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Observation vs intervention

Conditioning from observation: E[Y|A = a] = Y _ E[Y|a, z]p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.80
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect (intervention): E[Y(%)] = 3 E[Y|a, z]p(z)

From our intervention (making all patients take a treatment):
m P(Y(®ls) = cyred) = 0.64
m P(Y(ueery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the

Counterfactual and Graphical Approaches to Causality 2/56



Questions we will solve

/



Outline

Causal effect estimation, observed covariates:

m Average treatment effect (ATE), conditional average treatment effect
(CATE)

Causal effect estimation, hidden covariates:

m ... proxy variables

What’s new? What is it good for?

m Treatment A, covariates X, etc can be multivariate, complicated...

m ...by using or feature representations
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One model: linear functions of features
All learned functions will take the form:

Yz) =7 pa(z) = (7, pa(x))yy
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One model: linear functions of features

All learned functions will take the form:

7(2) =7 ps(z) = (7, 06(2))y
NN approach: Finite dictionaries of learned neural net features ¢g(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment. (ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental Variable
Regression. (ICLR 21)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation”. (NeurIPS 21)

Kernel approach: Infinite dictionaries of fixed kernel features:

(p(z:), o(2))gy = k(i )

Kernel is feature dot product.

Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response
Curves. (Biometrika, 2023)

Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)

Mastouri*, Zhu*, Gultchin, Korba, Silva, Kusner, G,T Muandet! (2021); Proximal Causal Learning with

Kernels: Two-Stage Estimation and Moment Restriction (ICML21) 5/56



Model fitting: kernel ridge regression

Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

n
¥ = argm1 (Z

1=1

Kernel solution at z
(as weighted sum of y)

= > vibi(z)
=1

B(z) = (Kxx + M) Thxs

(Kxx)ig = k(zi, 7j) = (@(zi), ¢(z5))4,

(kxz); = k(=i z)

2:))30)” + A!HH%)
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Model fitting: kernel ridge regression

Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:
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Observed covariates: (conditional) ATE

Kernel (Biometrika 2023):

NN (ICLR 2023):

ar (1v > ¢s > arXiv:2210.06610

ar (iv > econ > arXiv:2010.04855

Search,

Help | Adv
Economics > Economet)

Computer Science > Machine Learning
[Submited on 10 Oct 2020 1), lat revised 23 Aug 2022 (i vrsion, vo)] Pcbmicted on 12 0ct 2022]

Kernel Methods for Causal Functions: Dose, Heterogeneous,

and Incremental Response Curves

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton

Rahul Singh, Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:
https://github.com/1iyuan9988/DeepFrontBackDoor/

7/56


https://github.com/liyuan9988/DeepFrontBackDoor/

Observed covariates: (conditional) ATE

Kernel features

(in revision, Biometrika):

ar (iv > econ > arXiv:2010.04855

Economics > Econometrics.
[submitted on 10 Oct 2020 (v1), last revised 23 Aug 2022 (thi version, v6)]

Kernel Methods for Causal Functions: Dose, Heterogeneous,
and Incremental Response Curves

Rahul Singh, Liyuan Xu, Arthur Gretton

NN features (ICLR 2023):

ar \/\1V > ¢s > arXiv:2210.06610

Computer Science > Machine Learning
[Submitted on 12 Oct 2022]

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:

https://github.com/1liyuan9988/DeepFrontBackDoor/
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https://github.com/liyuan9988/DeepFrontBackDoor/

Average treatment effect

Potential outcome (intervention):
E[Y()] = /E[Y\a,w]dp(x)

(the average structural function; in epidemiology, for continuous a,

the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y () 1L A|X. (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

m A: treatment (training hours)

m Y: outcome (percentage
employment)

m X: covariates (age, education, @
marital status, ...) @
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

10/56



Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):

¢(z,a) =p(a)®p(z)  K(la,z],[a',2]) = k(a, a')k(z, 2')

10/56



Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:
m covariate features p(z) with
kernel k(z, z') @
m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):
¢(z,a) =p(a)®p(z)  K([a,z][a,2]) = k(a, a')k(z, ')
Ridge regression solution:

Az, a) = viBi(a,2), Bla,z) =[Kaa® Kxx + AI]7" Kaa © Ky,
1=1



ATE (dose-response curve)

Well-specified setting:
E[Y]a,z] =: 10(a, ) = (710, ¥(a) ® (z))
ATE as feature space dot product:

ATE(a) = E[yo(a, X)]

= E [(70, ¢(a) ® p(X))] @
g
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ATE (dose-response curve)
Well-specified setting:

E[Y’a7 ZL’] = 70(0’7 (L‘) = <70: ‘P(a) ® ‘p(m»
ATE as feature space dot product:

ATE(a) = E[yo(a, X)]

el e@ee()]  [(a)
= (70, ¢(a) ®E[§g{/”>

Feature map of probability P(X),

px = Elpi(X)]...]
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ATE: example
US job corps: training for dis-
advantaged youths:

m X: covariate/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (percent
employment) @
Empirical ATE:
ATE(a) = E (%0, o(X) ® p(a))]

1 n
— E ZYT(KAA © Kxx + ’I‘L)\I)_l(KAa ©®© KX&%)
1=1

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study. 12/56

Singh, Xu, G (2022a).



ATE: results
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m First 12.5 weeks of classes confer employment gain: from 35% to 47%.
m [RKHS] is our K’ITE(&).
| Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.
Singh, Xu, G (2022a)
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Conditional average treatment effect

Well-specified setting:

E[Y|a,z,v] =: 70(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @ @
CATE(CL, ’U) /

=E[Y@|V = v
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Conditional average treatment effect

Well-specified setting:

E[Y|a,z,v] =: 70(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @
CATE(a, v)

=E[Y@|V = v
=E[{70,0(a) ® p(X) @ o(V)) |V = 1]
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Conditional average treatment effect

Well-specified setting:

E[Y]a,z,v] = 7(a,z,v)
= (70, p(a) ® (z) ® (v)) .

Conditional ATE @
CATE(a, v)

=E[Y|V = v

=E[{70,p(a) ® p(X)® p(V)) |V = v]
=..7

How to take conditional expectation?

Density estimation for p(X|V = v)? Sample from p(X|V = v)?
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Conditional average treatment effect

Well-specified setting:

E[Y]a,z,v] = 7(a,z,v)
= (70, p(a) ® (z) ® (v)) .

Conditional ATE @ @
CATE( a, ’U) /

=E[Y|V = v

=E[{70,p(a) ® p(X)® p(V)) |V = v]
= (70, 9(a) ® E[p(X)|V = v] ® p(v))
KX | V=0

Learn conditional mean embedding: ux|v—, := Ex [@(X)|V = ]
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Regressing from feature space to feature space

Our goal: an operator 7y : Hy —Hx such that

Fop(v) = px|v—y

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.

Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning 15/56
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Fop(v) = px|v—y

Assume

Fy € span{p(z) ® p(v)} < Fy € HS(Hy, Hx)
Implied smoothness assumption:
Eh(X)|V =v]€Hy VheHy

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
I = argmin ) [lo(ze) — Fp(ve)llg,, + Al 7 s
FEHS ;=4
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Regressing from feature space to feature space
Our goal: an operator : Hy —Hx such that

o(v) = px|v—v

Assume

€ span{p(z) ® p(v)} <= € HS(Hy, Hx)
Implied smoothness assumption:
Er(X)|V =v]€Hy VhEHx
Kernel ridge regression from ¢(v) to infinite features ¢(z):
- argergénlzl lo(ze) = Fp(ue)ll3,, + Al 7 lIs
Ridge regression solution:

px|v—y = Elp(X)|V = v] ~ = o(ze)Be(v
=

1
B(v) = [Kvv + A1) ks 15/56



Conditional ATE: example

US job corps:
m X: confounder/context
(education, marital
status, ...)

m A: treatment (training
hours)

m Y: outcome (percent @ @
employed)
m V: age

Empirical CATE:
CATE(a,v) = (J0,0(a) ® Fo(v) & p(v))

(with consistency guarantees: see paper!)

Singh, Xu, G (2022a) 16/56



Conditional ATE: results

24

221
9201 <
48.0 AL
1813
16 ' 49.0 36.0 ——]
500 1000 1500
Class-hours

Average percentage employment Y () for class hours a, conditioned
on age v. Given around 12-14 weeks of classes:

m 16 y/o: employment increases from 28% to at most 36%.

m 22 y/o: percent employment increases from 40% to 56%.
Singh, Xu, G (2022a)
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...dynamic treatment effect...

Dynamic treatment effect: sequence A;, A; of treatments.

m potential outcomes Y(a) y(a) y(a,0)
m counterfactuals E [Y(ai’“é)ml =a, Ay = ag]
(c.f. the Robins G-formula)

Singh, Xu, G. (2022b) Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
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What if there are hidden confounders?
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Reminder: observation vs intervention

Average causal effect (intervention): E[Y(%)] = >ecfoa} E[Y]a, z]p(z)

From our wntervention (making all patients take a treatment):
n P(Y(®ls) = cured) = 0.64
m P(Y(ueery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the 20/56
Counterfactual and Graphical Approaches to Causality



We observe symptom 7, not disease X

"
p——
or

jiiiL

m P(Z = fever|X = mild) =0.2
m P(Z = fever| X = severe) = 0.8
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We observe symptom 7, not disease X

m P(Z = fever|X = mild) = 0.2
m P(Z = fever|X = severe) = 0.8

Could we just write: P(Y (%)) L 2 ze{0,1} E[Y]a, z]p(2)

21/56



We observe symptom 7, not disease X

o
£

Results are very bad:
E 226{0,1} E[cured|pills, z]p(z) = 0.8 (# 0.64)
E Zze{o,l} [E[cured|surgery, z]p(z) = 0.73  (# 0.75)

Correct answer impossible without observing X

21/56
Pearl (2010), On Measurement Bias in Causal Inference



Outline

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

What'’s new? What is it good for?

m Treatment A, proxy variables, etc can be multivariate, complicated...

® ...by using or feature representations
m Don’t meet-your-herees model your hidden variables!
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Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: underlying illness
severity

m A: treatment

® Y: outcome

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmea%l}rseéi
confounder.



Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: underlying illness
severity

m A: treatment
® Y: outcome

m Z: symptoms

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
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Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: underlying illness
severity

A: treatment

® Y: outcome

Z: symptoms

W: age

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
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Proxy variables: health example

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: underlying illness
severity

A: treatment

Y. outcome

Z: symptoms

W age

— Can recover E( Y (%) from observational data!

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
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Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment -
m Y: outcome @4—")-()4----->
m 7: treatment proxy *“
m W outcome proxy %
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Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment -
m Y: outcome @4—")-()4----->
m 7: treatment proxy *“
m W outcome proxy %

O ®

Structural assumptions:

Y 1 Z|(4, X)

24/56



Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

If X were observed,

de
P(Y@):=3" P(Y|z;, a)P(z;)
dyx1 =1
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Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

If X were observed,

dy
P(Y®):=5" P(Y|z;, a)P(z;) = P(Y|X,a)P(X)

N—— i=1
dyXl dy)(dz dz><1
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Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

O—0O

If X were observed,
dz

P(Y@):=3" P(Y|z;, a)P(z;) = P(Y|X,a)P(X)

—— —
dyx1 =1 dyxds  dox1

Goal: “get rid of the blue” X
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..add the outcome proxy W

The definitions are:

m X: unobserved confounder.
m A: treatment

B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y|X,a) =
————

dy X dg

Hy,o P(W]X)
N ——
dyxdw dedz

AV
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..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P( }’\}(, a) = Hy,q f’(lﬂf\)()
———— —— ————
dyx dy dyxdy dwXds

P(Y®) = P(Y|X,a)P(X)
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..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y\X, a) = Hw,aP(W\X)
———— —— ————
dyx dy dyxdy dwXds

P(Y®) = P(Y|X,a)P(X)
= Hy, . P(W|X)P(X)
= Hw,aP( W) 26/56



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a) = Hy, P(W|X)
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz
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...now project onto p(X|Z, a)

From last slide,
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)

27/56



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dLXdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)

Solve for Hy 4:
P(Y|Z,a) = Hy,
Everything observed!
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Proxy/Negative Control Methods
in the Real World
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Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):

Searcn
Help | Advan{
Computer Science > Machine Learning

arXiv.org > ¢s > arXiv:2106.03907
[submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (his version, va)]

Searn
Help | Advand
Computer Science > Machine Learning
imal C. | N ith ! s [submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 this version, v2)]
:r(:')um: aus:h:.earm:% WIt" f’erne s: Two-Stage Deep Proxy Causal Learning and its Application to
stimation and Moment Restriction Confounded Bandit Policy Evaluation
Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

2
)

Code for NN and kernel proxy methods:

B
W

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ ,4/s6


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Searn
Help | Advan{

Computer Science > Machine Learning

[Submited on 10 May 2021 v, fast revised 3 Oct 2021 (i vrsion, v

Proximal Causal Learning with Kernels: Two-Stage

Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Search,

Help | Advar
Computer Science > Machine Learning
[Submitted on 7 Jun 2021 (v1), las revised 7 Dec 2021 (thi version, v2)]

Deep Proxy Causal Learning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

Code for NN and kernel proxy methods:

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ ;456


https://github.com/liyuan9988/DeepFeatureProxyVariable/

One model: linear functions of features
All learned functions will take the form:

Yz) =7 pa(z) = (7, pa(x))yy
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One model: linear functions of features

All learned functions will take the form:

7(2) =7 ps(z) = (7, 06(2))y
NN approach: Finite dictionaries of learned neural net features ¢g(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment. (ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental Variable
Regression. (ICLR 21)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation”. (NeurIPS 21)

Kernel approach: Infinite dictionaries of fixed kernel features:

(p(z:), o(2))gy = k(i )

Kernel is feature dot product.

Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response
Curves. (Biometrika, 2023)

Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)

Mastouri*, Zhu*, Gultchin, Korba, Silva, Kusner, G,T Muandet! (2021); Proximal Causal Learning with

Kernels: Two-Stage Estimation and Moment Restriction (ICML21) 31/56



Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢s(z;) with outcomes v;:

n

7 = argmin (Z (7, 9o(2i)) 3 )2+>\H”YH%> (1)

1=1
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Model fitting: neural ridge regression
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Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢s(z;) with outcomes v;:

7 = argmin (Z (7, po(zi)) )2+>\H”YH%> (1)

1=1

Solution for linear final layer +:

7= CYH(CiE + 0
1 n
Cyx = — > [ pala) ]
1=1
1 n
Cicx = — D _lpelai) po(i)]
1=1

How to solve for 6:
Substitute 4 into (1), backprop through Cholesky for 6. 52/56



Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢s(z;) with outcomes v;:

n

7 = argmin (Z (7, 04 ( :rz)>H)2+/\HvH%> (1)

1=1

—— joint
linear + cholesky

Solution for linear final layer +:

= cfe + )

9 1 glo
Cgf))( = Z[% vo(z:) ']
C(e) _ = T
XX — Z [po(2:) po(z:) ] e T TN e
1=1 nEpochs

MNIST, 4 layer FF, sigmoid, fully connected
How to solve for 6:

Substitute 4 into (1), backprop through Cholesky for 6. 52/56



Proxy methods, general domains

If X were observed, we would write (average treatment effect)

E(Y(2) :/E(Y\a,x)p(w)dw.

....but we do not observe X.
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Proxy methods, general domains

If X were observed, we would write (average treatment effect)
R(Y() = / E(Y|a,z)p(z)dz.

....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y\a,z):/why(w,a)p(wm,z)dw

m “Primary task” E(Y|a, z), “auxiliary task” p( 1V |a, z), linked by h,
m All variables observed, X not seen or modeled.

(Fredholm equation of first kind: existence of solution requires identifiability condi‘cioaliss/)56
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Proxy methods, general domains

If X were observed, we would write (average treatment effect)

= / E(Y|a,z)p(z)dz
...but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y\a,z):/why(w,a)p(wm,z)dw

m “Primary task” E(Y|a, z), “auxiliary task” p( 1V |a, z), linked by h,
m All variables observed, X not seen or modeled.

Average treatment effect via p(w

E(Y (%) /h a, w)p(w)dw

Challenge: need to parametrize and solve for A,

(Fredholm equation of first kind: existence of solution requires identifiability condi‘cioaliss/)56



Link function NN parametrization
The link function is a function of two

arguments ..
' X "14 EEEE o
hy(a,w) = 7" [pe(w) ® pe(a)]
Assume we have:
m output proxy NN features pg(w)
A >
m treatment NN features ¢:(a) @

m linear final layer

(argument of feature map indicates feature space)
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Link function NN parametrization
The link function is a function of two

arguments ..
' X "14 EEEE o
hy(a,w) = 7" [pe(w) ® pe(a)]
Assume we have:
m output proxy NN features pg(w)
A >
m treatment NN features ¢:(a) @

m linear final layer
(argument of feature map indicates feature space)
Questions:

m Why feature map s(w) ® p¢(a)?

m Why final linear layer 7

Both are necessary (next slides)!

34/56



Ridge regression for h,(w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p( W |a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y

Why?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).

35/56



Ridge regression for h,(w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p( W |a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y
Why?
f*(a,z) =E(Y|a, z) solves
argmin Ev 47 (Y — f(4, 2))°
f

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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Ridge regression for h,(w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p( W |a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y
Why?
f*(a,z) =E(Y|a, z) solves
argmin Ev 47 (Y — f(4, 2))°
f

...and by the proxy model above,
f*(a,z) =E(Y]a,z) = Ew|a,-hy(W, a)
Deaner (2021).

Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021). 35/56



NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021).
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NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y

How to get conditional expectation [y, .hy( 1V, a)?
Density estimation for p( 1V |a, z)? Sample from p( 1V |a, 2)?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 36/56



NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y

Recall link function

hy(17,a) = 7" (ps(17) ® pe(a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).

36/56



NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: proxy loss

~

2

hy = argminEy,az (Y = By sy (17, 4)) + Kl
Y

Recall link function

Foahy(Wya) =T |17 (pe(17) @ pe(a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021).
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NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: proxy loss

~

2
hy, = arg n}LinEy,A,z (Y —Ewa,zhy(W, A)) + Aol [P
Y
Recall link function
B hy(W, ) = B |17 (ps(17) @ e (a))]

=17 (Lo [l M) @ pila)
N——— —
cond. feat. mean

(this is why linear 7y and feature map po(w) ® ¢¢(a))

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 36/56
Xu, Kanagawa, G. (2021).



NN ridge regression for A, (w, a)

Goal:
E(Y]a, Z):/ hy (W, a)p(W|a, Z)dw
w

Ridge regression solution: proxy loss

~

h, = arg H}LiynEY,A,Z (Y — Ewazhy(W, A))2 + Aol [P

Recall link function

Foahy(Wya) =T |17 (pe(17) @ pe(a))]
=77 (Fw o Tos(1)] ® 92(a))

cond. feat. mean

Ridge regression (again!)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for A, (w, a)

Primary regression: learn NN features ps( 1), p¢(A) and linear layer
v to obtain Y with RR loss:

2
Ey,az (Y =77 (B oz 0a(1)] ® 0e(4))) + Aol
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learn NN features ¢/(Z) and linear layer

we( W) = Forpc(a,z)
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v to obtain Y with RR loss:

Evaz(Y =2 (B lpe(7)) @ 0e(4)) + el
learn NN features ¢/(Z) and linear layer
wo(IV) = Focpc(a,2)
with RR loss
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2
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NN ridge regression for h,(w, a)

Primary regression: learn NN features ps( 1), p¢(A) and linear layer
v to obtain Y with RR loss:

2
Ey,az (Y =77 ( lps ()] @ 0e(A)))” + Aallnl?
learn NN features ¢/(Z) and linear layer

we( W) = Forpc(a,z)
with RR loss

Ew,a,z loe( W) = Foc (A, Z)1* + Ml 7|12
Challenge: how to learn 67

From Stage 2 regression?
...which requires wo( V) from regression
...which requires @y( W)... which requires 6...

Use the linear final layers! (ie. y and F)

37/56



Learning the auxiliary task

learn NN features ¢(Z) and linear layer

wo( V) = Forpc(a,z)
with RR loss

Ew,azl0e( W) — Foc (A, Z)|1 + A 7|12

38/56



Learning the auxiliary task

learn NN features ¢(Z) and linear layer
po( V) = Focpc(a,z)
with RR loss
Ew,a,z loe( W) — Foc (4, Z)1* + Ml 7|1
9,0 in closed form wrt ¢g, ¢::
6 _ 6
o0 = Cyyuz(Chg + D)™ Ciphy = Elps(W)g] (4, 2)
cl) = Elg.(4,2)¢ (4, 2)

Plug /4 into 51 loss, take gradient steps for ( (...but not 6...)

38/56



Final algorithm

Primary regression:

Evaz (Y =7 (s los(W)) @ pe(4))) + Aalla]?

39/56
Xu, Kanagawa, G. (2021).
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Final algorithm

Primary regression:

2
Ev,az (Y =77 (5w 2z 0a(1)] @ 0e(4))) + Aol
Auxiliary regression: NN params ( and ﬁg,gz

F a2 loa(W)) & Fo ¢ (A, Z)

Solution procedure: for 7,6, ¢:
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Final algorithm

Primary regression:
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Final algorithm

Primary regression:

2
Eyoaz (Y =" (B2 o)) ® 0:(4))) + Aol
Auxiliary regression: NN params ( and Fg,gz

Evazlpe(W)] ~ Fo ¢ (A, Z)
Solution procedure: for 7,6, ¢:

m Get 4 in closed form as function of 7y ¢. (4, Z) and p(A)
m Substitute 4 into Stage 2, gradient steps on 4, ¢
® [y, remains optimal wrt current .

39/56
Xu, Kanagawa, G. (2021).



Final algorithm

Primary regression:

2
Eyoaz (Y =" (B2 o)) ® 0:(4))) + Aol
Auxiliary regression: NN params ( and Fg,gz

Evazlpe(W)] ~ Fo ¢ (A, Z)
Solution procedure: for 7,0, ¢:

m Get 4 in closed form as function of 7y ¢. (4, Z) and p(A)
m Substitute 4 into Stage 2, gradient steps on 4, ¢

® [y, remains optimal wrt current .

® Iterate between 6, ¢ and ¢

39/56
Xu, Kanagawa, G. (2021).



Final algorithm

Primary regression:

2
Eyaz (Y =77 ( oo (17)] ® pe(4)))” + Aall]?
NN params ¢ and g :
[e(W)] ~ o0 (A, Z)
Solution procedure: for 7,0, ¢:

m Get 4 in closed form as function of /¢ ;¢ (A, Z) and p¢(A)
m Substitute 4 into Stage 2, gradient steps on 4, ¢
¢,c remains optimal wrt current 5.
Iterate between 6, ¢ and

Key point: features @s( W) learned specially for primary task:

E(Y]a, Z) :/why(W, a) dw

Contrast with autoencoders/sampling: must reconstruct/sample all of W.

39 /586

Xu, Kanagawa, G. (2021).




Experiments
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Synthetic experiment, adaptive neural net features

dSprite example:

B X = {scale,rotation, posX,posY} =

B Treatment A is the image generated (with
Gaussian noise)

N
o

B Outcome Y is quadratic function of A with

Algorithm
KPV
multiplicative confounding by posY.

£ PMMR
10 CEVAE

1000 5000
Data Size

B Z = {scale,rotation, posX},
W = noisy image sharing posY

m Comparison with CEVAE (Lougios et al.

2017)

Out-of-Sample MSE

0

20

40

60
0 25 50

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variable41/56
Models (2017)




Confounded offline policy evaluation

Synthetic dataset, demand prediction

for flight purchase. 1ol T - -
m Treatment A is ticket price. N ?
o
m Policy A ~ m(Z) depends on fuel 5 ,
. o Algorithm
price. £ 1 - Flme
2 & DFPV
=}
Q
<
0.1
1500 7500
Data Size
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Conclusion
Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y
We need to observe:

m Treatment proxy Z (interacts

with A, but not directly with Y')

m Outcome proxy W (no direct
interaction with A, can affect Y')

43/56


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Conclusion

Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y

We need to observe:

\
r

m Treatment proxy Z (interacts
with A, but not directly with Y')

m Outcome proxy W (no direct
interaction with A, can affect Y')

i

0z

Key messages: £

m Don't meet-your-herees model/sample latents X

m Don’t model all of W, only relevant features for Y

m “Ridge regression is all you need”
Code available:
https://github.com/1iyuan9988/DeepFeatureProxyVariable/
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Questions?
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Web ads example

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

e: “interest in cycling”

'A: blke ad on browser Visited bike website Interest in cycling Gym member
o= °
. TIREIC ’ W
Y': purchase e e (2 L E ) @ \&
Z: visit to bike website -
—> cookies

Viewed ad Bike purchase
W membership of gym 9 @ @ é

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a /p yla,€)p

...but we do not observe ¢.
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Main theorem: Assume we solved:
plyla,2) = [ hy(w,a) du

Both p(y|a, z) and are in terms of observed quantities.
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Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a /p yla,€)p

...but we do not observe ¢.

Main theorem: Assume we solved:
plyla,2) = [ hy(w,a)p(wla, 2)du

Both p(y|a, z) and p(w|a, z) are in terms of observed quantities.

Average treatment effect via p(w):
= / hy(a, w)p(w)dw

47/56



Proof (1)

Because €, we have
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Proof (1)

Because €, we have

:/ € p(5|a,Z)d€ <—-:r:_)<-.....>

Because Y 1L Z|(A,¢) we have @—>@

p(vla,2) = [ p(vla,e)p(ela, 2)de

48/56



Given the solution h, to:

p(vla,2) = [ hy(w, a)p(w|a, 2)du

(well defined under identifiability conditions for Fredholm equation of first kind)
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Given the solution h, to:

p(vla,2) = [ hy(w, a)p(w|a, 2)du

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/p (y|a,e)p(e|a, 2) ds—/h (w, a)/p(w\e)p(e|a,z)dedw
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Proof (3)

Given the solution h, to:

p(vla,2) = [ hy(w,a) du

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/p(y|a,6)p(€|a,z)ds = /hy(w,a)/ e)p(ela, z)dedw

This implies:
p(y\a,s) :/hy(w,a) €)dw

under identifiability condition

E[f(e)|JA=a,Z =2z] =0, V(z,a) < f(e) =0, Pga=gas. (4Q)

49/56



Proof (4)

From last slide,

p(vla,e) = [ hy(w, a)p(ule)du
Thus

p(y|do(a)) = / p(yla,e)p(e) du
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Proof (4)

From last slide,

Thus
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Proof (4)

From last slide,

Thus
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How not to do 25LS for proxy methods
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Feature implementation

Stage 2: minimize
2
hy, = argmin By, (v= (Poiw o ®9(a))) + Xallnll3,
which is conditional feature mean implementation of

p(y|a, 2) :/hy(w, a)p(w|a, z)dw

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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Feature implementation
Stage 2: minimize
. = argmin By,ae (v = (B @ 9(a))) + dalll
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )plula,2)dw
Stage 1: ridge regression
= arg min Byq .z [|¢(w) - /[4(a) ® $(2)]I134y,, + Al I

which gives us

= . [¢(a) ® ¢(2)]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 52/56
Xu, Kanagawa, G. (2021).



Feature implementation

Stage 2: minimize
. = argmin By,ae (v = (B @ 9(a))) + dalll
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )plula,2)dw
Stage 1: ridge regression
= arg min Byq .z [|¢(w) - /[4(a) ® $(2)]113, + Al 7l s

which gives us
= . [¢(a) ® ¢(2)]

Average treatment effect estimate:

Ey(yldo(a)) = (. ¢(a) ® pw),
where py = Ew¢(W)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 52/56
Xu, Kanagawa, G. (2021).



How not to do it
Stage 2: minimize
hy, = arg%i'}.{lEy'a’z (y - <h, >)2 + Aol B3,
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )p(ula,2)dw
Stage 1: ridge regression
= argminBy q . |4(w) ® ¢(a) — F[¢(a) ® $(2)]l3s,, + Ml 71 s

which gives us

= 1. [¢(a) ® ¢(2)]
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How not to do it

Stage 2: minimize
hy, = argﬁiql.{lEy'a’z (y - <h, >)2 + Aol B3,
which is conditional feature mean implementation of
p(vle,z) = [ hulw, )p(ula,2)dw
Stage 1: ridge regression
= argminBy q . |4(w) ® ¢(a) — F[¢(a) ® $(2)]l3s,, + Ml 71 s

which gives us
= . [¢(a) ® ¢(2)]
Problem: ridge regressing from ¢(a) to ¢(a).
Theoretical issue: 73, is not Hilbert-Schmidt so consistency of /' not
established.

53/56



Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5
Stage 1:
a ~ N(0,0?).
Stage 2:
a ~U[-3,3].
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5 .
10 . | Stage 1:
g 0.5 a ~N(0,0%).
'g 0 Stage 2:
o
g-05 a ~U[-3,3].
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

1.5
Stage 1:
a ~ N(0,0?).
Stage 2:
—wrong a~U[-3,3].
== correct | -
* data
-1.5 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3
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Failures of identifiability assumptions (1)

Recall (one of the) identifiability assumptions:
E[f(e)]A=a,Z =2]=0, Pga—qas. < f(e) =0, Pja—gas. (4)

For conciseness, assume conditioning on some a.

Failure 1: Z 1L € (no information about € in proxy)

g(e) = §(e) — Ecgle)
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Failures of identifiability assumptions (2)
Failure 2: “exploitable invariance” of p(e|z)
e ~N(0,1),
= le[ + N (0,1),

where p(e|z) «x p(z|e)p(e) symmetric in . Consider square integrable
antisymmetric function g(e) = —g(—¢). Then

| s@pelde

_/ p(e|z) ds+/ g(e)p(e|z)de

If distribution of €| Z retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(e) with
zero mean on this class.
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