_{j}\right)\right\|_{\mathcal{H}}^{2}
$$

- When $\phi(x)=x$, distinguish means. When $\phi(x)=\left[\begin{array}{ll}x & x^{2}\end{array}\right]$, distinguish means and variances.
- There are kernels that can distinguish any two distributions

Kernel Principal Component Analysis

$\mathrm{PCA}(1)$

Goal of classical PCA: to find a d-dimensional subspace of a higher dimensional space (D-dimensional, \mathbb{R}^{D}) containing the directions of maximum variance.

Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x^{*}.

$$
P_{d} \phi\left(x^{*}\right)=P_{f_{1}} \phi\left(x^{*}\right)+\ldots+P_{f_{d}} \phi\left(x^{*}\right)
$$

is the projection of $\phi\left(x^{*}\right)$ onto one of the first d eigenvectors $\left\{f_{\ell}\right\}_{\ell=1}^{d}$
from kernel PCA (these are orthogonal).
Define the nearest point $y^{*} \in \mathcal{X}$ to this feature space projection as

$$
y^{*}=\arg \min _{y \in \mathcal{X}}\left\|\phi(y)-P_{d} \phi\left(x^{*}\right)\right\|_{\mathcal{H}}^{2} .
$$

In many cases, not possible to reduce the squared error to zero, as no single y^{*} corresponds to exact solution.

Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x^{*}.

$$
P_{d} \phi\left(x^{*}\right)=P_{f_{1}} \phi\left(x^{*}\right)+\ldots+P_{f_{d}} \phi\left(x^{*}\right)
$$

is the projection of $\phi\left(x^{*}\right)$ onto one of the first d eigenvectors $\left\{f_{\ell}\right\}_{\ell=1}^{d}$ from kernel PCA (these are orthogonal).
Define the nearest point $y^{*} \in \mathcal{X}$ to this feature space projection as

In many cases, not possible to reduce the squared error to zero, as no single y^{*}
corresponds to exact solution.

Applicationof kPCA: image denoising

What is the purpose of kernel PCA?
We consider the problem of denoising hand-written digits.
We are given a noisy digit x^{*}.

$$
P_{d} \phi\left(x^{*}\right)=P_{f_{1}} \phi\left(x^{*}\right)+\ldots+P_{f_{d}} \phi\left(x^{*}\right)
$$

is the projection of $\phi\left(x^{*}\right)$ onto one of the first d eigenvectors $\left\{f_{\ell}\right\}_{\ell=1}^{d}$ from kernel PCA (these are orthogonal).
Define the nearest point $y^{*} \in \mathcal{X}$ to this feature space projection as

$$
y^{*}=\arg \min _{y \in \mathcal{X}}\left\|\phi(y)-P_{d} \phi\left(x^{*}\right)\right\|_{\mathcal{H}}^{2} .
$$

In many cases, not possible to reduce the squared error to zero, as no single y^{*} corresponds to exact solution.

Applicationof kPCA: image denoising

Projection onto PCA subspace for denoising. kPCA: data may not be Gaussian distributed, but can lie in a submanifold in input space. USPS hand-written digits data:
7191 images of hand-written digits of 16×16 pixels.

$$
\text { I } 213]
$$

Sample of noisy images

Sample of denoised images (kernel PCA, Gaussian kernel)
Generated by Matlab Stprtool (by V. Franc). (Figure: K.

What is PCA? (reminder)

First principal component (max. variance)

$$
\begin{aligned}
u_{1} & =\arg \max _{\|u\| \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(u^{\top}\left(x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)\right)^{2} \\
& =\arg \max _{\|u\| \leq 1} u^{\top} C u
\end{aligned}
$$

where

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)\left(x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)^{\top}=\frac{1}{n} X H X^{\top},
$$

$X=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right], H=I-n^{-1} 1_{n \times n}, 1_{n \times n}$ a matrix of ones.
Definition (Principal components)
The pairs $\left(\lambda_{i}, u_{i}\right)$ are the eigensystem of $\lambda_{i} u_{i}=C u_{i}$.

PCA in feature space

Kernel version, first principal component:

$$
f_{1}=\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle f, \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right)^{2}
$$

$=\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \widehat{\operatorname{var}}(f)$.

We can write

since any component orthogonal to the span of
$\tilde{\phi}\left(x_{i}\right):=\phi\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$ vanishes.

PCA in feature space

Kernel version, first principal component:

$$
\begin{aligned}
f_{1} & =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle f, \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right)^{2} \\
& =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{E}(f)\right)^{2}
\end{aligned}
$$

$$
=\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \widehat{\operatorname{var}}(f)
$$

We can write

since any component orthogonal to the span of
$\tilde{\phi}\left(x_{i}\right):=\phi\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$ vanishes.

PCA in feature space

Kernel version, first principal component:

$$
\begin{aligned}
f_{1} & =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle f, \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right)^{2} \\
& =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{E}(f)\right)^{2} \\
& =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \widehat{\operatorname{var}}(f) .
\end{aligned}
$$

We can write

since any component orthogonal to the span of
$\tilde{\phi}\left(x_{i}\right):=\phi\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$ vanishes.

PCA in feature space

Kernel version, first principal component:

$$
\begin{aligned}
f_{1} & =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle f, \phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right)^{2} \\
& =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\widehat{E}(f)\right)^{2} \\
& =\arg \max _{\|f\|_{\mathcal{H}} \leq 1} \widehat{\operatorname{var}}(f) .
\end{aligned}
$$

We can write

$$
f=\sum_{i=1}^{n} \alpha_{i}\left(\phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right)=\sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right)
$$

since any component orthogonal to the span of $\tilde{\phi}\left(x_{i}\right):=\phi\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$ vanishes.

How to solve kernel PCA

We can also define an infinite dimensional analog of the covariance:

$$
\begin{aligned}
C & =\frac{1}{n} \sum_{i=1}^{n}\left(\phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right) \otimes\left(\phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right) \otimes \tilde{\phi}\left(x_{i}\right)
\end{aligned}
$$

where we use the definition

$$
\begin{equation*}
(a \otimes b) c:=\langle b, c\rangle_{\mathcal{H}} a \tag{1}
\end{equation*}
$$

this is analogous to the case of finite dimensional vectors, $\left(a b^{\top}\right) c=\left(b^{\top} c\right) a$.

How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

$$
f \lambda=C f
$$

$\tilde{k}\left(x_{i}, x_{j}\right)$ is the (i, j) th entry of the matrix $\tilde{K}:=H K H$ (exercise!).

How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

$$
\begin{aligned}
f \lambda & =C f \\
& =\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right) \otimes \tilde{\phi}\left(x_{i}\right)\right) f}_{C}
\end{aligned}
$$

$\tilde{k}\left(x_{i}, x_{j}\right)$ is the (i, j) th entry of the matrix $\tilde{K}:=H K H$ (exercise!).

How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

$$
\begin{aligned}
f \lambda & =C f \\
& =\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right) \otimes \tilde{\phi}\left(x_{i}\right)\right)}_{C} f \\
& =\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right)\langle\tilde{\phi}\left(x_{i}\right), \underbrace{\sum_{j=1}^{n} \alpha_{j} \tilde{\phi}\left(x_{j}\right)}_{f}\rangle_{\mathcal{H}} \\
& =\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right)\left(\sum_{j=1}^{n} \alpha_{j} \tilde{k}\left(x_{i}, x_{j}\right)\right)
\end{aligned}
$$

How to solve kernel PCA (1)

Eigenfunctions of kernel covariance:

$$
\begin{aligned}
f \lambda & =C f \\
& =\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right) \otimes \tilde{\phi}\left(x_{i}\right)\right)}_{C} f \\
& =\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right)\langle\tilde{\phi}\left(x_{i}\right), \underbrace{\sum_{j=1}^{n} \alpha_{j} \tilde{\phi}\left(x_{j}\right)}_{f}\rangle_{\mathcal{H}} \\
& =\frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x_{i}\right)\left(\sum_{j=1}^{n} \alpha_{j} \tilde{k}\left(x_{i}, x_{j}\right)\right)
\end{aligned}
$$

$\tilde{k}\left(x_{i}, x_{j}\right)$ is the (i, j) th entry of the matrix $\tilde{K}:=H K H$ (exercise!).

How to solve kernel PCA (2)

We can now project both sides of

$$
f_{\ell} \lambda_{\ell}=C f_{\ell}
$$

onto all of the $\tilde{\phi}\left(x_{q}\right)$:
$\left\langle\tilde{\phi}\left(x_{q}\right), \mathrm{LHS}\right\rangle_{\mathcal{H}}=\lambda_{\ell}\left\langle\tilde{\phi}\left(x_{q}\right), f_{\ell}\right\rangle_{\mathcal{H}}=\lambda_{\ell} \sum_{i=1}^{n} \alpha_{\ell i} \tilde{k}\left(x_{q}, x_{i}\right) \quad \forall q \in\{1 \ldots n\}$

Writing this as a matrix equation,

$$
n \lambda_{l} \widetilde{K} \alpha_{l}=\widetilde{K}^{2} \alpha_{l}
$$

$n \lambda_{\ell} \alpha_{\ell}=\widetilde{K} \alpha_{\ell}$.

How to solve kernel PCA (2)

We can now project both sides of

$$
f_{\ell} \lambda_{\ell}=C f_{\ell}
$$

onto all of the $\tilde{\phi}\left(x_{q}\right)$:
$\left\langle\tilde{\phi}\left(x_{q}\right), \mathrm{LHS}\right\rangle_{\mathcal{H}}=\lambda_{\ell}\left\langle\tilde{\phi}\left(x_{q}\right), f_{\ell}\right\rangle_{\mathcal{H}}=\lambda_{\ell} \sum_{i=1}^{n} \alpha_{\ell i} \tilde{k}\left(x_{q}, x_{i}\right) \quad \forall q \in\{1 \ldots n\}$
$\left\langle\tilde{\phi}\left(x_{q}\right), \mathrm{RHS}\right\rangle_{\mathcal{H}}=\left\langle\tilde{\phi}\left(x_{q}\right), C f_{\ell}\right\rangle_{\mathcal{H}}=\frac{1}{n} \sum_{i=1}^{n} \tilde{k}\left(x_{q}, x_{i}\right)\left(\sum_{j=1}^{n} \alpha_{\ell j} \tilde{k}\left(x_{i}, x_{j}\right)\right)$
Writing this as a matrix equation,

$$
n \lambda_{\ell} \widetilde{K} \alpha_{\ell}=\widetilde{K}^{2} \alpha_{\ell} \quad n \lambda_{\ell} \alpha_{\ell}=\widetilde{K} \alpha_{\ell} .
$$

Eigenfunctions f have unit norm in feature space?
$\|f\|_{\mathcal{H}}^{2}$

$=\alpha^{\top \widetilde{K}} \alpha=n \lambda \alpha^{\top} \alpha=n \lambda\|\alpha\|^{2}$

Thus $\alpha \leftarrow \alpha / \sqrt{n \lambda}$ (assumed: original eigenvector solution has $\|\alpha\|=1$)

Eigenfunctions f have unit norm in feature space?

$$
\|f\|_{\mathcal{H}}^{2}
$$

$$
=\left\langle\sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right)\right\rangle_{\mathcal{H}}
$$

Eigenfunctions f have unit norm in feature space?

$$
\begin{aligned}
& \|f\|_{\mathcal{H}}^{2} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right)\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i}\left\langle\tilde{\phi}\left(x_{i}\right), \tilde{\phi}\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \tilde{k}\left(x_{i}, x_{j}\right) \\
& =\alpha^{\top} \widetilde{K} \alpha=n \lambda \alpha^{\top} \alpha=n \lambda\| \|^{2}
\end{aligned}
$$

Thus $\alpha \leftarrow \alpha / \sqrt{n \lambda}$ (assumed: original eigenvector solution has $\|\alpha\|=1$)

Eigenfunctions f have unit norm in feature space?

$$
\begin{aligned}
& \|f\|_{\mathcal{H}}^{2} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right)\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i}\left\langle\tilde{\phi}\left(x_{i}\right), \tilde{\phi}\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \tilde{k}\left(x_{i}, x_{j}\right) \\
& =\alpha^{\top} \widetilde{K} \alpha=n \lambda \alpha^{\top} \alpha=n \lambda\|\alpha\|^{2}
\end{aligned}
$$

Thus $\alpha \leftarrow \alpha / \sqrt{n \lambda}$ (assumed: original eigenvector solution has $\|\alpha\|=1$)

Eigenfunctions f have unit norm in feature space?

$$
\begin{aligned}
& \|f\|_{\mathcal{H}}^{2} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right), \sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right)\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i}\left\langle\tilde{\phi}\left(x_{i}\right), \tilde{\phi}\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \tilde{k}\left(x_{i}, x_{j}\right) \\
& =\alpha^{\top \widetilde{K}} \alpha=n \lambda \alpha^{\top} \alpha=n \lambda\|\alpha\|^{2}
\end{aligned}
$$

Thus $\alpha \leftarrow \alpha / \sqrt{n \lambda}$ (assumed: original eigenvector solution has $\|\alpha\|=1$)

Projection onto kernel PC

How do you project a new point x^{*} onto the principal component f ?
Assuming $\|f\|_{\mathcal{H}}=1$, the projection is

$$
\begin{aligned}
P_{f} \phi\left(x^{*}\right) & =\left\langle\phi\left(x^{*}\right), f\right\rangle_{\mathcal{H}} f \\
& =\underbrace{\left(\sum_{j=1}^{n} \alpha_{j}\left\langle\phi\left(x^{*}\right), \tilde{\phi}\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right)}_{\left\langle\phi\left(x^{*}\right), f\right\rangle_{\mathcal{H}}} \underbrace{\sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right)}_{f} \\
& =\left(\sum_{j=1}^{n} \alpha_{j}\left(k\left(x^{*}, x_{j}\right)-\frac{1}{n} \sum_{\ell=1}^{n} k\left(x^{*}, x_{\ell}\right)\right)\right) \sum_{i=1}^{n} \alpha_{i} \tilde{\phi}\left(x_{i}\right) .
\end{aligned}
$$

Kernel Ridge Regression

$\underline{\text { Kernel ridge regression }}$

Very simple to implement, works well when no outliers.

Ridge regression: case of \mathbb{R}^{D}

We are given n training points in \mathbb{R}^{D} :

$$
X=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right] \in \mathbb{R}^{D \times n} \quad y:=\left[\begin{array}{lll}
y_{1} & \ldots & y_{n}
\end{array}\right]^{\top}
$$

Define some $\lambda>0$. Our goal is:

$$
\begin{aligned}
a^{*} & =\arg \min _{a \in \mathbb{R}^{D}}\left(\sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} a\right)^{2}+\lambda\|a\|^{2}\right) \\
& =\arg \min _{a \in \mathbb{R}^{D}}\left(\left\|y-X^{\top} a\right\|^{2}+\lambda\|a\|^{2}\right)
\end{aligned}
$$

The second term $\lambda\|a\|^{2}$ is chosen to avoid problems in high dimensional spaces (see below).

Ridge regression: solution (1)

Expanding out the above term, we get

$$
\begin{aligned}
\left\|y-X^{\top} a\right\|^{2}+\lambda\|a\|^{2} & =y^{\top} y-2 y^{\top} X^{\top} a+a^{\top} X X^{\top} a+\lambda a^{\top} a \\
& =y^{\top} y-2 y^{\top} X^{\top} a+a^{\top}\left(X X^{\top}+\lambda I\right) a=(*)
\end{aligned}
$$

- Define $b=\left(X X^{\top}+\lambda I\right)^{1 / 2} a$
- Square root defined since matrix positive definite
- $X X^{\top}$ may not be invertible eg when $D>n$, adding λI means we can write $\left.a=\left(X X^{\top}+\lambda I\right)^{-1 / 2} b\right)$.

Ridge regression: solution (2)

Complete the square:

$$
\begin{aligned}
(*) & =y^{\top} y-2 y^{\top} X^{\top}\left(X X^{\top}+\lambda I\right)^{-1 / 2} b+b^{\top} b \\
& =y^{\top} y+\left\|\left(X X^{\top}+\lambda I\right)^{-1 / 2} X y-b\right\|^{2}-\left\|y^{\top} X^{\top}\left(X X^{\top}+\lambda I\right)^{-1 / 2}\right\|^{2}
\end{aligned}
$$

This is minimized when

$$
\begin{aligned}
b^{*} & =\left(X X^{\top}+\lambda I\right)^{-1 / 2} X y \text { or } \\
a^{*} & =\left(X X^{\top}+\lambda I\right)^{-1} X y,
\end{aligned}
$$

which is the classic regularized least squares solution.

Ridge regression solution as sum of training points (1)

We may rewrite this expression in a way that is more informative, $a^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} x_{i}$.
The solution is a linear combination of training points x_{i}.
Proof: Assume $D>n$ (in feature space case D can be very large or even infinite).
Perform an SVD on X, i.e.
where

Here U is $D \times D$ and $U^{\top} U=U U^{\top}=I_{D}$ (subscript denotes unit matrix size), S is $D \times D$, where \tilde{S} has n non-zero entries, and V is $n \times D$, where $\tilde{V}^{\top} \tilde{V}=\tilde{V} \tilde{V}^{\top}=I_{n}$.

Ridge regression solution as sum of training points (1)

We may rewrite this expression in a way that is more informative, $a^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} x_{i}$.
The solution is a linear combination of training points x_{i}.
Proof: Assume $D>n$ (in feature space case D can be very large or even infinite).
Perform an SVD on X, i.e.

$$
X=U S V^{\top}
$$

where

$$
U=\left[\begin{array}{lll}
u_{1} & \ldots & u_{D}
\end{array}\right] \quad S=\left[\begin{array}{cc}
\tilde{S} & 0 \\
0 & 0
\end{array}\right] \quad V=\left[\begin{array}{cc}
\tilde{V} & 0
\end{array}\right] .
$$

Here U is $D \times D$ and $U^{\top} U=U U^{\top}=I_{D}$ (subscript denotes unit matrix size), S is $D \times D$, where \tilde{S} has n non-zero entries, and V is $n \times D$, where $\tilde{V}^{\top} \tilde{V}=\tilde{V} \tilde{V}^{\top}=I_{n}$.

Ridge regression solution as sum of training points (2)
Proof (continued):

$$
\begin{align*}
a^{*} & =\left(X X^{\top}+\lambda I_{D}\right)^{-1} X y \\
& =\left(U S^{2} U^{\top}+\lambda I_{D}\right)^{-1} U S V^{\top} y \\
& =U\left(S^{2}+\lambda I_{D}\right)^{-1} U^{\top} U S V^{\top} y \\
& =U\left(S^{2}+\lambda I_{D}\right)^{-1} S V^{\top} y \\
& =U S\left(S^{2}+\lambda I_{D}\right)^{-1} V^{\top} y \\
& =U \underbrace{S V^{\top} V}_{(\mathrm{a})}\left(S^{2}+\lambda I_{D}\right)^{-1} V^{\top} y \\
& =X\left(X^{\top} X+\lambda I_{n}\right)^{-1} y \tag{2}
\end{align*}
$$

Ridge regression solution as sum of training points (3)
Proof (continued):
(a): both S and $V^{\top} V$ are non-zero in same sized top-left block, and $V^{\top} V$ is I_{n} in that block.
(b): since

$$
\begin{aligned}
& V\left(S^{2}+\lambda I_{D}\right)^{-1} V^{\top} \\
= & {\left[\begin{array}{ll}
\tilde{V} & 0
\end{array}\right]\left[\begin{array}{cc}
\left(\tilde{S}^{2}+\lambda I_{n}\right)^{-1} & 0 \\
0 & \left(\lambda I_{D-n}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\tilde{V}^{\top} \\
0
\end{array}\right] } \\
= & \tilde{V}\left(\tilde{S}^{2}+\lambda I_{n}\right)^{-1} \tilde{V}^{\top} \\
= & \left(X^{\top} X+\lambda I_{n}\right)^{-1} .
\end{aligned}
$$

Kernel ridge regression

Use features of $\phi\left(x_{i}\right)$ in the place of x_{i} :

$$
a^{*}=\arg \min _{a \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle a, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|a\|_{\mathcal{H}}^{2}\right) .
$$

E.g. for finite dimensional feature spaces,

$$
\phi_{p}(x)=\left[\begin{array}{c}
x \\
x^{2} \\
\vdots \\
x^{\ell}
\end{array}\right] \quad \phi_{s}(x)=\left[\begin{array}{c}
\sin x \\
\cos x \\
\sin 2 x \\
\vdots \\
\cos \ell x
\end{array}\right]
$$

a is a vector of length ℓ giving weight to each of these features so as to find the mapping between x and y. Feature vectors can also have infinite length (more soon).

Kernel ridge regression: proof

Use previous proof!

$$
X=\left[\begin{array}{lll}
\phi\left(x_{1}\right) & \ldots & \phi\left(x_{n}\right)
\end{array}\right]
$$

All of the steps that led us to $a^{*}=X\left(X^{\top} X+\lambda I_{n}\right)^{-1} y$ follow.

$$
X X^{\top}=\sum_{i=1}^{n} \phi\left(x_{i}\right) \otimes \phi\left(x_{i}\right)
$$

(using tensor notation from kernel PCA), and

$$
\left(X^{\top} X\right)_{i j}=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}=k\left(x_{i}, x_{j}\right)
$$

Making these replacements, we get

$$
\begin{aligned}
a^{*} & =X\left(K+\lambda I_{n}\right)^{-1} y \\
& =\sum_{i=1}^{n} \alpha_{i}^{*} \phi\left(x_{i}\right) \quad \alpha^{*}=\left(K+\lambda I_{n}\right)^{-1} y .
\end{aligned}
$$

Kernel ridge regression: easier proof

We begin knowing a is a linear combination of feature space mappings of points (representer theorem: later in course)

$$
a=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)
$$

Then
$\begin{aligned} \sum_{i=1}^{n}\left(y_{i}-\left\langle a, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|a\|_{\mathcal{H}}^{2} & =\|y-K \alpha\|^{2}+\lambda \alpha^{\top} K \alpha \\ & =y^{\top} y-2 y^{\top} K \alpha+\alpha^{\top}\left(K^{2}+\lambda K\right) \alpha\end{aligned}$

Differentiating wrt α and setting this to zero, we get

$$
\alpha^{*}=\left(K+\lambda I_{n}\right)^{-1} y .
$$

Recall: $\frac{\partial \alpha^{\top} U \alpha}{\partial \alpha}=\left(U+U^{\top}\right) \alpha, \quad \frac{\partial v^{\top} \alpha}{\partial \alpha}=\frac{\partial \alpha^{\top} v}{\partial \alpha}=v$

Reminder: smoothness

What does $\|a\|_{\mathcal{H}}$ have to do with smoothing?
Example 1: The exponentiated quadratic kernel. Recall

$$
f(x)=\sum_{i=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x), \quad\left\langle e_{i}, e_{j}\right\rangle_{L_{2}(p)}=\int_{\mathcal{X}} e_{i}(x) e_{j}(x) p(x) d x= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

$$
\|f\|_{\mathcal{H}}^{2}=\sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell}^{2}}{\lambda_{\ell}} .
$$

Reminder: smoothness

What does $\|a\|_{\mathcal{H}}$ have to do with smoothing?
Example 2: The Fourier series representation:

$$
f(x)=\sum_{l=-\infty}^{\infty} \hat{f}_{l} \exp (\imath l x)
$$

and

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{l} \overline{\hat{g}}_{l}}{\hat{k}_{l}} .
$$

Thus,

$$
\|f\|_{\mathcal{H}}^{2}=\langle f, f\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{l}\right|^{2}}{\hat{k}_{l}} .
$$

Parameter selection for KRR

Given the objective

$$
a^{*}=\arg \min _{a \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle a, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|a\|_{\mathcal{H}}^{2}\right) .
$$

How do we choose

- The regularization parameter λ ?
- The kernel parameter: for exponentiated quadratic kernel, σ in

$$
k(x, y)=\exp \left(\frac{-\|x-y\|^{2}}{\sigma}\right)
$$

Choice of λ

Choice of λ

Choice of σ

Choice of σ

Cross validation

$■$ Split n data into training set size $n_{\text {tr }}$ and test set size $n_{\text {te }}=n-n_{\text {tr }}$.
$■$ Split training set into m equal chunks of size $n_{\text {val }}=n_{\text {tr }} / m$. Call these $X_{\mathrm{val}, i}, Y_{\mathrm{val}, i}$ for $i \in\{1, \ldots, m\}$
■ For each λ, σ pair

- For each $X_{\text {val }, i}, Y_{\text {val }, i}$
- Train ridge regression on remaining trainining set data $X_{\mathrm{tr}} \backslash X_{\mathrm{val}, i}$ and $Y_{\text {tr }} \backslash Y_{\text {val }, i}$,
- Evaluate its error on the validation data $X_{\mathrm{val}, i}, Y_{\mathrm{val}, i}$
- Average the errors on the validation sets to get the average validation error for λ, σ.
■ Choose λ^{*}, σ^{*} with the lowest average validation error
- Measure the performance on the test set $X_{\text {te }}, Y_{\text {te }}$.

