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Course overview

Overview

@ Construction of RKHS:

@ Definition of a kernel as an inner product between feature
space mappings of individual points,

@ Construction of kernels on the basis of simpler kernels,

© Introduction of the reproducing kernel Hilbert space (RKHS)
induced by positive definite kernels.

@ Mapping of probabilities to RKHS

@ characteristic kernels
@ two-sample tests
© independence tests

© Further applications (if time): large-scale testing, three-way
interaction testing, Bayesian inference, link with energy
distance/distance covariance
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Kernel methods



Motivating examples

Why kernel methods (1): XOR example

@ No linear classifier separates red from blue

@ Map points to higher dimensional feature space:
o(x) = [ X1 Xo X1Xo ] cR3
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Motivating examples

Why kernel methods (2): document classification
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Kernels let us compare objects on the basis of features
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Motivating examples

Why kernel methods(3): smoothing
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Kernel methods can control smoothness and avoid
overfitting /underfitting.
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Basics of reproducing kernel Hilbert spaces



What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

Qutline: reproducing kernel Hilbert space

We will describe in order:
© Hilbert space (very simple)

@ Kernel (lots of examples: e.g. you can build kernels from
simpler kernels)

© Reproducing property

Lecture 1: Introduction to RKHS



What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Hilbert space

Definition (Inner product)
Let H be a vector space over R. A function (-,-);, : H xH =R
is an inner product on H if

Q Linear: (a1f + azh, g)y = a1 (fh,8)y + a2 (h, 8)y

@ Symmetric: (f,g),, = (g, )

Q@ (f,f),;, >0and (f,f),, =0if and only if f = 0.
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function (-,-);, : H xH =R
is an inner product on H if

@ Linear: (a1fi + azf, g)y
@ Symmetric: (f,g),, = (g, )
Q@ (f,f),;, >0and (f,f),, =0if and only if f = 0.

<f17g>?-[ + a2 <f27g>’H

Norm induced by the inner product: ||f|3 := /(f,f)y
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function (-,-);, : H xH =R
is an inner product on H if

@ Linear: (a1fi + azf, g)y
@ Symmetric: (f,g),, = (g, >
Q@ (f,f),;, >0and (f,f),, =0if and only if f = 0.

<ﬂ7g>?-[ + a2 <f27g>’H

Norm induced by the inner product: ||f|3 := /(f,f)y

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.
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What is a kernel?
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Kernel

Definition

Let X be a non-empty set. A function k : X x X — R is a kernel
if there exists an R-Hilbert space and a map ¢ : X — H such that
Vx,x' € X,

k(x,x') = (¢(x), (X)), -

@ Almost no conditions on X’ (eg, X itself doesn't need an inner
product, eg. documents).

@ A single kernel can correspond to several possible features. A
trivial example for X' := R:

) =x o) = | V2]
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What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given o > 0 and k, ki and ko all kernels on X, then ack and
ki + ko are kernels on X .

To prove this, just check inner product definition. A difference of
kernels may not be a kernel (why?)
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New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given o > 0 and k, ki and ko all kernels on X, then ack and
ki + ko are kernels on X .

To prove this, just check inner product definition. A difference of
kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let X and /'Ebe sets, and define a map A : X — X. Define the
kernel k on X. Then the kernel k(A(x), A(x")) is a kernel on X.

Example: k(x,x') = x2 (x')?.
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What is a kernel?
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Reproducing kernel Hilbert space

New kernels from old: products

Theorem (Products of kernels are kernels)

Given k; on X1 and ky on X5, then ki x ko is a kernel on X1 x X5.
If X1 = Xo =X, then k := ki X ko is a kernel on X.

Proof.

Main idea only! H; corresponding to k; is R™, and H,
corresponding to k> is R”. Define:

® ki :=u'v for u,v € R™ (e.g.: kernel between two images)
@ ko:=p'qforp,gcR" (eg.: kernel between two captions)

Is the following a kernel?

K [(u,p); (v,q)] = ki x ko

(e.g. kernel between one image-caption pair and another)
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What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

New kernels from old: products

(continued)

ke = ki (q"p)
= kytrace(q'p)
= kytrace(pgq')
= trace(p&qT)
k1
= (AB),

where A= up' and B := vq .
Thus kiko is valid inner product, since |.P. between A, B € R™*" is

(A, B) = trace(A' B). (1)



What is a kernel?
Constructing new kernels
Basics of reproducing kernel Hilbert spaces Positive definite functions

Reproducing kernel Hilbert space

Sums and products = polynomials

Theorem (Polynomial kernels)

Let x,x’ € RY for d > 1, and let m > 1 be an integer and ¢ > 0 be
a positive real. Then

k(x,x") == ((x,x") + c)m

is a valid kernel.

<

To prove: expand into a sum (with non-negative scalars) of kernels
(x,x") raised to integer powers. These individual terms are valid
kernels by the product rule.
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What is a kernel?
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Infinite sequences

The kernels we've seen so far are dot products between finitely
many features. E.g.

k(x,y) = [ sin(x) x> logx ]T [ sin(y) y® logy |

where ¢(x) = [ sin(x) x3 logx ]
Can a kernel be a dot product between infinitely many features?
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Infinite sequences

Definition

The space ¢, of p-summable sequences is defined as all sequences

(ai)i>1 for which
Z a? < 0.
i=1
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Infinite sequences

Definition

The space ¢, of p-summable sequences is defined as all sequences

(ai)i>1 for which
Z a? < 0.
i=1

Kernels can be defined in terms of sequences in /5.

Theorem

Given sequence of functions (¢i(x))i>1 in {2 where ¢;j : X — R is
the ith coordinate of ¢(x). Then

X X) Z(ZSI I ) (2)
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What is a kernel?
Constructing new kernels
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Reproducing kernel Hilbert space

Infinite sequences (proof)

Proof: We just need to check that inner product remains finite.
Norm ||a||,, associated with inner product (2)

where a represents sequence with terms a;. Via Cauchy-Schwarz,

> 6i(x)ei(x)| < i), l6:06,
i=1

so the sequence defining the inner product converges for all
x,x' e X
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Taylor series kernels

Definition (Taylor series kernel)

For r € (0, 00], with a, > 0 for all n > 0
f(z) = Zanz” |z| <r, z€R,
n=0

Define X to be the \/r-ball in RY, so||x|| < /T,

oo

k(x,x') = f (<x,x’>) = Z an <x,x'>n.

n=0

Example (Exponential kernel)

k(x,x") == exp ({(x,x")) .
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Taylor series kernel (proof)

Proof: By Cauchy-Schwarz,

[ ] < MlxlllXll <

: : L n!
so the Taylor series converges. Define ¢j, . j, = i
i= :

A

k(x,x") Zan ZXJ

0o d
> an > Cvoja | [ Ot XY
n=0 j1---Ja=>0 i=1

_jl 4+ ... +jd =n

= E : Ajs+...+jg i g HXJ H
J1-ja>0 =1
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What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

Gaussian kernel

Example (Gaussian kernel)

The Gaussian kernel on R? is defined as

k(x,x") := exp (—7_2 l|x — X'H2> .

Proof: an exercise! Use product rule, mapping rule, exponential
kernel.
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Positive definite functions

If we are given a function of two arguments, k(x, x"), how can we
determine if it is a valid kernel?

© Find a feature map?

@ Sometimes this is not obvious (eg if the feature vector is

infinite dimensional, e.g. the Gaussian kernel in the last slide)
@ The feature map is not unique.

@ A direct property of the function: positive definiteness.
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What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X x X — R is positive definite if
Vn>1, V(a1,...an) € R", V(x1,...,%,) € X",

Zn: Zn: ajajk(x;j, x;) > 0.
i=1 j=1

The function k(-, ) is strictly positive definite if for mutually
distinct x;, the equality holds only when all the a; are zero.
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Kernels are positive definite

Let H be a Hilbert space, X a non-empty set and ¢ : X — H.
Then (¢(x), d(y))4, =: k(x,y) is positive definite.

n n n

ZZa;ajk(X;,Xj) = Zz<ai¢(xi)’aj¢(xj)>7{
i=1 j= ’—nJ— )
= Z aip(x;)|| = 0.

i=1 H

Reverse also holds: positive definite k(x, x’) is inner product in H

between ¢(x) and @(x'). ]
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The reproducing kernel Hilbert space




What is a kernel?

Constructing new kernels
Basics of reproducing kernel Hilbert spaces Positive definite functions

Reproducing kernel Hilbert space

First example: finite space, polynomial features

Reminder: XOR example:
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

First example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

¢: R — R

X1
x:[xl} = d(x) = Xo ,
X1X2
with kernel
-
X1 Y1
k(X> y) = X2 Y2
X1X2 yiye

(the standard inner product in R3 between features). Denote this
feature space by H.

Lecture 1: Introduction to RKHS



What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

First example: finite space, polynomial features

Define a linear function of the inputs x1, x», and their product x;x»,
f(x) = fix1 + fax2 + f3xix0.

f in a space of functions mapping from X = R? to R. Equivalent
representation for f,

f()=[h £ K] .

f(-) refers to the function as an object (here as a vector in R3)
f(x) € R is function evaluated at a point (a real number).
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What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

First example: finite space, polynomial features

Define a linear function of the inputs x1, x», and their product x;x»,
f(x) = fix1 + fax2 + f3xix0.

f in a space of functions mapping from X = R? to R. Equivalent
representation for f,

f()=[h £ K] .

f(-) refers to the function as an object (here as a vector in R3)
f(x) € R is function evaluated at a point (a real number).

F(x) = F(-) T o(x) = (F(-), d(x)),
Evaluation of f at x is an inner product in feature space (here
standard inner product in R3)
H is a space of functions mapping R? to R.



What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

First example: finite space, polynomial features

#(y) is a mapping from R? to R3. ..
.. .which also parametrizes a function mapping R? to R.

-
k(y)=[wn y2 yive | =oy),
Given y, there is a vector k(-,y) in H such that

<k(’y)a ¢(X)>H = ax; + bXZ + cx1xz,
where a=y;, b=y, and c = y1y»
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First example: finite space, polynomial features

#(y) is a mapping from R? to R3. ..
.. .which also parametrizes a function mapping R? to R.

-
k(y)=[wn y2 yive | =oy),

Given y, there is a vector k(-,y) in H such that
<k(’y)a ¢(X)>H =axy + bXZ + cx1x2,

where a=y1, b=y, and c = y1y»
Due to symmetry,

(k(-,x),0(y)) = wr+ v+ wny
k(x,y).
We can write ¢(x) = k(-, x) and ¢(y) = k(-, y) without ambiguity:
canonical feature map
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

The reproducing property

This example illustrates the two defining features of an RKHS:
@ The reproducing property:
Vx e X, Vf(:) e H, (f(-),k(-,x))y = f(x)
...or use shorter notation (f, ¢(x)),,.

@ In particular, for any x,y € X,

k(x,y) = (k (5 x) s k (5 )

Note: the feature map of every point is in the feature space:
Vx e X, k(-,x)=¢(x) € H,
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

First example: finite space, polynomial features

Another, more subtle point:H can be larger than all ¢(x).
Why?
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

First example: finite space, polynomial features

Another, more subtle point:H can be larger than all ¢(x).
Why?

H

E.g. f =[11 —1] € H cannot be obtained by ¢(x) = [x1 x2 (x1x2)].
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Second example: infinite feature space

Basics of reproducing kernel Hilbert spaces
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What is a kernel?
Constructing new kernels
Basics of reproducing kernel Hilbert spaces Positive definite functions

Reproducing kernel Hilbert space

Second example: infinite feature space

Reproducing property for function with Gaussian kernel:

Fx) 1= 2070 cik(xi; x) = (3iLy @id(xi), (X)) -

10
0.81
0.6

0.4f

f(x)

0.2r
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Basics of reproducing kernel Hilbert spaces Positive definite functions

Reproducing kernel Hilbert space

Second example: infinite feature space

Reproducing property for function with Gaussian kernel:
Fx) = 20y aik(xi, x) = (3012 aid(xi), &(x))y, -

.
0.8
0.6

0.4f

f(x)

0.2r

0

-0.2r

045 -4 -2 0 2 4 6 8
X

e What do the features ¢(x) look like (warning: there are
infinitely many of them!)

o What do these features have to do with smoothness?




What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

Second example: infinite feature space

Under certain conditions (e.g Mercer's theorem), we can write

Kxx) = S ne(ald) [ eldelduto =1 :
i=1 .

where this sum is guaranteed to converge whatever the x and x’.

Infinite dimensional feature map:  ¢(x) = | VAei(x) | € fa.
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Second example: infinite feature space

Under certain conditions (e.g Mercer's theorem), we can write

> 1 i=j
k(x, X'y =Y Xei(x)ei(x), /e,-xe-xdux:
(x) = o ve)al), [ lgadul = (g
where this sum is guaranteed to converge whatever the x and x’.
Infinite dimensional feature map:  ¢(x) = | VAei(x) | € fa.
Define H to be the space of functions: for {£;}32, € 45,

F(x) = (f,o(x))y = Z f;\/)\»,'e,'(x).

Does this work? Is f(x) < oo despite the infinite feature space?
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Second example: infinite feature space

Reminder: for the kernel, we obtained by Cauchy-Schwarz that if
¢(x) € £y for all x, then

Z¢,

XX’—

< [lgi ()|l [|i(x)| < o0
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Second example: infinite feature space

Reminder: for the kernel, we obtained by Cauchy-Schwarz that if
¢(x) € £y for all x, then

XX’—

< [lgi ()|l [|i(x)| < o0

Finiteness of f(x) = (f, ¢(x)),, also obtained by Cauchy-Schwarz,

0o 1/2 /o 1/2
() ()

[{fs d())p| = Zf\fel

= ”foz\/k(X7X)
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What is a kernel?
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Basics of reproducing kernel Hilbert spaces

Second example: infinite feature space

We can also define inner product in H between two functions f
(represented by f;) and g (represented by g;) as

i=1
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Second example: infinite feature space

Basics of reproducing kernel Hilbert spaces

Gaussian kernel, k(x,y) = exp <*HX2_7);”2> )

M x bX O b<1
ex(x) o exp(—(c — a)x*)Hi(xv2c),

a, b, ¢ are functions of o, and Hy is kth order Hermite polynomial.

0.4

k(x,x") = Z Aiei(x)ei(x')
i=1

(Figure from Rasmussen and Williams)
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Second example: infinite feature space

Example RKHS function, Gaussian kernel:

m oo
Fx) = ) aik(xi.x ZO" ZA j(xi)ei(x)| =D_f [V Ajej(x)}
i=1 =
where f; = > ai/Ajei(xi).-
.
il NOTE that this
0.6/ enforces
= o4 smoothing:
= oo Aj decay as ¢;
0 become rougher,
-0.2 6 de)(f:;y since
0.4 ZJ i < 00.
%6
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Basics of reproducing kernel Hilbert spaces

Third (infinite) example: fourier series

Function on the interval [—m, 7] with periodic boundary. Fourier
series:

f(x)= Z f, exp(1x) = Z 1 (cos(£x) + sin(£x)) .

f=—00 |=—00

Example: “top hat” function,
1 <T
g {1 H<T,
0 T<|x|<m.
Fourier series:

~  sin({T) R
foi= =) f(x) = ;2&cos(€x).
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Fourier series for top hat function

Top hat Basis function
. : . 1
1.4F
= 0.5
1.2F «
/\ s 0
1 g
© 05
0.8t ;
— 4 -2 0 2 4
B t
= 06f
: Fourier series coefficients
045 05
04
0.2t
03
[N
or 7— —Y 0.2
0.1
-0.2f
. . . o8 ° °
-4 -2 0 2 4 -10 -5 0 10
z ¢

Lecture 1:



What is a kernel?

Constructing new kernels
Basics of reproducing kernel Hilbert spaces Positive definite functions

Reproducing kernel Hilbert space

Fourier series for top hat function

Top hat Basis function
. : . 1
1.4F
= 0.5
1.2F «
/\ s 0
1 g
© 05
0.8t ;
— 4 -2 0 2 4
B t
= 06f
: Fourier series coefficients
045 05
04
0.2t
03
[N
or 7— —Y 0.2
0.1
-0.2f
. . . o8 ° °
-4 -2 0 2 4 -10 -5 0 10
z ¢
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Fourier series for top hat function

Top hat Basis function
. : . 1
1.4F E
= 0.5
1.2p ] x
< 0
| JANIA | 3
V < 05
0.8t E ;
— 4 -2 0 2 4
B t
= 06f E
: Fourier series coefficients
045 1 06
0.4
0.2t E
«X 02
o
o2 ] ! |
. . . 02
-4 -2 0 2 4 =T -5 0 5 10
z ¢
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Fourier series for top hat function

Top hat Basis function
. : . 1
1.4F E
= 0.5
1.2p ] x
< 0
| JANIA | 3
V < 05
0.8t E ;
— 4 -2 0 2 4
B t
= 06f E
: Fourier series coefficients
045 1 06
0.4
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«X 02
o
o2 ] ! |
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z ¢
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Fourier series for top hat function

Top hat Basis function
. : . 1
1.4F E
= 0.5
1.2p ] x
< 0
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Fourier series for top hat function

Top hat Basis function
. : . 1
1.4F E
= 0.5
1.2F E «
0
~
i ANNIA I
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Fourier series for top hat function

Top hat Basis function
. . . 1
1.4t —
= 0.5
1.2t — «
0
~
4k A AAA A ] z
Y v 3 o5
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Fourier series for kernel function

Kernel takes a single argument,

k(x,y) = k(x —y),

Define the Fourier series representation of k

k(x) = Z ke exp (16x) ,

l=—0c0

k and its Fourier transform are real and symmetric. E.g. Gaussian,

k(x) = 1 ;XZ /}_i —o??
X_Wexp 752 ) (= 5 exp 5 :
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Feature space via fourier series

Define H to be the space of functions with (infinite) feature space
representation

= T
f() = [ ke } :
The space H has an inner product:

00 ’f‘-T
(Fg)u= Y &

() ()
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What is a kernel?
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Basics of reproducing kernel Hilbert spaces

Feature space via fourier series

Define H to be the space of functions with (infinite) feature space
representation

= T
f() = [ ke } :
The space H has an inner product:

e’} T~

T

() ()
Define the feature map

k(- x) = ¢(x) = { \/?gexp(—zéx) ]T
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Constructing new kernels
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Feature space via fourier series

The reproducing theorem holds,

©  F1 ] kyexp(—lx
FO Ky = S hesal-160)

~

{=—00 kg
= Z frexp(ulx) = f(x),
{=—00
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Feature space via fourier series

The reproducing theorem holds,

©  F1 ] kyexp(—lx
FO Ky = S hesal-160)

~

{=—00 kg
= Z frexp(ulx) = f(x),
{=—00

...including for the kernel itself,

Ko kel = 30 (@exp(—zm) (ﬁeexm—wy))

l=—00

= > keexp(al(y — x)) = k(x —y).

{=—00
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What is a kernel?

Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Basics of reproducing kernel Hilbert spaces

Fourier series: what does it achieve?

The squared norm of a function f in H is:

< 77
I3, = (F )y = > =

I=—c0 ¢

If k; decays fast, then so must f; if we want 1£]13, < oc.
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Fourier series: what does it achieve?

The squared norm of a function f in H is:

< 77
I3, = (F )y = > =

I=—c0 ¢

If k; decays fast, then so must f; if we want 1£]13, < oc.
Recall

F(x)= Y F(cos(tx) +1sin(x)).

l=—00

Enforces smoothness.
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Basics of reproducing kernel Hilbert spaces

Fourier series: what does it achieve?

The squared norm of a function f in H is:

< 77
I3, = (F )y = > =

I=—c0 ¢

If k; decays fast, then so must f; if we want 1£]13, < oc.
Recall

F(x)= Y F(cos(tx) +1sin(x)).

f{=—00
Enforces smoothness.

Question: is the top hat function in the Gaussian RKHS?
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What is a kernel?
Constructing new kernels
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Reproducing kernel Hilbert space

Reproducing kernel Hilbert space (1)

Definition
‘H a Hilbert space of R-valued functions on non-empty set X'. A

function k : X x X — R is a reproducing kernel of H, and H is a
reproducing kernel Hilbert space, if

] VX 6 X, k(',X) e Hy
o Vx e X, Vf € H, (f(-),k(-,x))y = f(x) (the reproducing
property).

In particular, for any x,y € X,

k(x,y) = (k (%), k (5 y))ne (3)

Original definition: kernel an inner product between feature maps.
Then ¢(x) = k(-,x) a valid feature map.
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What is a kernel?
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Reproducing kernel Hilbert space (2)

Another RKHS definition:
Define 0, to be the operator of evaluation at x, i.e.

Ixf =f(x) VFeH, xeX.

Definition (Reproducing kernel Hilbert space)

‘H is an RKHS if the evaluation operator dy is bounded: Vx € X
there exists Ay > 0 such that for all f € H,

O] = 10xF] < Al 1

= two functions identical in RHKS norm agree at every point:
F(x) —g(x)| = lox (f =) < Allf — gl VF,g € H.

Lecture 1: Introduction to RKHS



What is a kernel?
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RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded dy )

‘H is a reproducing kernel Hilbert space (i.e., its evaluation
operators 8y are bounded linear operators), if and only if H has a
reproducing kernel.

Proof: If H has a reproducing kernel — ¢, bounded

0.1l = [F(¥)]
‘<f7k('7x)>7-[’
< {TkC )l [Tl

1/2
(e, 3), k(53032 1F g
= k()2 (|l
Cauchy-Schwarz in 3rd line . Consequently, 6, : F — R bounded

with A\, = k(x, x)%/2 (other direction: Riesz theorem).



What is a kernel?
Constructing new kernels

Basics of reproducing kernel Hilbert spaces Positive definite functions
Reproducing kernel Hilbert space

Moore-Aronsajn

Theorem (Moore-Aronszajn)

Every positive definite kernel k uniquely associated with RKHS H.

Recall feature map is not unique (as we saw earlier): only kernel is.
Example RKHS function, Gaussian kernel: f(-) := Y"1 aik(xi, ).

10
0.81
0.61

0.4r

f(x)

0.2r
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Correspondence

[Reproducing kernels K:N Positive definite functions ]

Hilbert function spaces with
bounded point evaluation
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Kernel Ridge Regression

Kernel ridge regression

0.6 0.6 0.6

L] L]
04 M 04 04 M
0.2 0.2 0.2
(d ° Y
° °
0 H 0 0
-0.2 'Y L -0.2 -0.2
0.4 ° ° 0.4 ° 0.4
0. . . 0. 0.
-06 L4 -0.6 -0.6
-0.8 . -0.8 . -0.8 .
-1 -1 -1
-05 [ 05 1 15 05 [ 05 1 15 05 [ 05 1 1.5

Very simple to implement, works well when no outliers.
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Kernel Ridge Regression

Ridge regression: case of RP

We are given n training points in RP:
X = [Xl c. Xn ] e RP*" .= [yl e Y

Define some A > 0. Our goal is:

n
= ' i — X £)? 4+ M| f]?
arg min, (Z(y X )+ Alf

i=1

2
arg min (Hy—XTfH +)\||f|]2> ,
ferd

The second term A||f||? is chosen to avoid problems in high
dimensional spaces (see below).
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Kernel Ridge Regression

Ridge regression: case of RP

We are given n training points in RP:
X:[Xl cee Xp ] e RPxn y::[yl e Yn

Define some A > 0. Our goal is:

a* = arg min (Z(y; —x'f)? + >\||f”2>

fERd

i=1

2
arg min (Hy—XTfH +)\\|f|]2>,

feRd

Solution is:
1
Fro— (XXT+)\I) Xy,

which is the classic regularized least squares solution.
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Kernel Ridge Regression

Kernel ridge regression

Use features of ¢(x;) in the place of x;:

F* = argmin <Z (i — (F. ()5 )? +A\|f||%) -

f
S\

E.g. for finite dimensional feature spaces,

N sin x

2 €os X
Gox) = | | oux) = | sin2x

’ :

X | cosix |

ais a vector of length ¢ giving weight to each of these features so
as to find the mapping between x and y. Feature vectors can also
have infinite length (more soon).
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Kernel Ridge Regression

Kernel ridge regression

Solution easy if we already know f is a linear combination of
feature space mappings of points: representer theorem.

f=> aib(x) = ak(x,-).
i=1 i=1

10
0.81

0.6
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Kernel Ridge Regression

Representer theorem

Given a set of paired observations (xi, y1), ... (Xn, ¥n) (regression or
classification).
Find the function f* in the RKHS 7 which satisfies

J(F7) = min J(f), (4)

where
J(F) = Ly(FGa) o FOa)) + 2 (IFI5,) |
Q is non-decreasing, and y is the vector of y;.
o Classification: L,(f(x1),...,f(xn)) = > i1 Lyr(x)<0
o Regression: L,(f(x1),...,f(xn)) = >0 (yi — f(x))?

Lecture 1: Introduction to RKHS



Kernel Ridge Regression

Representer theorem

The representer theorem:(simple version) solution to

min L, (F(a), . Fxn)) + 2 (113,

takes the form .
= Z ajk(xj, ).
i=1

If Q is strictly increasing, all solutions have this form.
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Kernel Ridge Regression

Representer theorem: proof

Proof: Denote f; projection of f onto the subspace

span {k(xj,-): 1 <i<n}, (5)
such that
f=~f(+f,
where f; = Y7 1 aik(xj, ).
Regularizer:
113 = II17 + NFLI, = 117
then

2 (1f13,) = 2 (I615,)
so this term is minimized for f = £.
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Kernel Ridge Regression

Representer theorem: proof

Proof (cont.): Individual terms f(x;) in the loss:
F(xi) = (Fo k(xi, ))gy = (s + Fiy k(X0 D)y = (B k(Xis ) gy

Ly(f(x1),...,f(xn)) = Ly(fs(x1), ..., fs(xn))-
Hence

@ Loss L(...) only depends on the component of f in the data
subspace,

o Regularizer Q(...) minimized when f = f.

o If Q is strictly non-decreasing, then ||f||,, = 0 is required at
the minimum.

Lecture 1: Introduction to RKHS



Kernel Ridge Regression

Kernel ridge regression: proof

We begin knowing f is a linear combination of feature space
mappings of points (representer theorem)

F=> aip(x).
i—1

Then

n

> i = (F,0(x))5)” + AlIF 113

i=1

ly — Ka|? + xa Ka

= y'y-2y"Ka+a' (K*+AK)a
Differentiating wrt o and setting this to zero, we get
Oé* = (K —+ )\/n)_ly'
Recall: %;TUO‘ = (U+ UN)a, ovla _ dalv _

O Ja
Lecture 1: Introduction to RKHS




Kernel Ridge Regression

Reminder: smoothness

What does ||al|3; have to do with smoothing?
Example 1: The Gaussian kernel. Recall

) =Y a/held. IR =34
i=1 =t

0.4
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Kernel Ridge Regression

Reminder: smoothness

What does ||al|3x have to do with smoothing?
Example 2: The Fourier series representation:

)= > Fexpluk),

|=—00
and L
— h&
(f8)n= Y, =
|=—00 kl
Thus,
A2
2 > |f
HEESURIEY T
|=—00 /

Lecture 1: Introduction to RKHS



Kernel Ridge Regression

Parameter selection for KRR

Given the objective

f* = argmin (Z (vi — (F, d(x1))3,) +>\Hf\|3{> :

f
€H ]

How do we choose
@ The regularization parameter \?

@ The kernel parameter: for Gaussian kernel, o in

k(x,y) = exp <_”X_y”2> .

o
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Kernel Ridge Regression

Choice of A

A=0.1, 6=0.6

Lecture 1: Introdu.



Kernel Ridge Regression

Choice of A

A=0.1, 0=0.6 A=10, 0=0.6 A=1e-07, 6=0.6
1 1 15
05r ® o !
0.5
0 *.\.oﬁ‘-L—
oo -~ 0
-05 ® o0 05
L] L]
205 0 05 1 15 Ths 0 05 1 15 05 15
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Kernel Ridge Regression

Choice of o

A=0.1, 6=0.6

Lecture 1: Introdu.



Kernel Ridge Regression

Choice of o

A=0.1, 6=0.6 A=0.1, 6=2 A=0.1, 6=0.1
1 1 1
05r ® o 0.5
of e 0

XX S

-0.5 ® e -0.5

L] L] L]

205 0 0.5 1 15 -05 0 0.5 1 15 -05 0 0.5 1 1.5
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Kernel Ridge Regression

Cross validation

@ Split data into training set size ny and test set size
Ne = 1 — ng;.

@ Split trainining set into m equal chunks of size ny, = ny,/m.
Call these Xya1, i, Yvali for i € {1,...,m}

e For each \, o pair
e For each Xval,ia Yval,i

e Train ridge regression on remaining trainining set data
Xtr \ Xval,i and »/tr \ Yval,iy
e Evaluate its error on the validation data Xval,i, Yval,i

e Average the errors on the validation sets to get the average
validation error for \, o.

@ Choose \*,o* with the lowest average validation error

@ Measure the performance on the test set Xie, Yie.

Lecture 1: Introduction to RKHS
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