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Overview

1 Construction of RKHS:
1 Definition of a kernel as an inner product between feature

space mappings of individual points,
2 Construction of kernels on the basis of simpler kernels,
3 Introduction of the reproducing kernel Hilbert space (RKHS)

induced by positive definite kernels.

2 Mapping of probabilities to RKHS
1 characteristic kernels
2 two-sample tests
3 independence tests

3 Further applications (if time): large-scale testing, three-way
interaction testing, Bayesian inference, link with energy
distance/distance covariance
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Why kernel methods (1): XOR example
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No linear classifier separates red from blue
Map points to higher dimensional feature space:
φ(x) =

[
x1 x2 x1x2

]
∈ R3
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Why kernel methods (2): document classification

φφ

Kernels let us compare objects on the basis of features
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Why kernel methods(3): smoothing
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Kernel methods can control smoothness and avoid
overfitting/underfitting.
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What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Outline: reproducing kernel Hilbert space

We will describe in order:
1 Hilbert space (very simple)
2 Kernel (lots of examples: e.g. you can build kernels from

simpler kernels)
3 Reproducing property
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function 〈·, ·〉H : H×H → R
is an inner product on H if

1 Linear: 〈α1f1 + α2f2, g〉H = α1 〈f1, g〉H + α2 〈f2, g〉H
2 Symmetric: 〈f , g〉H = 〈g , f 〉H
3 〈f , f 〉H ≥ 0 and 〈f , f 〉H = 0 if and only if f = 0.

Norm induced by the inner product: ‖f ‖H :=
√
〈f , f 〉H

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.
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Kernel

Definition

Let X be a non-empty set. A function k : X ×X → R is a kernel
if there exists an R-Hilbert space and a map φ : X → H such that
∀x , x ′ ∈ X ,

k(x , x ′) :=
〈
φ(x), φ(x ′)

〉
H .

Almost no conditions on X (eg, X itself doesn’t need an inner
product, eg. documents).
A single kernel can correspond to several possible features. A
trivial example for X := R:

φ1(x) = x and φ2(x) =

[
x/
√
2

x/
√
2

]
Lecture 1: Introduction to RKHS
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New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given α > 0 and k, k1 and k2 all kernels on X , then αk and
k1 + k2 are kernels on X .

To prove this, just check inner product definition. A difference of
kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let X and X̃ be sets, and define a map A : X → X̃ . Define the
kernel k on X̃ . Then the kernel k(A(x),A(x ′)) is a kernel on X .

Example: k(x , x ′) = x2 (x ′)2 .

Lecture 1: Introduction to RKHS
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New kernels from old: products

Theorem (Products of kernels are kernels)

Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.
If X1 = X2 = X , then k := k1 × k2 is a kernel on X .

Proof.
Main idea only! H1 corresponding to k1 is Rm, and H2
corresponding to k2 is Rn. Define:

k1 := u>v for u, v ∈ Rm (e.g.: kernel between two images)
k2 := p>q for p, q ∈ Rn (e.g.: kernel between two captions)

Is the following a kernel?

K [(u, p); (v , q)] = k1 × k2

(e.g. kernel between one image-caption pair and another)
Lecture 1: Introduction to RKHS
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New kernels from old: products

Proof.
(continued)

k1k2 = k1

(
q>p

)
= k1trace(q>p)

= k1trace(pq>)

= trace(pu>v︸︷︷︸
k1

q>)

= 〈A,B〉 ,

where A := up> and B := vq>.
Thus k1k2 is valid inner product, since I.P. between A,B ∈ Rm×n is

〈A,B〉 = trace(A>B). (1)
Lecture 1: Introduction to RKHS
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Sums and products =⇒ polynomials

Theorem (Polynomial kernels)

Let x , x ′ ∈ Rd for d ≥ 1, and let m ≥ 1 be an integer and c ≥ 0 be
a positive real. Then

k(x , x ′) :=
(〈
x , x ′

〉
+ c
)m

is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
〈x , x ′〉 raised to integer powers. These individual terms are valid
kernels by the product rule.
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Infinite sequences

The kernels we’ve seen so far are dot products between finitely
many features. E.g.

k(x , y) =
[
sin(x) x3 log x

]> [ sin(y) y3 log y
]

where φ(x) =
[
sin(x) x3 log x

]
Can a kernel be a dot product between infinitely many features?

Lecture 1: Introduction to RKHS
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Infinite sequences

Definition
The space `p of p-summable sequences is defined as all sequences
(ai )i≥1 for which

∞∑
i=1

ap
i <∞.

Kernels can be defined in terms of sequences in `2.

Theorem
Given sequence of functions (φi (x))i≥1 in `2 where φi : X → R is
the ith coordinate of φ(x). Then

k(x , x ′) :=
∞∑
i=1

φi (x)φi (x ′) (2)

is a kernel on X . Lecture 1: Introduction to RKHS
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Infinite sequences (proof)

Proof: We just need to check that inner product remains finite.
Norm ‖a‖`2 associated with inner product (2)

‖a‖`2 :=

√√√√ ∞∑
i=1

a2
i ,

where a represents sequence with terms ai . Via Cauchy-Schwarz,∣∣∣∣∣
∞∑
i=1

φi (x)φi (x ′)

∣∣∣∣∣ ≤ ‖φi (x)‖`2
∥∥φi (x ′)

∥∥
`2
,

so the sequence defining the inner product converges for all
x , x ′ ∈ X

Lecture 1: Introduction to RKHS
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Taylor series kernels

Definition (Taylor series kernel)

For r ∈ (0,∞], with an ≥ 0 for all n ≥ 0

f (z) =
∞∑

n=0

anzn |z | < r , z ∈ R,

Define X to be the
√
r -ball in Rd , so‖x‖ < √r ,

k(x , x ′) = f
(〈
x , x ′

〉)
=
∞∑

n=0

an
〈
x , x ′

〉n
.

Example (Exponential kernel)

k(x , x ′) := exp
(〈
x , x ′

〉)
.

Lecture 1: Introduction to RKHS
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Taylor series kernel (proof)

Proof: By Cauchy-Schwarz,∣∣〈x , x ′〉∣∣ ≤ ‖x‖‖x ′‖ < r ,

so the Taylor series converges. Define cj1...jd = n!∏d
i=1 ji !

k(x , x ′) =
∞∑

n=0

an

 d∑
j=1

xjx ′j

n

=
∞∑

n=0

an
∑

j1 . . . jd ≥ 0
j1 + . . .+ jd = n

cj1...jd

d∏
i=1

(xi , x ′i )
ji

=
∑

j1...jd>0

aj1+...+jd cj1...jd

d∏
i=1

x ji
i

d∏
i=1

(x ′i )
ji .
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Gaussian kernel

Example (Gaussian kernel)

The Gaussian kernel on Rd is defined as

k(x , x ′) := exp
(
−γ−2 ∥∥x − x ′

∥∥2
)
.

Proof: an exercise! Use product rule, mapping rule, exponential
kernel.
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Positive definite functions

If we are given a function of two arguments, k(x , x ′), how can we
determine if it is a valid kernel?

1 Find a feature map?
1 Sometimes this is not obvious (eg if the feature vector is

infinite dimensional, e.g. the Gaussian kernel in the last slide)
2 The feature map is not unique.

2 A direct property of the function: positive definiteness.

Lecture 1: Introduction to RKHS
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Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X × X → R is positive definite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajk(xi , xj) ≥ 0.

The function k(·, ·) is strictly positive definite if for mutually
distinct xi , the equality holds only when all the ai are zero.
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Kernels are positive definite

Theorem

Let H be a Hilbert space, X a non-empty set and φ : X → H.
Then 〈φ(x), φ(y)〉H =: k(x , y) is positive definite.

Proof.

n∑
i=1

n∑
j=1

aiajk(xi , xj) =
n∑

i=1

n∑
j=1

〈aiφ(xi ), ajφ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiφ(xi )

∥∥∥∥∥
2

H

≥ 0.

Reverse also holds: positive definite k(x , x ′) is inner product in H
between φ(x) and φ(x ′).

Lecture 1: Introduction to RKHS
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First example: finite space, polynomial features

Reminder: XOR example:
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First example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

φ : R2 → R3

x =

[
x1
x2

]
7→ φ(x) =

 x1
x2
x1x2

 ,
with kernel

k(x , y) =

 x1
x2
x1x2

>  y1
y2
y1y2


(the standard inner product in R3 between features). Denote this
feature space by H.
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First example: finite space, polynomial features

Define a linear function of the inputs x1, x2, and their product x1x2,

f (x) = f1x1 + f2x2 + f3x1x2.

f in a space of functions mapping from X = R2 to R. Equivalent
representation for f ,

f (·) =
[
f1 f2 f3

]>
.

f (·) refers to the function as an object (here as a vector in R3)
f (x) ∈ R is function evaluated at a point (a real number).

f (x) = f (·)>φ(x) = 〈f (·), φ(x)〉H
Evaluation of f at x is an inner product in feature space (here
standard inner product in R3)
H is a space of functions mapping R2 to R.

Lecture 1: Introduction to RKHS
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First example: finite space, polynomial features

φ(y) is a mapping from R2 to R3. . .
. . .which also parametrizes a function mapping R2 to R.

k(·, y) :=
[
y1 y2 y1y2

]>
= φ(y),

Given y , there is a vector k(·, y) in H such that

〈k(·, y), φ(x)〉H = ax1 + bx2 + cx1x2,

where a = y1, b = y2, and c = y1y2
Due to symmetry,

〈k(·, x), φ(y)〉 = uy1 + vy2 + wy1y2

= k(x , y).

We can write φ(x) = k(·, x) and φ(y) = k(·, y) without ambiguity:
canonical feature map
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The reproducing property

This example illustrates the two defining features of an RKHS:
The reproducing property:
∀x ∈ X , ∀f (·) ∈ H, 〈f (·), k(·, x)〉H = f (x)
. . .or use shorter notation 〈f , φ(x)〉H.
In particular, for any x , y ∈ X ,

k(x , y) = 〈k (·, x) , k (·, y)〉H.

Note: the feature map of every point is in the feature space:
∀x ∈ X , k(·, x) = φ(x) ∈ H,

Lecture 1: Introduction to RKHS
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First example: finite space, polynomial features

Another, more subtle point:H can be larger than all φ(x).
Why?

φ(x) : x ∈ X H

E.g. f = [1 1 − 1] ∈ H cannot be obtained by φ(x) = [x1 x2 (x1x2)].
Lecture 1: Introduction to RKHS
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Second example: infinite feature space

Reproducing property for function with Gaussian kernel:
f (x) :=

∑m
i=1 αik(xi , x) = 〈∑m

i=1 αiφ(xi ), φ(x)〉H .

−6 −4 −2 0 2 4 6 8
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What do the features φ(x) look like (warning: there are
infinitely many of them!)
What do these features have to do with smoothness?
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Second example: infinite feature space

Under certain conditions (e.g Mercer’s theorem), we can write

k(x , x ′) =
∞∑
i=1

λiei (x)ei (x ′),
ˆ
X
ei (x)ej(x)dµ(x) =

{
1 i = j
0 i 6= j .

where this sum is guaranteed to converge whatever the x and x ′.

Infinite dimensional feature map: φ(x) =


...√

λiei (x)
...

 ∈ `2.
Define H to be the space of functions: for {fi}∞i=1 ∈ `2,

f (x) = 〈f , φ(x)〉H =
∞∑
i=1

fi
√
λiei (x).

Does this work? Is f (x) <∞ despite the infinite feature space?
Lecture 1: Introduction to RKHS
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1 i = j
0 i 6= j .
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Reminder: for the kernel, we obtained by Cauchy-Schwarz that if
φ(x) ∈ `2 for all x , then

∣∣k(x , x ′)
∣∣ =

∣∣∣∣∣
∞∑
i=1

φi (x)φi (x ′)

∣∣∣∣∣ ≤ ‖φi (x)‖
∥∥φi (x ′)

∥∥ <∞
Finiteness of f (x) = 〈f , φ(x)〉H also obtained by Cauchy-Schwarz,

|〈f , φ(x)〉H| =

∣∣∣∣∣
∞∑
i=1

fi
√
λiei (x)

∣∣∣∣∣ ≤
( ∞∑

i=1

f 2
i

)1/2( ∞∑
i=1

λie2
i (x)

)1/2

= ‖f ‖`2
√

k(x , x)
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Second example: infinite feature space

We can also define inner product in H between two functions f
(represented by fi ) and g (represented by gi ) as

〈f , g〉H =
∞∑
i=1

figi .
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Second example: infinite feature space

Gaussian kernel, k(x , y) = exp
(
−‖x−y‖2

2σ2

)
,

λk ∝ bk b < 1
ek(x) ∝ exp(−(c − a)x2)Hk(x

√
2c),

a, b, c are functions of σ, and Hk is kth order Hermite polynomial.

k(x , x ′) =
∞∑
i=1

λiei (x)ei (x ′)

(Figure from Rasmussen and Williams)
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Second example: infinite feature space

Example RKHS function, Gaussian kernel:

f (x) :=
m∑

i=1

αik(xi , x) =
m∑

i=1

αi

 ∞∑
j=1

λjej(xi )ej(x)

 =
∞∑
j=1

fj
[√

λjej(x)
]

where fj =
∑m

i=1 αi
√
λjej(xi ).
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smoothing:
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fj decay since∑

j f
2
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Third (infinite) example: fourier series

Function on the interval [−π, π] with periodic boundary. Fourier
series:

f (x) =
∞∑

`=−∞
f̂` exp(ı`x) =

∞∑
l=−∞

f̂` (cos(`x) + ı sin(`x)) .

Example: “top hat” function,

f (x) =

{
1 |x | < T ,
0 T ≤ |x | < π.

Fourier series:

f̂` :=
sin(`T )

`π
f (x) =

∞∑
`=0

2f̂` cos(`x).
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Fourier series for top hat function
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Fourier series for kernel function

Kernel takes a single argument,

k(x , y) = k(x − y),

Define the Fourier series representation of k

k(x) =
∞∑

`=−∞
k̂` exp (ı`x) ,

k and its Fourier transform are real and symmetric. E.g. Gaussian,

k(x) =
1√
2πσ2

exp
(−x2

2σ2

)
, k̂` =

1
2π

exp
(−σ2`2

2

)
.
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Feature space via fourier series

Define H to be the space of functions with (infinite) feature space
representation

f (·) =
[
. . . f̂`/

√
k̂` . . .

]>
.

The space H has an inner product:

〈f , g〉H =
∞∑

`=−∞

f̂`ĝ`(√
k̂`

)(√
k̂`

) .
Define the feature map

k(·, x) = φ(x) =
[
. . .

√
k̂` exp(−ı`x) . . .

]>
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Feature space via fourier series

The reproducing theorem holds,

〈f (·), k(·, x)〉H =
∞∑

`=−∞

f̂`
√

k̂` exp(−ı`x)√
k̂`

=
∞∑

`=−∞
f̂` exp(ı`x) = f (x),

. . .including for the kernel itself,

〈k(·, x), k(·, y)〉H =
∞∑

`=−∞

(√
k̂` exp(−ı`x)

)(√
k̂` exp(−ı`y)

)

=
∞∑

`=−∞
k̂` exp(ı`(y − x)) = k(x − y).
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Fourier series: what does it achieve?

The squared norm of a function f in H is:

‖f ‖2H = 〈f , f 〉H =
∞∑

l=−∞

f̂` f̂`
k̂`
.

If k̂` decays fast, then so must f̂` if we want ‖f ‖2H <∞.
Recall

f (x) =
∞∑

`=−∞
f̂` (cos(`x) + ı sin(`x)) .

Enforces smoothness.

Question: is the top hat function in the Gaussian RKHS?
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Reproducing kernel Hilbert space (1)

Definition
H a Hilbert space of R-valued functions on non-empty set X . A
function k : X × X → R is a reproducing kernel of H, and H is a
reproducing kernel Hilbert space, if

∀x ∈ X , k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f (·), k(·, x)〉H = f (x) (the reproducing
property).

In particular, for any x , y ∈ X ,

k(x , y) = 〈k (·, x) , k (·, y)〉H. (3)

Original definition: kernel an inner product between feature maps.
Then φ(x) = k(·, x) a valid feature map.
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Reproducing kernel Hilbert space (2)

Another RKHS definition:
Define δx to be the operator of evaluation at x , i.e.

δx f = f (x) ∀f ∈ H, x ∈ X .

Definition (Reproducing kernel Hilbert space)

H is an RKHS if the evaluation operator δx is bounded: ∀x ∈ X
there exists λx ≥ 0 such that for all f ∈ H,

|f (x)| = |δx f | ≤ λx‖f ‖H

=⇒ two functions identical in RHKS norm agree at every point:

|f (x)− g(x)| = |δx (f − g)| ≤ λx‖f − g‖H ∀f , g ∈ H.
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RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded δx )

H is a reproducing kernel Hilbert space (i.e., its evaluation
operators δx are bounded linear operators), if and only if H has a
reproducing kernel.

Proof: If H has a reproducing kernel =⇒ δx bounded

|δx [f ]| = |f (x)|
= |〈f , k(·, x)〉H|
≤ ‖k(·, x)‖H ‖f ‖H
= 〈k(·, x), k(·, x)〉1/2H ‖f ‖H
= k(x , x)1/2 ‖f ‖H

Cauchy-Schwarz in 3rd line . Consequently, δx : F → R bounded
with λx = k(x , x)1/2 (other direction: Riesz theorem).
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Moore-Aronsajn

Theorem (Moore-Aronszajn)

Every positive definite kernel k uniquely associated with RKHS H.

Recall feature map is not unique (as we saw earlier): only kernel is.
Example RKHS function, Gaussian kernel: f (·) :=

∑m
i=1 αik(xi , ·).
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Correspondence

Reproducing	
  kernels	
   Posi1ve	
  definite	
  func1ons	
  

Hilbert	
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  spaces	
  with	
  
bounded	
  point	
  evalua1on	
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Kernel ridge regression
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Very simple to implement, works well when no outliers.
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Ridge regression: case of RD

We are given n training points in RD :

X =
[
x1 . . . xn

]
∈ RD×n y :=

[
y1 . . . yn

]>
Define some λ > 0. Our goal is:

f ∗ = arg min
f ∈Rd

(
n∑

i=1

(yi − x>i f )2 + λ‖f ‖2
)

= arg min
f ∈Rd

(∥∥∥y − X>f
∥∥∥2

+ λ‖f ‖2
)
,

The second term λ‖f ‖2 is chosen to avoid problems in high
dimensional spaces (see below).
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Ridge regression: case of RD

We are given n training points in RD :

X =
[
x1 . . . xn

]
∈ RD×n y :=

[
y1 . . . yn

]>
Define some λ > 0. Our goal is:

a∗ = arg min
f ∈Rd

(
n∑

i=1

(yi − x>i f )2 + λ‖f ‖2
)

= arg min
f ∈Rd

(∥∥∥y − X>f
∥∥∥2

+ λ‖f ‖2
)
,

Solution is:

f ∗ =
(
XX> + λI

)−1
Xy ,

which is the classic regularized least squares solution.
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Kernel ridge regression

Use features of φ(xi ) in the place of xi :

f ∗ = arg min
f ∈H

(
n∑

i=1

(yi − 〈f , φ(xi )〉H)2 + λ‖f ‖2H

)
.

E.g. for finite dimensional feature spaces,

φp(x) =


x
x2

...
x`

 φs(x) =


sin x
cos x
sin 2x

...
cos `x


a is a vector of length ` giving weight to each of these features so
as to find the mapping between x and y . Feature vectors can also
have infinite length (more soon).
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Kernel ridge regression

Solution easy if we already know f is a linear combination of
feature space mappings of points: representer theorem.

f =
n∑

i=1

αiφ(xi ) =
n∑

i=1

αik(xi , ·).

−6 −4 −2 0 2 4 6 8
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1
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Representer theorem

Given a set of paired observations (x1, y1), . . . (xn, yn) (regression or
classification).
Find the function f ∗ in the RKHS H which satisfies

J(f ∗) = min
f ∈H

J(f ), (4)

where
J(f ) = Ly (f (x1), . . . , f (xn)) + Ω

(
‖f ‖2H

)
,

Ω is non-decreasing, and y is the vector of yi .
Classification: Ly (f (x1), . . . , f (xn)) =

∑n
i=1 Iyi f (xi )≤0

Regression: Ly (f (x1), . . . , f (xn)) =
∑n

i=1(yi − f (xi ))2
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Representer theorem

The representer theorem:(simple version) solution to

min
f ∈H

[
Ly (f (x1), . . . , f (xn)) + Ω

(
‖f ‖2H

)]
takes the form

f ∗ =
n∑

i=1

αik(xi , ·).

If Ω is strictly increasing, all solutions have this form.
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Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {k(xi , ·) : 1 ≤ i ≤ n} , (5)

such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(xi , ·).
Regularizer:

‖f ‖2H = ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖2H ,

then
Ω
(
‖f ‖2H

)
≥ Ω

(
‖fs‖2H

)
,

so this term is minimized for f = fs .

Lecture 1: Introduction to RKHS



Course overview
Motivating examples

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

Representer theorem: proof

Proof (cont.): Individual terms f (xi ) in the loss:

f (xi ) = 〈f , k(xi , ·)〉H = 〈fs + f⊥, k(xi , ·)〉H = 〈fs , k(xi , ·)〉H ,

so
Ly (f (x1), . . . , f (xn)) = Ly (fs(x1), . . . , fs(xn)).

Hence
Loss L(. . .) only depends on the component of f in the data
subspace,
Regularizer Ω(. . .) minimized when f = fs .
If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at
the minimum.
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Kernel ridge regression: proof

We begin knowing f is a linear combination of feature space
mappings of points (representer theorem)

f =
n∑

i=1

αiφ(xi ).

Then
n∑

i=1

(yi − 〈f , φ(xi )〉H)2 + λ‖f ‖2H = ‖y − Kα‖2 + λα>Kα

= y>y − 2y>Kα + α>
(
K 2 + λK

)
α

Differentiating wrt α and setting this to zero, we get

α∗ = (K + λIn)−1y .

Recall: ∂α>Uα
∂α = (U + U>)α, ∂v>α

∂α = ∂α>v
∂α = v
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Reminder: smoothness

What does ‖a‖H have to do with smoothing?
Example 1: The Gaussian kernel. Recall

f (x) =
∞∑
i=1

ai
√
λiei (x), ‖f ‖2H =

∞∑
i=1

a2
i .
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Reminder: smoothness

What does ‖a‖H have to do with smoothing?
Example 2: The Fourier series representation:

f (x) =
∞∑

l=−∞
f̂l exp(ılx),

and

〈f , g〉H =
∞∑

l=−∞

f̂l ĝl

k̂l
.

Thus,

‖f ‖2H = 〈f , f 〉H =
∞∑

l=−∞

∣∣∣f̂l ∣∣∣2
k̂l

.
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Parameter selection for KRR

Given the objective

f ∗ = arg min
f ∈H

(
n∑

i=1

(yi − 〈f , φ(xi )〉H)2 + λ‖f ‖2H

)
.

How do we choose
The regularization parameter λ?
The kernel parameter: for Gaussian kernel, σ in

k(x , y) = exp
(−‖x − y‖2

σ

)
.
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Choice of λ
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Choice of λ
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Choice of σ
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Choice of σ
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Cross validation

Split data into training set size ntr and test set size
nte = 1− ntr.
Split trainining set into m equal chunks of size nval = ntr/m.
Call these Xval,i ,Yval,i for i ∈ {1, . . . ,m}
For each λ, σ pair

For each Xval,i ,Yval,i

Train ridge regression on remaining trainining set data
Xtr \ Xval,i and Ytr \ Yval,i ,
Evaluate its error on the validation data Xval,i ,Yval,i

Average the errors on the validation sets to get the average
validation error for λ, σ.

Choose λ∗, σ∗ with the lowest average validation error
Measure the performance on the test set Xte,Yte.
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