Lecture 1: Introduction to RKHS Lille, 2014

Gatsby Unit, CSML, UCL

April 1, 2014

Lecture 1: Introduction to RKHS

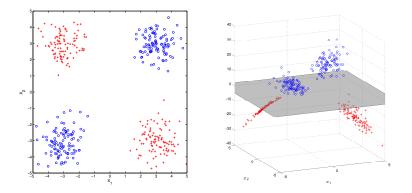
Overview

Onstruction of RKHS:

- Definition of a kernel as an inner product between feature space mappings of individual points,
- Construction of kernels on the basis of simpler kernels,
- Introduction of the reproducing kernel Hilbert space (RKHS) induced by positive definite kernels.
- Mapping of probabilities to RKHS
 - characteristic kernels
 - 2 two-sample tests
 - independence tests
- Further applications (if time): large-scale testing, three-way interaction testing, Bayesian inference, link with energy distance/distance covariance

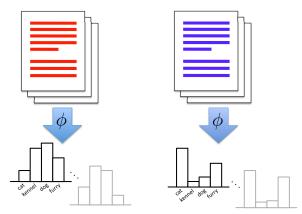
Kernel methods

Why kernel methods (1): XOR example



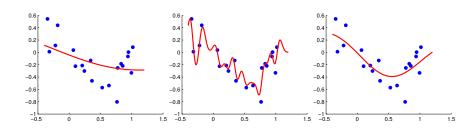
- No linear classifier separates red from blue
- Map points to higher dimensional feature space: $\phi(x) = \begin{bmatrix} x_1 & x_2 & x_1x_2 \end{bmatrix} \in \mathbb{R}^3$

Why kernel methods (2): document classification



Kernels let us compare objects on the basis of features

Why kernel methods(3): smoothing



Kernel methods can control **smoothness** and **avoid overfitting/underfitting**.

Lecture 1: Introduction to RKHS

Basics of reproducing kernel Hilbert spaces

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Outline: reproducing kernel Hilbert space

We will describe in order:

- Hilbert space (very simple)
- Kernel (lots of examples: e.g. you can build kernels from simpler kernels)
- 8 Reproducing property

<**□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□**

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

- $\textbf{S} \text{ Linear: } \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- **2** Symmetric: $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$

$$(f, f)_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$$

Norm induced by the inner product: $\|f\|_{\mathcal{H}}:=\sqrt{\langle f,f
angle_{\mathcal{H}}}$

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

What is a kernel?

- Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- **2** Symmetric: $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$

$$(f, f)_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$$

Norm induced by the inner product: $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

What is a kernel?

Reproducing kernel Hilbert space

- $\textbf{ linear: } \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- **2** Symmetric: $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$

$$(f, f)_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$$

Norm induced by the inner product: $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Kernel

Definition

Let \mathcal{X} be a non-empty set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists an \mathbb{R} -Hilbert space and a map $\phi : \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(\mathbf{x},\mathbf{x}') := \left\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \right\rangle_{\mathcal{H}}.$$

- Almost no conditions on \mathcal{X} (eg, \mathcal{X} itself doesn't need an inner product, eg. documents).
- A single kernel can correspond to several possible features. A trivial example for X := ℝ:

$$\phi_1(x) = x$$
 and $\phi_2(x) = \begin{bmatrix} x/\sqrt{2} \\ x/\sqrt{2} \end{bmatrix}$

< ロ > < 同 > < 回 > .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

To prove this, just check inner product definition. A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let \mathcal{X} and $\widetilde{\mathcal{X}}$ be sets, and define a map $A : \mathcal{X} \to \widetilde{\mathcal{X}}$. Define the kernel k on $\widetilde{\mathcal{X}}$. Then the kernel k(A(x), A(x')) is a kernel on \mathcal{X} .

Example: $k(x, x') = x^2 (x')^2$.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

To prove this, just check inner product definition. A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let \mathcal{X} and $\widetilde{\mathcal{X}}$ be sets, and define a map $A : \mathcal{X} \to \widetilde{\mathcal{X}}$. Define the kernel k on $\widetilde{\mathcal{X}}$. Then the kernel k(A(x), A(x')) is a kernel on \mathcal{X} .

Example:
$$k(x, x') = x^2 (x')^2$$
.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

New kernels from old: products

Theorem (Products of kernels are kernels)

Given k_1 on \mathcal{X}_1 and k_2 on \mathcal{X}_2 , then $k_1 \times k_2$ is a kernel on $\mathcal{X}_1 \times \mathcal{X}_2$. If $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}$, then $k := k_1 \times k_2$ is a kernel on \mathcal{X} .

Proof.

Main idea only! \mathcal{H}_1 corresponding to k_1 is \mathbb{R}^m , and \mathcal{H}_2 corresponding to k_2 is \mathbb{R}^n . Define:

•
$$k_1 := u^ op v$$
 for $u, v \in \mathbb{R}^m$ (e.g.: kernel between two images)

• $k_2 := p^{ op} q$ for $p, q \in \mathbb{R}^n$ (e.g.: kernel between two captions)

Is the following a kernel?

$$K\left[(u,p);(v,q)\right]=k_1\times k_2$$

(e.g. kernel between one image-caption pair and another)

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

New kernels from old: products

Proof.

(continued)

$$k_1 k_2 = k_1 \left(q^\top p \right)$$

= $k_1 \operatorname{trace}(q^\top p)$
= $k_1 \operatorname{trace}(pq^\top)$
= $\operatorname{trace}(p \underbrace{q^\top v}_{k_1} q^\top)$
= $\langle A, B \rangle$,

where $A := up^{\top}$ and $B := vq^{\top}$. Thus k_1k_2 is valid inner product, since I.P. between $A, B \in \mathbb{R}^{m \times n}$ is

$$\langle A, B \rangle = \operatorname{trace}(A^{\top}B).$$
 (1)

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Sums and products \implies polynomials

Theorem (Polynomial kernels)

Let $x, x' \in \mathbb{R}^d$ for $d \ge 1$, and let $m \ge 1$ be an integer and $c \ge 0$ be a positive real. Then

$$k(x,x') := (\langle x,x' \rangle + c)^m$$

is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels $\langle x, x' \rangle$ raised to integer powers. These individual terms are valid kernels by the product rule.

Infinite sequences

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

The kernels we've seen so far are dot products between finitely many features. E.g.

 $k(x, y) = \begin{bmatrix} \sin(x) & x^3 & \log x \end{bmatrix}^\top \begin{bmatrix} \sin(y) & y^3 & \log y \end{bmatrix}$ where $\phi(x) = \begin{bmatrix} \sin(x) & x^3 & \log x \end{bmatrix}$ Can a kernel be a dot product between infinitely many features?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Infinite sequences

Definition

The space ℓ_p of *p*-summable sequences is defined as all sequences $(a_i)_{i\geq 1}$ for which

$\sum_{i=1}^{\infty}a_i^p<\infty.$

Kernels can be defined in terms of sequences in ℓ_2 .

Theorem

Given sequence of functions $(\phi_i(x))_{i\geq 1}$ in ℓ_2 where $\phi_i : \mathcal{X} \to \mathbb{R}$ is the *i*th coordinate of $\phi(x)$. Then

$$k(x,x') := \sum_{i=1}^{\infty} \phi_i(x)\phi_i(x') \tag{2}$$

Course overview Motivating examples Basics of reproducing kernel Hilbert spaces Kernel Ridge Regression Reproducing kernel Hilbe

Infinite sequences

Definition

The space ℓ_p of *p*-summable sequences is defined as all sequences $(a_i)_{i\geq 1}$ for which

 $\sum_{i=1}^{\infty}a_{i}^{p}<\infty.$

Kernels can be defined in terms of sequences in ℓ_2 .

Theorem

Given sequence of functions $(\phi_i(x))_{i\geq 1}$ in ℓ_2 where $\phi_i : \mathcal{X} \to \mathbb{R}$ is the *i*th coordinate of $\phi(x)$. Then

$$k(x,x') := \sum_{i=1}^{\infty} \phi_i(x)\phi_i(x') \tag{2}$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Infinite sequences (proof)

Proof: We just need to check that inner product remains finite. Norm $||a||_{\ell_2}$ associated with inner product (2)

$$\|\boldsymbol{a}\|_{\ell_2} := \sqrt{\sum_{i=1}^{\infty} a_i^2},$$

where *a* represents sequence with terms a_i . Via Cauchy-Schwarz,

$$\left|\sum_{i=1}^{\infty}\phi_i(x)\phi_i(x')\right| \leq \left\|\phi_i(x)\right\|_{\ell_2} \left\|\phi_i(x')\right\|_{\ell_2},$$

so the sequence defining the inner product converges for all $x,x'\in \mathcal{X}$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Taylor series kernels

Definition (Taylor series kernel)

For $r \in (0,\infty]$, with $a_n \ge 0$ for all $n \ge 0$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad |z| < r, \ z \in \mathbb{R},$$

Define \mathcal{X} to be the \sqrt{r} -ball in \mathbb{R}^d , so $||x|| < \sqrt{r}$,

$$k(x,x') = f\left(\langle x,x'\rangle\right) = \sum_{n=0}^{\infty} a_n \langle x,x'\rangle^n.$$

Example (Exponential kernel)

$$k(x,x') := \exp\left(\langle x,x' \rangle\right).$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Taylor series kernel (proof)

Proof: By Cauchy-Schwarz,

$$|\langle x, x' \rangle| \leq ||x|| ||x'|| < r,$$

so the Taylor series converges. Define $c_{j_1...j_d} = \frac{n!}{\prod_{i=1}^d j_i!}$

$$k(x, x') = \sum_{n=0}^{\infty} a_n \left(\sum_{j=1}^{d} x_j x'_j \right)^n$$

=
$$\sum_{n=0}^{\infty} a_n \sum_{\substack{j_1 \dots j_d \ge 0 \\ j_1 + \dots + j_d = n}} c_{j_1 \dots j_d} \prod_{i=1}^{d} (x_i, x'_i)^{j_i}$$

=
$$\sum_{j_1 \dots j_d > 0} a_{j_1 + \dots + j_d} c_{j_1 \dots j_d} \prod_{i=1}^{d} x_i^{j_i} \prod_{i=1_{\mathcal{O}}}^{d} (x'_i)^{j_i}.$$

Lecture 1: Introduction to RKHS

Gaussian kernel

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Example (Gaussian kernel)

The Gaussian kernel on \mathbb{R}^d is defined as

$$k(x, x') := \exp\left(-\gamma^{-2} \|x - x'\|^2\right).$$

Proof: an exercise! Use product rule, mapping rule, exponential kernel.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Positive definite functions

If we are given a function of two arguments, k(x, x'), how can we determine if it is a valid kernel?

- I Find a feature map?
 - Sometimes this is not obvious (eg if the feature vector is infinite dimensional, e.g. the Gaussian kernel in the last slide)
 - 2 The feature map is not unique.
- A direct property of the function: positive definiteness.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Positive definite functions

Definition (Positive definite functions)

A symmetric function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if $\forall n \ge 1, \ \forall (a_1, \dots, a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0.$$

The function $k(\cdot, \cdot)$ is strictly positive definite if for mutually distinct x_i , the equality holds only when all the a_i are zero.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Kernels are positive definite

Theorem

Let \mathcal{H} be a Hilbert space, \mathcal{X} a non-empty set and $\phi : \mathcal{X} \to \mathcal{H}$. Then $\langle \phi(x), \phi(y) \rangle_{\mathcal{H}} =: k(x, y)$ is positive definite.

Proof.

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k(x_{i}, x_{j}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_{i} \phi(x_{i}), a_{j} \phi(x_{j}) \rangle_{\mathcal{H}} \\ &= \left\| \sum_{i=1}^{n} a_{i} \phi(x_{i}) \right\|_{\mathcal{H}}^{2} \geq 0. \end{split}$$

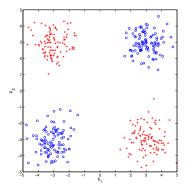
Reverse also holds: positive definite k(x, x') is inner product in \mathcal{H} between $\phi(x)$ and $\phi(x')$.

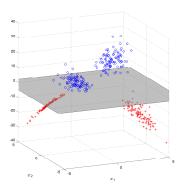
The reproducing kernel Hilbert space

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

Reminder: XOR example:





Course overview What is a kernel? Motivating examples Constructing new kernels Basics of reproducing kernel Hilbert space Kernel Ridge Regression Reproducing kernel Hilbert space

First example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \phi(x) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix},$$

with kernel

$$k(x,y) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}^\top \begin{bmatrix} y_1 \\ y_2 \\ y_1y_2 \end{bmatrix}$$

(the standard inner product in \mathbb{R}^3 between features). Denote this feature space by \mathcal{H} .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

Define a linear function of the inputs x_1, x_2 , and their product x_1x_2 ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} . Equivalent representation for f,

$$f(\cdot) = \begin{bmatrix} f_1 & f_2 & f_3 \end{bmatrix}^\top$$
.

 $f(\cdot)$ refers to the function as an object (here as a vector in \mathbb{R}^3) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

$$f(x) = f(\cdot)^{\top} \phi(x) = \langle f(\cdot), \phi(x) \rangle_{\mathcal{H}}$$

Evaluation of f at x is an **inner product in feature space** (here standard inner product in \mathbb{R}^3)

 ${\mathcal H}$ is a space of functions mapping ${\mathbb R}^2$ to ${\mathbb R}.$, $_$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

Define a linear function of the inputs x_1, x_2 , and their product x_1x_2 ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} . Equivalent representation for f,

$$f(\cdot) = \begin{bmatrix} f_1 & f_2 & f_3 \end{bmatrix}^\top$$
.

 $f(\cdot)$ refers to the function as an object (here as a vector in \mathbb{R}^3) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

$$f(x) = f(\cdot)^{\top} \phi(x) = \langle f(\cdot), \phi(x) \rangle_{\mathcal{H}}$$

Evaluation of f at x is an inner product in feature space (here standard inner product in \mathbb{R}^3) \mathcal{H} is a space of functions mapping \mathbb{R}^2 to \mathbb{R} .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

 $\phi(y)$ is a mapping from \mathbb{R}^2 to \mathbb{R}^3which also parametrizes a function mapping \mathbb{R}^2 to \mathbb{R} .

$$k(\cdot, \mathbf{y}) := \left[egin{array}{cc} y_1 & y_2 & y_1y_2 \end{array}
ight]^ op = \phi(\mathbf{y}),$$

Given y, there is a vector $k(\cdot, y)$ in $\mathcal H$ such that

$$\langle k(\cdot, y), \phi(x) \rangle_{\mathcal{H}} = ax_1 + bx_2 + cx_1x_2,$$

where $a = y_1$, $b = y_2$, and $c = y_1y_2$ Due to symmetry,

$$\langle k(\cdot, x), \phi(y) \rangle = uy_1 + vy_2 + wy_1y_2 = k(x, y).$$

We can write $\phi(x) = k(\cdot, x)$ and $\phi(y) = k(\cdot, y)$ without ambiguity: canonical feature map

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

 $\phi(y)$ is a mapping from \mathbb{R}^2 to \mathbb{R}^3which also parametrizes a function mapping \mathbb{R}^2 to \mathbb{R} .

$$k(\cdot, \mathbf{y}) := \left[egin{array}{cc} y_1 & y_2 & y_1y_2 \end{array}
ight]^ op = \phi(\mathbf{y}),$$

Given y, there is a vector $k(\cdot, y)$ in \mathcal{H} such that

$$\langle k(\cdot, y), \phi(x) \rangle_{\mathcal{H}} = ax_1 + bx_2 + cx_1x_2,$$

where $a = y_1$, $b = y_2$, and $c = y_1y_2$ Due to symmetry,

$$\langle k(\cdot, x), \phi(y) \rangle = uy_1 + vy_2 + wy_1y_2$$

= $k(x, y).$

We can write $\phi(x) = k(\cdot, x)$ and $\phi(y) = k(\cdot, y)$ without ambiguity: canonical feature map

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

The reproducing property

This example illustrates the two defining features of an RKHS:

- The reproducing property:
 - $\forall x \in \mathcal{X}, \forall f(\cdot) \in \mathcal{H}, \ \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$...or use shorter notation $\langle f, \phi(x) \rangle_{\mathcal{H}}.$
- In particular, for any $x, y \in \mathcal{X}$,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}$$

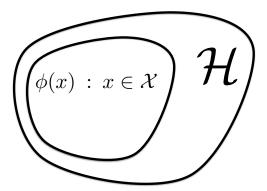
Note: the feature map of every point is in the feature space: $\forall x \in \mathcal{X}, k(\cdot, x) = \phi(x) \in \mathcal{H}$,

4 日 2 4 同 2 4 三 2 4 4

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

Another, more subtle point: \mathcal{H} can be larger than all $\phi(x)$. Why?



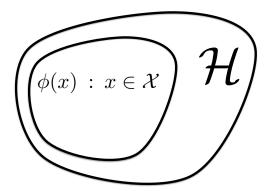
E.g. $f = [11 - 1] \in \mathcal{H}$ cannot be obtained by $\phi(x) = [x_1 x_2(x_1 x_2)]$.

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

First example: finite space, polynomial features

Another, more subtle point: \mathcal{H} can be larger than all $\phi(x)$. Why?

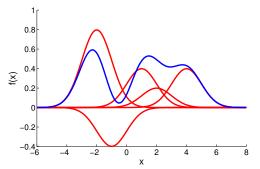


E.g. $f = [11 - 1] \in \mathcal{H}$ cannot be obtained by $\phi(x) = [x_1 x_2 (x_1 x_2)]$.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Reproducing property for function with Gaussian kernel: $f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \langle \sum_{i=1}^{m} \alpha_i \phi(x_i), \phi(x) \rangle_{\mathcal{H}}.$



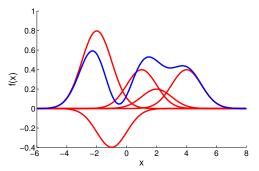
 What do the features φ(x) look like (warning: there are infinitely many of them!)

• What do these features have to do with smoothness?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Reproducing property for function with Gaussian kernel: $f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \left\langle \sum_{i=1}^{m} \alpha_i \phi(x_i), \phi(x) \right\rangle_{\mathcal{H}}.$



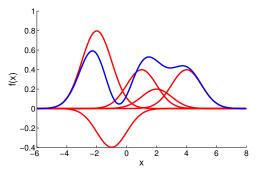
 What do the features φ(x) look like (warning: there are infinitely many of them!)

What do these features have to do with smoothness?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Reproducing property for function with Gaussian kernel: $f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \left\langle \sum_{i=1}^{m} \alpha_i \phi(x_i), \phi(x) \right\rangle_{\mathcal{H}}.$



- What do the features φ(x) look like (warning: there are infinitely many of them!)
- What do these features have to do with smoothness?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Under certain conditions (e.g Mercer's theorem), we can write

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x'), \qquad \int_{\mathcal{X}} e_i(x) e_j(x) d\mu(x) = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$$

where this sum is guaranteed to converge whatever the x and x'.

Infinite dimensional feature map:

$$\begin{vmatrix} \vdots \\ \sqrt{\lambda_i} e_i(x) \\ \vdots \end{vmatrix} \in \ell_2.$$

Define \mathcal{H} to be the space of functions: for $\{f_i\}_{i=1}^{\infty} \in \ell_2$,

$$f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x).$$

Does this work? Is $f(x) < \infty$ despite the infinite feature space?

 $\phi(x) =$

Lecture 1: Introduction to RKHS

Course overview What is Motivating examples Constru-Basics of reproducing kernel Hilbert spaces Reprodu Kernel Ridge Regression Reprodu

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Under certain conditions (e.g Mercer's theorem), we can write

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x'), \qquad \int_{\mathcal{X}} e_i(x) e_j(x) d\mu(x) = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$$

where this sum is guaranteed to converge whatever the x and x'.

Infinite dimensional feature map: $\phi(x) = \begin{bmatrix} \vdots \\ \sqrt{\lambda_i} e_i(x) \\ \vdots \end{bmatrix} \in \ell_2.$ Define \mathcal{H} to be the space of functions: for $\{f_i\}_{i=1}^{\infty} \in \ell_2$,

$$f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x).$$

Does this work? Is $f(x) < \infty$ despite the infinite feature space?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Reminder: for the kernel, we obtained by Cauchy-Schwarz that if $\phi(x) \in \ell_2$ for all x, then

$$\left|k(x,x')\right| = \left|\sum_{i=1}^{\infty} \phi_i(x)\phi_i(x')\right| \le \left\|\phi_i(x)\right\| \left\|\phi_i(x')\right\| < \infty$$

Finiteness of $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}}$ also obtained by Cauchy-Schwarz,

$$\begin{aligned} |\langle f, \phi(x) \rangle_{\mathcal{H}}| &= \left| \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x) \right| \le \left(\sum_{i=1}^{\infty} f_i^2 \right)^{1/2} \left(\sum_{i=1}^{\infty} \lambda_i e_i^2(x) \right)^{1/2} \\ &= \|f\|_{\ell_2} \sqrt{k(x,x)} \end{aligned}$$

(1日) (1日) (1日)

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Reminder: for the kernel, we obtained by Cauchy-Schwarz that if $\phi(x) \in \ell_2$ for all x, then

$$\left|k(x,x')\right| = \left|\sum_{i=1}^{\infty} \phi_i(x)\phi_i(x')\right| \le \left\|\phi_i(x)\right\| \left\|\phi_i(x')\right\| < \infty$$

Finiteness of $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}}$ also obtained by Cauchy-Schwarz,

$$\begin{aligned} |\langle f, \phi(x) \rangle_{\mathcal{H}}| &= \left| \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x) \right| \le \left(\sum_{i=1}^{\infty} f_i^2 \right)^{1/2} \left(\sum_{i=1}^{\infty} \lambda_i e_i^2(x) \right)^{1/2} \\ &= \|f\|_{\ell_2} \sqrt{k(x,x)} \end{aligned}$$

・ 同 ト ・ 三 ト ・

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

We can also define inner product in \mathcal{H} between two functions f (represented by f_i) and g (represented by g_i) as

$$\langle f,g \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} f_i g_i.$$

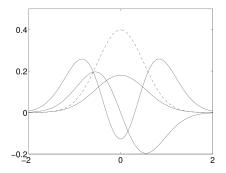
Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

$$egin{aligned} \mathsf{Gaussian} \ \mathsf{kernel}, \ k(x,y) &= \exp\left(-rac{\|x-y\|^2}{2\sigma^2}
ight), \ \lambda_k &\propto b^k \quad b < 1 \ e_k(x) &\propto & \exp(-(c-a)x^2) H_k(x\sqrt{2c}), \end{aligned}$$

a, b, c are functions of σ , and H_k is kth order Hermite polynomial.



$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x')$$

(Figure from Rasmussen and Williams)

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Second example: infinite feature space

Example RKHS function, Gaussian kernel:

$$f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \sum_{i=1}^{m} \alpha_i \left[\sum_{j=1}^{\infty} \lambda_j e_j(x_i) e_j(x) \right] = \sum_{j=1}^{\infty} f_j \left[\sqrt{\lambda_j} e_j(x) \right]$$

where $f_j = \sum_{i=1}^{m} \alpha_i \sqrt{\lambda_j} e_j(x_i)$.
NOTE that this enforces
smoothing:
 λ_j decay as e_j
become rougher,
 f_j decay since
 $\sum_j f_j^2 < \infty$.

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Third (infinite) example: fourier series

Function on the interval $[-\pi,\pi]$ with periodic boundary. Fourier series:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x) = \sum_{l=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x) \right).$$

Example: "top hat" function,

$$f(x) = egin{cases} 1 & |x| < T, \ 0 & T \leq |x| < \pi. \end{cases}$$

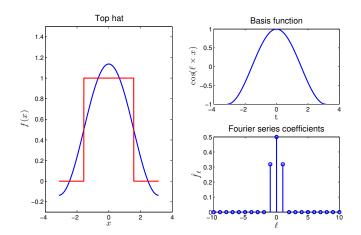
Fourier series:

$$\hat{f}_\ell := rac{\sin(\ell T)}{\ell \pi} \qquad f(x) = \sum_{\ell=0}^\infty 2\hat{f}_\ell \cos(\ell x).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

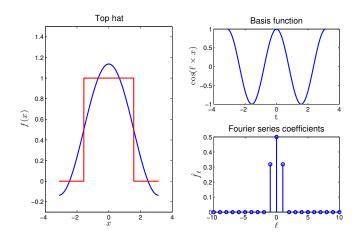
Fourier series for top hat function



A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

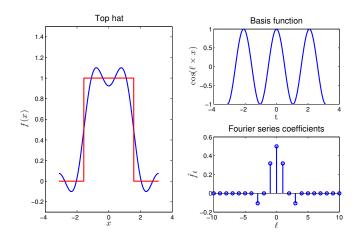
Fourier series for top hat function



A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for top hat function

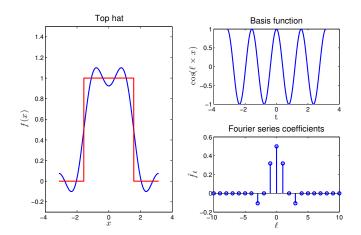


(日)

< ∃→

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

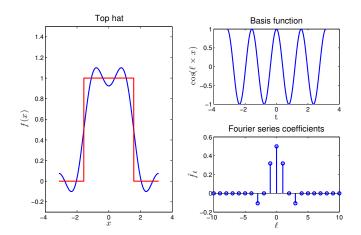
Fourier series for top hat function



< ロ > < 同 > < 回 > < 回 >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

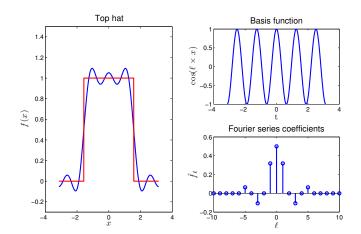
Fourier series for top hat function



< ロ > < 同 > < 回 > < 回 >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for top hat function

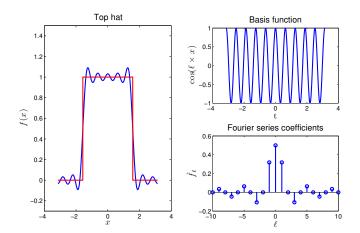


(日)

< ∃ →

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for top hat function



・ロト ・ 一下・ ・ 日 ト

э

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for kernel function

Kernel takes a single argument,

$$k(x,y)=k(x-y),$$

Define the Fourier series representation of k

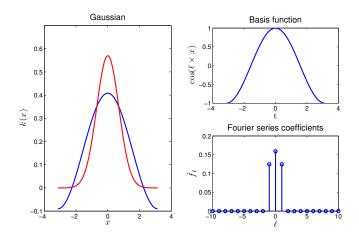
$$k(x) = \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp(\imath \ell x),$$

k and its Fourier transform are real and symmetric. E.g. Gaussian,

$$k(x) = rac{1}{\sqrt{2\pi\sigma^2}}\exp\left(rac{-x^2}{2\sigma^2}
ight), \qquad \hat{k}_\ell = rac{1}{2\pi}\exp\left(rac{-\sigma^2\ell^2}{2}
ight).$$

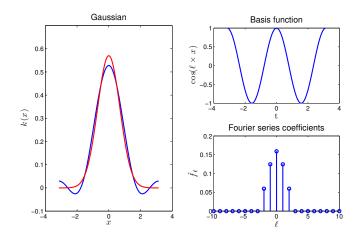
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for Gaussian kernel



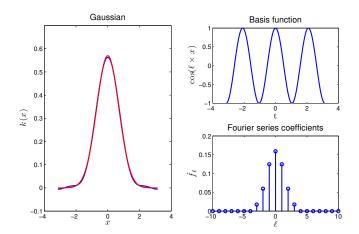
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for Gaussian kernel



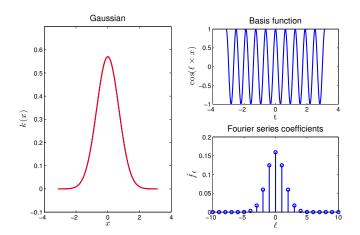
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for Gaussian kernel



What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Fourier series for Gaussian kernel



What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Feature space via fourier series

Define ${\mathcal H}$ to be the space of functions with (infinite) feature space representation

$$f(\cdot) = \begin{bmatrix} \dots & \hat{f}_{\ell}/\sqrt{\hat{k}_{\ell}} & \dots \end{bmatrix}^{\top}$$

The space ${\mathcal H}$ has an inner product:

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell = -\infty}^{\infty} \frac{\widehat{f}_{\ell} \overline{\widehat{g}_{\ell}}}{\left(\sqrt{\widehat{k}_{\ell}}\right) \left(\sqrt{\widehat{k}_{\ell}}\right)}.$$

Define the feature map

$$k(\cdot, x) = \phi(x) = \begin{bmatrix} \dots & \sqrt{\hat{k}_{\ell}} \exp(-i\ell x) & \dots \end{bmatrix}^{\dagger}$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Feature space via fourier series

Define ${\mathcal H}$ to be the space of functions with (infinite) feature space representation

$$f(\cdot) = \begin{bmatrix} \dots & \hat{f}_{\ell}/\sqrt{\hat{k}_{\ell}} & \dots \end{bmatrix}^{\top}$$

The space ${\mathcal H}$ has an inner product:

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell = -\infty}^{\infty} \frac{\widehat{f}_{\ell} \overline{\widehat{g}_{\ell}}}{\left(\sqrt{\widehat{k}_{\ell}}\right) \left(\sqrt{\widehat{k}_{\ell}}\right)}.$$

Define the feature map

$$k(\cdot, x) = \phi(x) = \begin{bmatrix} \dots & \sqrt{\hat{k}_{\ell}} \exp(-i\ell x) & \dots \end{bmatrix}^{\top}$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Feature space via fourier series

The reproducing theorem holds,

$$egin{aligned} &\langle f(\cdot),k(\cdot,x)
angle_{\mathcal{H}} &=& \sum_{\ell=-\infty}^{\infty}rac{\hat{f}_{\ell}\sqrt{\hat{k}_{\ell}}\exp(-\imath\ell x)}{\sqrt{\hat{k}_{\ell}}} \ &=& \sum_{\ell=-\infty}^{\infty}\hat{f}_{\ell}\exp(\imath\ell x)=f(x), \end{aligned}$$

... including for the kernel itself,

$$\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}} = \sum_{\ell=-\infty}^{\infty} \left(\sqrt{\hat{k}_{\ell}} \exp(-i\ell x) \right) \left(\overline{\sqrt{\hat{k}_{\ell}}} \exp(-i\ell y) \right)$$
$$= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp(i\ell(y-x)) = k(x-y).$$

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Feature space via fourier series

The reproducing theorem holds,

$$egin{aligned} &\langle f(\cdot),k(\cdot,x)
angle_{\mathcal{H}} &=& \sum_{\ell=-\infty}^{\infty}rac{\hat{f}_{\ell}\sqrt{\hat{k}_{\ell}}\exp(-\imath\ell x)}{\sqrt{\hat{k}_{\ell}}} \ &=& \sum_{\ell=-\infty}^{\infty}\hat{f}_{\ell}\exp(\imath\ell x)=f(x), \end{aligned}$$

... including for the kernel itself,

$$\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}} = \sum_{\ell=-\infty}^{\infty} \left(\sqrt{\hat{k}_{\ell}} \exp(-i\ell x) \right) \left(\overline{\sqrt{\hat{k}_{\ell}}} \exp(-i\ell y) \right)$$

=
$$\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp(i\ell(y-x)) = k(x-y).$$

Lecture 1: Introduction to RKHS

Course overview Motivating examples Basics of reproducing kernel Hilbert spaces Kernel Ridge Regression Reserved Ridge Regression

Fourier series: what does it achieve?

The squared norm of a function f in \mathcal{H} is:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{I=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}.$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $\|f\|_{\mathcal{H}}^2 < \infty$. Recall

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x) \right).$$

Enforces smoothness.

Question: is the top hat function in the Gaussian RKHS?

Course overview Motivating examples Basics of reproducing kernel Hilbert spaces Kernel Ridge Regression Reserved Ridge Regression

Fourier series: what does it achieve?

The squared norm of a function f in \mathcal{H} is:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{I=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}.$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $\|f\|_{\mathcal{H}}^2 < \infty$. Recall

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x) \right).$$

Enforces smoothness.

Question: is the top hat function in the Gaussian RKHS?

Course overview Motivating examples Basics of reproducing kernel Hilbert spaces Kernel Ridge Regression Reserved Ridge Regression

Fourier series: what does it achieve?

The squared norm of a function f in \mathcal{H} is:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{I=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}.$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $\|f\|_{\mathcal{H}}^2 < \infty$. Recall

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x) \right).$$

Enforces smoothness.

Question: is the top hat function in the Gaussian RKHS?

Some reproducing kernel Hilbert space theory

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Reproducing kernel Hilbert space (1)

Definition

 \mathcal{H} a Hilbert space of \mathbb{R} -valued functions on non-empty set \mathcal{X} . A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel of \mathcal{H} , and \mathcal{H} is a reproducing kernel Hilbert space, if

•
$$\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H},$$

• $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any $x, y \in \mathcal{X}$,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}.$$
 (3)

Original definition: kernel an inner product between feature maps. Then $\phi(x) = k(\cdot, x)$ a valid feature map.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Reproducing kernel Hilbert space (2)

Another RKHS definition:

Define δ_x to be the operator of evaluation at x, i.e.

$$\delta_x f = f(x) \quad \forall f \in \mathcal{H}, \ x \in \mathcal{X}.$$

Definition (Reproducing kernel Hilbert space)

 \mathcal{H} is an RKHS if the evaluation operator δ_x is bounded: $\forall x \in \mathcal{X}$ there exists $\lambda_x \geq 0$ such that for all $f \in \mathcal{H}$,

$$|f(x)| = |\delta_x f| \le \lambda_x ||f||_{\mathcal{H}}$$

 \implies two functions identical in RHKS norm agree at every point:

$$|f(x) - g(x)| = |\delta_x (f - g)| \le \lambda_x \|f - g\|_{\mathcal{H}} \quad \forall f, g \in \mathcal{H}.$$

イロト イ得ト イヨト イヨト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded $\delta_{ imes}$)

 \mathcal{H} is a reproducing kernel Hilbert space (i.e., its evaluation operators δ_x are bounded linear operators), if and only if \mathcal{H} has a reproducing kernel.

Proof: If \mathcal{H} has a reproducing kernel $\implies \delta_x$ bounded

$$\begin{split} |\delta_{\mathbf{x}}[f]| &= |f(\mathbf{x})| \\ &= |\langle f, k(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}| \\ &\leq \|k(\cdot, \mathbf{x})\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \\ &= \langle k(\cdot, \mathbf{x}), k(\cdot, \mathbf{x}) \rangle_{\mathcal{H}}^{1/2} \|f\|_{\mathcal{H}} \\ &= k(\mathbf{x}, \mathbf{x})^{1/2} \|f\|_{\mathcal{H}} \end{split}$$

Cauchy-Schwarz in 3rd line . Consequently, $\delta_x : \mathcal{F} \to \mathbb{R}$ bounded with $\lambda_x = k(x, x)^{1/2}$ (other direction: Riesz theorem).

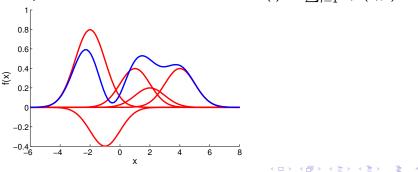
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Moore-Aronsajn

Theorem (Moore-Aronszajn)

Every positive definite kernel k uniquely associated with RKHS \mathcal{H} .

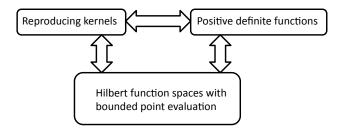
Recall feature map is *not* unique (as we saw earlier): only kernel is. Example RKHS function, Gaussian kernel: $f(\cdot) := \sum_{i=1}^{m} \alpha_i k(x_i, \cdot)$.



Lecture 1: Introduction to RKHS

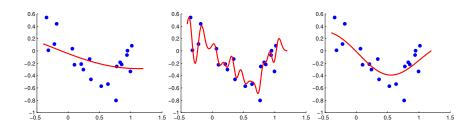
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Correspondence



Kernel Ridge Regression

Kernel ridge regression



Very simple to implement, works well when no outliers.

Ridge regression: case of \mathbb{R}^D

We are given *n* training points in \mathbb{R}^D :

$$X = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \in \mathbb{R}^{D \times n} \quad y := \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^\top$$

Define some $\lambda > 0$. Our goal is:

$$\begin{aligned} f^* &= \arg\min_{f\in\mathbb{R}^d}\left(\sum_{i=1}^n(y_i-x_i^\top f)^2+\lambda\|f\|^2\right) \\ &= \arg\min_{f\in\mathbb{R}^d}\left(\left\|y-X^\top f\right\|^2+\lambda\|f\|^2\right), \end{aligned}$$

The second term $\lambda ||f||^2$ is chosen to avoid problems in high dimensional spaces (see below).

Ridge regression: case of \mathbb{R}^{D}

We are given *n* training points in \mathbb{R}^D :

$$X = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \in \mathbb{R}^{D \times n} \quad y := \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^\top$$

Define some $\lambda > 0$. Our goal is:

$$\begin{aligned} \mathbf{a}^* &= \arg\min_{f\in\mathbb{R}^d} \left(\sum_{i=1}^n (y_i - x_i^\top f)^2 + \lambda \|f\|^2 \right) \\ &= \arg\min_{f\in\mathbb{R}^d} \left(\left\| y - X^\top f \right\|^2 + \lambda \|f\|^2 \right), \end{aligned}$$

Solution is:

$$f^* = \left(XX^\top + \lambda I\right)^{-1} Xy,$$

which is the classic regularized least squares solution.

Kernel ridge regression

Use features of $\phi(x_i)$ in the place of x_i :

$$f^* = \arg \min_{f \in \mathcal{H}} \left(\sum_{i=1}^n (y_i - \langle f, \phi(x_i) \rangle_{\mathcal{H}})^2 + \lambda \|f\|_{\mathcal{H}}^2 \right).$$

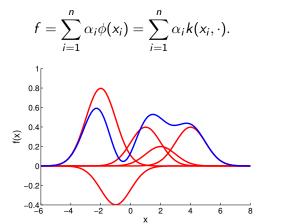
E.g. for finite dimensional feature spaces,

$$\phi_{p}(x) = \begin{bmatrix} x \\ x^{2} \\ \vdots \\ x^{\ell} \end{bmatrix} \qquad \phi_{s}(x) = \begin{bmatrix} \sin x \\ \cos x \\ \sin 2x \\ \vdots \\ \cos \ell x \end{bmatrix}$$

a is a vector of length ℓ giving weight to each of these features so as to find the mapping between *x* and *y*. Feature vectors can also have *infinite* length (more soon).

Kernel ridge regression

Solution easy if we already know f is a linear combination of feature space mappings of points: representer theorem.



Lecture 1: Introduction to RKHS

Representer theorem

Given a set of paired observations $(x_1, y_1), \ldots, (x_n, y_n)$ (regression or classification).

Find the function f^* in the RKHS \mathcal{H} which satisfies

$$J(f^*) = \min_{f \in \mathcal{H}} J(f), \tag{4}$$

where

$$J(f) = L_{y}(f(x_{1}), \ldots, f(x_{n})) + \Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right),$$

 Ω is non-decreasing, and y is the vector of y_i .

- Classification: $L_y(f(x_1), \ldots, f(x_n)) = \sum_{i=1}^n \mathbb{I}_{y_i f(x_i) \le 0}$
- Regression: $L_y(f(x_1), ..., f(x_n)) = \sum_{i=1}^n (y_i f(x_i))^2$

Representer theorem

The representer theorem: (simple version) solution to

$$\min_{f\in\mathcal{H}}\left[L_{y}(f(x_{1}),\ldots,f(x_{n}))+\Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right)\right]$$

takes the form

$$f^* = \sum_{i=1}^n \alpha_i k(x_i, \cdot).$$

If Ω is strictly increasing, all solutions have this form.

Representer theorem: proof

Proof: Denote f_s projection of f onto the subspace

$$\operatorname{span}\left\{k(x_{i},\cdot):\ 1\leq i\leq n\right\},$$
(5)

such that

$$f=f_s+f_{\perp},$$

where $f_s = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot)$. Regularizer:

$$\|f\|_{\mathcal{H}}^2 = \|f_s\|_{\mathcal{H}}^2 + \|f_{\perp}\|_{\mathcal{H}}^2 \ge \|f_s\|_{\mathcal{H}}^2,$$

then

$$\Omega\left(\|f\|_{\mathcal{H}}^{2}\right) \geq \Omega\left(\|f_{s}\|_{\mathcal{H}}^{2}\right),$$

so this term is minimized for $f = f_s$.

Representer theorem: proof

Proof (cont.): Individual terms $f(x_i)$ in the loss:

$$f(x_i) = \langle f, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_s + f_{\perp}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_s, k(x_i, \cdot) \rangle_{\mathcal{H}},$$

SO

$$L_y(f(x_1),\ldots,f(x_n))=L_y(f_s(x_1),\ldots,f_s(x_n)).$$

Hence

- Loss *L*(...) only depends on the component of *f* in the data subspace,
- Regularizer $\Omega(\ldots)$ minimized when $f = f_s$.
- If Ω is strictly non-decreasing, then $\|f_{\perp}\|_{\mathcal{H}} = 0$ is required at the minimum.

・ 同 ト ・ ヨ ト ・ ヨ ト

Kernel ridge regression: proof

We *begin* knowing f is a linear combination of feature space mappings of points (representer theorem)

$$f=\sum_{i=1}^n \alpha_i \phi(x_i).$$

Then

$$\sum_{i=1}^{n} (y_i - \langle f, \phi(\mathbf{x}_i) \rangle_{\mathcal{H}})^2 + \lambda \|f\|_{\mathcal{H}}^2 = \|y - K\alpha\|^2 + \lambda \alpha^\top K\alpha$$
$$= y^\top y - 2y^\top K\alpha + \alpha^\top (K^2 + \lambda K) \alpha$$

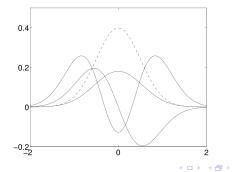
Differentiating wrt α and setting this to zero, we get

$$\alpha^* = (\mathcal{K} + \lambda I_n)^{-1} \mathbf{y}.$$
Recall: $\frac{\partial \alpha^\top U \alpha}{\partial \alpha} = (U + U^\top) \alpha, \qquad \frac{\partial \mathbf{v}^\top \alpha}{\partial \alpha} = \frac{\partial \alpha^\top \mathbf{v}}{\partial \alpha} = \mathbf{v}$

Reminder: smoothness

What does $||a||_{\mathcal{H}}$ have to do with smoothing? Example 1: The Gaussian kernel. Recall

$$f(x) = \sum_{i=1}^{\infty} a_i \sqrt{\lambda_i} e_i(x), \qquad \|f\|_{\mathcal{H}}^2 = \sum_{i=1}^{\infty} a_i^2.$$



Lecture 1: Introduction to RKHS

B b

Reminder: smoothness

What does $||a||_{\mathcal{H}}$ have to do with smoothing? Example 2: The Fourier series representation:

$$f(x) = \sum_{l=-\infty}^{\infty} \hat{f}_l \exp(ilx),$$

and

$$\langle f,g \rangle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} \frac{\hat{f}_l \overline{\hat{g}}_l}{\hat{k}_l}.$$

Thus,

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_l\right|^2}{\hat{k}_l}.$$

▶ ∢ ≣ ▶

Parameter selection for KRR

Given the objective

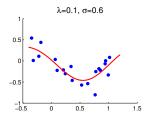
$$f^* = \arg\min_{f\in\mathcal{H}}\left(\sum_{i=1}^n \left(y_i - \langle f, \phi(x_i)
angle_{\mathcal{H}}
ight)^2 + \lambda \|f\|_{\mathcal{H}}^2
ight).$$

How do we choose

- The regularization parameter λ ?
- The kernel parameter: for Gaussian kernel, σ in

$$k(x,y) = \exp\left(\frac{-\|x-y\|^2}{\sigma}\right).$$

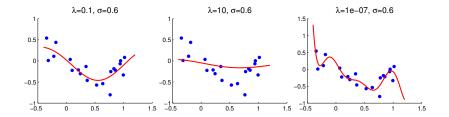
Choice of λ



Lecture 1: Introduction to RKHS

æ

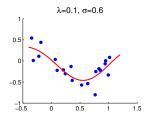
Choice of λ



Lecture 1: Introduction to RKHS

◆□ > ◆□ > ◆豆 > ◆豆 >

Choice of σ

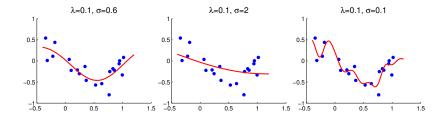


Lecture 1: Introduction to RKHS

<ロ> <同> <同> <同> < 同> < 同> < □> <

글 🕨 🛛 글

Choice of σ



Lecture 1: Introduction to RKHS

・ロト ・日・ ・ ヨト

- ₹ 🖬 🕨

æ

Cross validation

- Split data into training set size $n_{\rm tr}$ and test set size $n_{\rm te} = 1 n_{\rm tr}$.
- Split trainining set into *m* equal chunks of size $n_{val} = n_{tr}/m$. Call these $X_{val,i}$, $Y_{val,i}$ for $i \in \{1, \dots, m\}$
- For each λ, σ pair
 - For each $X_{\text{val},i}, Y_{\text{val},i}$
 - Train ridge regression on remaining trainining set data $X_{
 m tr} \setminus X_{
 m val, i}$ and $Y_{
 m tr} \setminus Y_{
 m val, i}$,
 - Evaluate its error on the validation data $X_{\mathrm{val},i}, Y_{\mathrm{val},i}$
 - Average the errors on the validation sets to get the average validation error for $\lambda,\sigma.$
- Choose λ^*, σ^* with the lowest average validation error
- Measure the performance on the test set $X_{\rm te}, Y_{\rm te}$.