Kernel exponential families

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Advanced topics in ML, 2017

Outline

Motivating application:

■ Fast estimation of complex multivariate densities

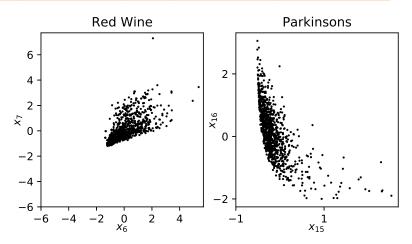
The infinite exponential family:

- Multivariate Gaussian → Gaussian process
- $lue{}$ Finite mixture model ightarrow Dirichlet process mixture model
- Finite exponential family \rightarrow ???

In this talk:

- Guaranteed speed improvements by Nystrom
- Conditional models
- Adaptive Hamiltonian Markov chain Monte Carlo

Goal 1 learn high dimensional, complex densities



We want:

- Efficient computation and representation
- Statistical guarantees

The (infinite) exponential family

[Sriperumbudur, Fukumizu, G., Hyvarinen, Kumar (2017)]

The exponential family

The exponential family in in \mathbb{R}^d

$$p(x) = \exp \left(\left\langle \begin{array}{c} \underline{\eta} & , & \underline{T(x)} \\ \mathrm{natural} & \mathrm{sufficient} & \mathrm{log} \\ \mathrm{parameter} & \mathrm{startistic} & \mathrm{normaliser} \end{array} \right) \quad \underbrace{q_0(x)}_{\mathrm{base}}$$

Examples:

- Gaussian density: $T(x) = \begin{bmatrix} x & x^2 \end{bmatrix}$
- lacksquare Gamma density: $T(x) = \left[egin{array}{ccc} \ln x & x \end{array}
 ight]$

Can we extend this to infinite dimensions?

The kernel exponential family

Kernel exponential families [Canu and Smola (2006), Fukumizu (2009)] and their GP counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

$$\mathcal{P} = \left\{ p_f(x) = e^{\langle f, arphi(x)
angle_{\mathcal{H}} - A(f)} \, q_0(x), \, \, x \in \Omega, f \in \mathcal{F}
ight\}$$

where

$$\mathcal{F} = \left\{ f \in \mathcal{H} \ : \ A(f) = \log \int e^{f(x)} q_0(x) \, dx < \infty
ight\}$$

The kernel exponential family

Kernel exponential families [Canu and Smola (2006), Fukumizu (2009)] and their GP counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

$$\mathcal{P}=\left\{p_f(x)=e^{\langle f,arphi(x)
angle_{\mathcal{H}}-A(f)}\,q_0(x),\,\,x\in\Omega,f\in\mathcal{F}
ight\}$$

where

$$\mathcal{F} = \left\{ f \in \mathcal{H} \ : \ A(f) = \log \int e^{f(x)} q_0(x) \ dx < \infty
ight\}$$

Finite dimensional RKHS: one-to-one correspondence between finite dimensional exponential family and RKHS.

lacksquare Example: Gaussian kernel, $T(x) = \left[egin{array}{cc} x & x^2 \end{array}
ight] = arphi(x)$ and $k(x,y) = xy + x^2y^2$

Fitting an infinite dimensional exponential family

Given random samples, X_1, \ldots, X_n drawn i.i.d. from an unknown density, $p_0 := p_{f_0} \in \mathcal{P}$, estimate p_0

How not to do it: maximum likelihood

Maximum likelihood:

$$egin{aligned} f_{ML} &= rg \max_{f \in \mathcal{F}} \sum_{i=1}^n \log p_f(X_i) \ &= rg \max_{f \in \mathcal{F}} \sum_{i=1}^n f(X_i) - n \log \int e^{f(x)} q_0(x) \ dx. \end{aligned}$$

Solving the above yields that f_{ML} satisfies

$$rac{1}{n}\sum_{i=1}^n arphi(x_i) = \int arphi(x) p_{f_{ML}}(x) \ dx$$

where
$$p_{f_{ML}}=rac{d\mathbb{P}_{ ext{ML}}}{dx}.$$

Can this be solved?

How not to do it: maximum likelihood

■ Finite dimensional case: Normal distribution $\mathcal{N}(\mu, \sigma)$

$$k(\cdot,x) = egin{bmatrix} x & x^2 \end{bmatrix}^ op$$

■ Max. likelihood equations give

$$rac{1}{n}\sum_{i=1}^{n}egin{bmatrix}x_i & x_i^2\end{bmatrix}^ op = \integin{bmatrix}x & x^2\end{bmatrix}^ op p_{f_{ML}}(x)\,dx = egin{bmatrix}\mu_{ML} & (\sigma_{ML}^2 + \mu_{ML}^2)\end{bmatrix}^ op$$

System of likelihood equations: solvable.

How not to do it: maximum likelihood

■ Finite dimensional case: Normal distribution $\mathcal{N}(\mu, \sigma)$

$$k(\cdot,x) = egin{bmatrix} x & x^2 \end{bmatrix}^ op$$

■ Max. likelihood equations give

$$rac{1}{n}\sum_{i=1}^{n}egin{bmatrix}x_i & x_i^2\end{bmatrix}^ op = \integin{bmatrix}x & x^2\end{bmatrix}^ op p_{f_{ML}}(x)\,dx = egin{bmatrix}\mu_{ML} & (\sigma_{ML}^2 + \mu_{ML}^2)\end{bmatrix}^ op$$

- System of likelihood equations: solvable.
- Infinite dimensional case, characteristic kernel: ill-posed! [Fukumizu (2009)]

Score matching

Journal of Machine Learning Research 6 (2005) 695-708

Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models by Score Matching

Aapo Hyvärinen

AAPO.HYVARINEN@HELSINKI.FI

Helsinki Institute for Information Technology (BRU)

Department of Computer Science FIN-00014 University of Helsinki, Finland

Editor: Peter Dayan

Loss is Fisher Score:

$$D_F(p_0,p_f) := rac{1}{2} \int p_0(x) \left\|
abla_x \log p_0(x) -
abla_x \log p_f(x)
ight\|^2 \ dx$$

$$egin{split} D_F(p_0,p_f) \ &= rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_0(x)}{dx} - rac{d \log p_f(x)}{dx}
ight)^2 dx \end{split}$$

$$egin{aligned} D_F(p_0,p_f) \ &= rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_0(x)}{dx} - rac{d \log p_f(x)}{dx}
ight)^2 dx \ &= rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_0(x)}{dx}
ight)^2 dx + rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight)^2 dx \ &- \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{d \log p_0(x)}{dx}
ight) \left(rac{d \log p_0(x)}{dx}
ight) dx \end{aligned}$$

$$egin{aligned} D_F(p_0,p_f) \ &=rac{1}{2}\int_a^b p_0(x) \left(rac{d\log p_0(x)}{dx} - rac{d\log p_f(x)}{dx}
ight)^2 dx \ &=rac{1}{2}\int_a^b p_0(x) \left(rac{d\log p_0(x)}{dx}
ight)^2 dx + rac{1}{2}\int_a^b p_0(x) \left(rac{d\log p_f(x)}{dx}
ight)^2 dx \ &-\int_a^b p_0(x) \left(rac{d\log p_f(x)}{dx}
ight) \left(rac{d\log p_f(x)}{dx}
ight) \left(rac{d\log p_0(x)}{dx}
ight) dx \end{aligned}$$

Final term:

$$\begin{split} & \int_a^b p_0(x) \left(\frac{d \log p_f(x)}{dx} \right) \left(\frac{d \log p_0(x)}{dx} \right) dx \\ & = \int_a^b p_0(x) \left(\frac{d \log p_f(x)}{dx} \right) \left(\frac{1}{p_0(x)} \frac{dp_0(x)}{dx} \right) dx \\ & = \left[\left(\frac{d \log p_f(x)}{dx} \right) p_0(x) \right]_a^b - \int_a^b p_0(x) \frac{d^2 \log p_f(x)}{dx^2} \end{split}$$

$$egin{aligned} D_F(p_0,p_f) \ &=rac{1}{2}\int_a^b p_0(x) \left(rac{d\log p_0(x)}{dx} - rac{d\log p_f(x)}{dx}
ight)^2 dx \ &=rac{1}{2}\int_a^b p_0(x) \left(rac{d\log p_0(x)}{dx}
ight)^2 dx + rac{1}{2}\int_a^b p_0(x) \left(rac{d\log p_f(x)}{dx}
ight)^2 dx \ &-\int_a^b p_0(x) \left(rac{d\log p_f(x)}{dx}
ight) \left(rac{d\log p_f(x)}{dx}
ight) \left(rac{d\log p_0(x)}{dx}
ight) dx \end{aligned}$$

Final term:

$$egin{aligned} & \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{d \log p_0(x)}{dx}
ight) dx \ & = \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{1}{p_0(x)}rac{dp_0(x)}{dx}
ight) dx \ & = \left[\left(rac{d \log p_f(x)}{dx}
ight) p_0(x)
ight]_a^b - \int_a^b p_0(x) rac{d^2 \log p_f(x)}{dx^2} \end{aligned}$$

$$egin{aligned} D_F(p_0,p_f) \ &= rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_0(x)}{dx} - rac{d \log p_f(x)}{dx}
ight)^2 dx \ &= rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_0(x)}{dx}
ight)^2 dx + rac{1}{2} \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight)^2 dx \ &- \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{d \log p_0(x)}{dx}
ight) dx \end{aligned}$$

Final term:

$$egin{aligned} &\int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{d \log p_0(x)}{dx}
ight) dx \ &= \int_a^b p_0(x) \left(rac{d \log p_f(x)}{dx}
ight) \left(rac{1}{p_0(x)}rac{dp_0(x)}{dx}
ight) dx \ &= \left[\left(rac{d \log p_f(x)}{dx}
ight) p_0(x)
ight]^b - \int_a^b p_0(x) rac{d^2 \log p_f(x)}{dx^2}. \end{aligned}$$

11/46

Empirical score matching

 p_n represents n i.i.d. samples from P_0

$$D_F(\pmb{p_n},\pmb{p_f}) := rac{1}{n} \sum_{a=1}^n \sum_{i=1}^d \left(rac{1}{2} \left(rac{\partial \log p_f(X_a)}{\partial x_i}
ight)^2 + rac{\partial^2 \log p_f(X_a)}{\partial x_i^2}
ight) + C$$

Since $D_F(p_n, p_f)$ is independent of A(f),

$$f_n^* = rg\min_{f \in \mathcal{F}} D_F(p_n, p_f)$$

should be easily computable, unlike the MLE.

Empirical score matching

 p_n represents n i.i.d. samples from P_0

$$D_F(\pmb{p_n},\pmb{p_f}) := rac{1}{n} \sum_{a=1}^n \sum_{i=1}^d \left(rac{1}{2} \left(rac{\partial \log p_f(X_a)}{\partial x_i}
ight)^2 + rac{\partial^2 \log p_f(X_a)}{\partial x_i^2}
ight) + C$$

Since $D_F(p_n, p_f)$ is independent of A(f),

$$f_n^* = rg \min_{f \in \mathcal{F}} D_F(p_n, p_f)$$

should be easily computable, unlike the MLE.

Add extra term $\lambda ||f||_{\mathcal{H}}^2$ to regularize.

A kernel solution

Infinite exponential family:

$$p_f(x) = e^{\langle f, arphi(x)
angle_{\mathcal{H}} - A(f)} q_0(x)$$

Thus

$$rac{\partial}{\partial x}\log p_f(x) = rac{\partial}{\partial x} \left\langle f, arphi(x)
ight
angle_{\mathcal{H}} + rac{\partial}{\partial x}\log q_0(x).$$

A kernel solution

Infinite exponential family:

$$p_f(x) = e^{\langle f, arphi(x)
angle_{\mathcal{H}} - A(f)} q_0(x)$$

Thus

$$rac{\partial}{\partial x}\log p_f(x) = rac{\partial}{\partial x} \left\langle f, arphi(x)
ight
angle_{\mathcal{H}} + rac{\partial}{\partial x} \log q_0(x).$$

Kernel trick for derivatives:

$$rac{\partial}{\partial x_i}f(X) = \left\langle f, rac{\partial}{\partial x_i}arphi(X)
ight
angle_{\mathcal{H}}$$

Dot product between feature derivatives:

$$\left\langle rac{\partial}{\partial x_i} arphi(X), rac{\partial}{\partial x_j} arphi(X')
ight
angle_{\mathcal{H}} = rac{\partial^2}{\partial x_i \partial x_{d+j}} k(X, X')$$

A kernel solution

Infinite exponential family:

$$p_f(x) = e^{\langle f, arphi(x)
angle_{\mathcal{H}} - A(f)} \, q_0(x)$$

Thus

$$rac{\partial}{\partial x}\log p_f(x) = rac{\partial}{\partial x} \left\langle f, arphi(x)
ight
angle_{\mathcal{H}} + rac{\partial}{\partial x} \log q_0(x).$$

Kernel trick for derivatives:

$$rac{\partial}{\partial x_i}f(X) = \left\langle f, rac{\partial}{\partial x_i}arphi(X)
ight
angle_{\mathcal{H}}$$

Dot product between feature derivatives:

$$\left\langle rac{\partial}{\partial x_i} arphi(X), rac{\partial}{\partial x_j} arphi(X')
ight
angle_{\mathcal{H}} = rac{\partial^2}{\partial x_i \partial x_{d+j}} k(X, X')$$

By representer theorem:

$$f_n^* = lpha \hat{\xi} + \sum_{\ell=1}^n \sum_{j=1}^d eta_{\ell j} rac{\partial arphi(X_\ell)}{\partial x_j}$$

An RKHS solution

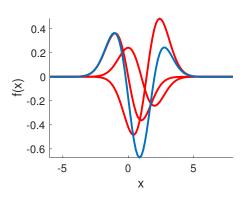
The RKHS solution

$$f_n^* = lpha \hat{\xi} + \sum_{\ell=1}^n \sum_{j=1}^d eta_{\ell j} rac{\partial arphi(X_\ell)}{\partial x_j}$$

Need to solve a linear system

$$oldsymbol{eta}_n^* = -rac{1}{\lambda} \left(\underbrace{G_{XX}}_{nd imes nd} + n \lambda I
ight)^{-1} h_X \qquad ext{-0.6}$$

Very costly in high dimensions!



The Nystrom approximation

[Sutherland, Strathmann, Arbel, G. (2018)

Nystrom approach for efficient solution

- Find best estimator $f_{n,m}^*$ in $\mathcal{H}_Y := \operatorname{span} \{\partial_i k(y_a, \cdot)\}_{a \in [m], i \in [d]}$, where $y_a \in \{x_i\}_{i=1}^n$ chosen at random.
- Nystrom solution:

$$oldsymbol{eta}_{n,oldsymbol{m}}^* = -\left(rac{1}{n}B_{XY}^ op\underbrace{B_{XY}}_{oldsymbol{m}d imes nd} + \lambda\underbrace{G_{YY}}_{oldsymbol{m}d imes md}
ight)^ op h_Y$$

Solve in time $\mathcal{O}(nm^2d^3)$, evaluate in time $\mathcal{O}(md)$.

 Sill cubic in d, but similar results if we take a random dimension per datapoint.

Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

- Rates of convergence: Suppose
 - $f_0 \in \mathcal{R}(C^{\beta})$ for some $\beta > 0$.
 - $\lambda = n^{-\max\left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}}$ as $n \to \infty$.

Then

$$D_F(p_0, extstyle{p_{f_n}}) = O_{p_0}\left(n^{-\min\left\{rac{2}{3}, rac{eta}{2(eta+1)}
ight\}}
ight)$$

Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

- Rates of convergence: Suppose
 - $f_0 \in \mathcal{R}(C^{\beta})$ for some $\beta > 0$.
 - $\lambda = n^{-\max\left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}}$ as $n \to \infty$.

Then

$$D_F(p_0, extstyle{p_{f_n}}) = O_{p_0}\left(n^{-\min\left\{rac{2}{3}, rac{eta}{2(eta+1)}
ight\}}
ight)$$

■ Convergence in other metrics: KL, Hellinger, L_r , $1 < r < \infty$.

Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

- Suppose
 - $f_0 \in \mathcal{R}(C^{\beta})$ for some $\beta > 0$.
 - Number of subsampled points $m = \Omega(n^{\theta} \log n)$ for $\theta = (\min(2\beta, 1) + 2)^{-1} \in \left[\frac{1}{3}, \frac{1}{2}\right]$
 - $\lambda=n^{-\max\left\{\frac{1}{3},\frac{1}{2(\beta+1)}\right\}}$ as $n o\infty$.
- Then

$$D_F(p_0, extstyle{p_{f_{n,m}}}) = O_{p_0}\left(n^{-\min\left\{rac{2}{3}, rac{eta}{2(eta+1)}
ight\}}
ight)$$

Consistency: Nystrom solution

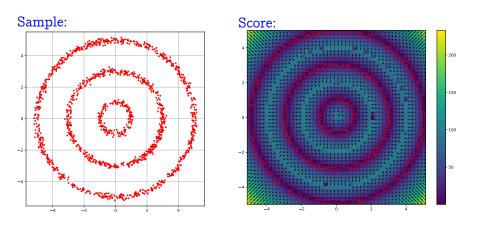
Define C as the covariance between feature derivatives.

- Suppose
 - $f_0 \in \mathcal{R}(C^{\beta})$ for some $\beta > 0$.
 - Number of subsampled points $m = \Omega(n^{\theta} \log n)$ for $\theta = (\min(2\beta, 1) + 2)^{-1} \in \left[\frac{1}{3}, \frac{1}{2}\right]$
 - $\lambda = n^{-\max\left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}}$ as $n \to \infty$.
- Then

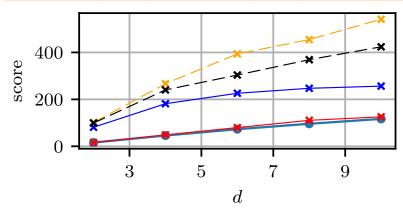
$$D_F(p_0, extstyle{p_{f_{n,m}}}) = O_{p_0}\left(n^{-\min\left\{rac{2}{3}, rac{eta}{2(eta+1)}
ight\}}
ight)$$

- Convergence in other metrics: KL, Hellinger, L_r , $1 < r < \infty$. Same rate but saturates sooner.
 - Full KL original saturates at $O_{p_0}\left(n^{-\frac{1}{2}}\right)$
 - Nystrom saturates at $O_{p_0}\left(n^{-\frac{1}{3}}\right)$

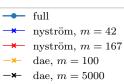
Experimental results: ring



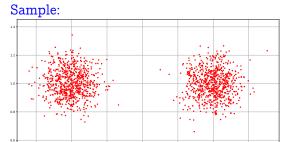
Experimental results: comparison with autoencoder

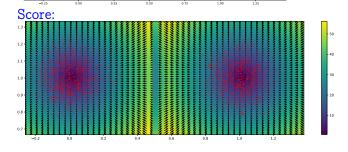


- Comparison with regularized auto-encoders [Alain and Bengio (JMLR, 2014)]
- n=500 training points

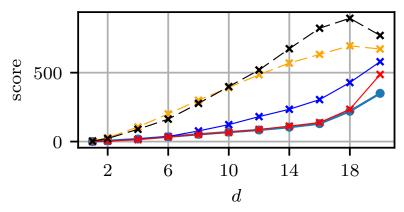


Experimental results: grid of Gaussians

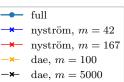




Experimental results: comparison with autoencoder



- Comparison with regularized auto-encoders [Alain and Bengio (JMLR, 2014)]
- n=500 training points



The kernel conditional exponential family [Arbel & G. (2018)]

The kernel conditional exponential family

- Can we take advantage of the graphical structure of $(X_1,...,X_d)$?
- Start from a general factorization of *P*

$$egin{aligned} P(X_1,...,X_d) \ &= \prod_i P(X_i| \quad X_{\pi(i)} \quad) \ & ext{parents} \ & ext{of } X_i \end{aligned}$$

-1 0 1

Conditional densities $P_{Y|X}$

Estimate each factor independently

Kernel conditional exponential family

General definition, kernel conditional exponential family

[Smola and Canu, 2006]

$$p_f(y|x) = e^{\langle f, \psi(x,y) \rangle_{\mathcal{H}} - A(f,x)} q_0(y)$$
 $A(f,x) = \log \int q_o(y) e^{\langle f, \psi(x,y) \rangle_{\mathcal{H}}} dy$ (joint feature map $\psi(x,y)$)

Our kernel conditional exponential family:

$$p_f(x) = e^{\langle f_x, oldsymbol{\phi}(oldsymbol{y})
angle_G - A(f,x)} q_0(y) \qquad A(f,x) = \log \int q_o(y) e^{\langle f_x, oldsymbol{\phi}(oldsymbol{y})
angle_G}$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

Our kernel conditional exponential family:

$$p_f(x) = e^{\langle f_x, \phi(y)
angle_{\mathcal{G}} - A(f,x)} q_0(y) \qquad A(f,x) = \log \int q_o(y) e^{\langle f_x, \phi(y)
angle_{\mathcal{G}}}$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

$$\langle f_x, \phi(y) \rangle_{\mathcal{G}}$$

= $\langle \Gamma_x^* f, \phi(y) \rangle_{\mathcal{G}}$
= $\langle f, \Gamma_x \phi(y) \rangle_{\mathcal{H}}$

Our kernel conditional exponential family:

$$p_f(x) = e^{\langle f_x, \phi(y)
angle_{\mathcal{G}} - A(f,x)} q_0(y) \qquad A(f,x) = \log \int q_o(y) e^{\langle f_x, \phi(y)
angle_{\mathcal{G}}}$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

$$egin{aligned} \langle f_x, \phi(y)
angle_{\mathcal{G}} \ &= \langle \Gamma_x^* f, \phi(y)
angle_{\mathcal{G}} \ &= \langle f, \Gamma_x \phi(y)
angle_{\mathcal{H}} \end{aligned}$$

lacksquare $\Gamma_x^*: \mathcal{H} o \mathcal{G}$ is a linear operator

Our kernel conditional exponential family:

$$p_f(x) = e^{\langle f_x, \phi(y)
angle_{\mathcal{G}} - A(f,x)} q_0(y) \qquad A(f,x) = \log \int q_o(y) e^{\langle f_x, \phi(y)
angle_{\mathcal{G}}}$$
 linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

What does this RKHS look like?

$$egin{aligned} \langle f_x, oldsymbol{\phi}(y)
angle_{\mathcal{G}} \ &= \langle \Gamma_x^* f, oldsymbol{\phi}(y)
angle_{\mathcal{G}} \end{aligned}$$

[Micchelli and Pontil, (2005)]

$$=\langle \Gamma_{xJ}, \varphi(y) \rangle_{\mathcal{G}}$$

 $=\langle f, \Gamma_{x} \phi(y) \rangle_{\mathcal{H}}$

$$\Gamma_x: \mathcal{G} \to \mathcal{H}$$
 is a linear operator.

The feature map
$$\psi(x, y) := \Gamma_x \phi(y)$$

What is our loss function?

The obvious approach: minimise

$$D_F\left[p_0(x)p_0(y|x)\|p_f(x)p_f(y|x)
ight]$$

Problem: the expression still contains $\int p_0(y|x)dy$.

What is our loss function?

The obvious approach: minimise

$$D_F\left[p_0(x)p_0(y|x)\|p_f(x)p_f(y|x)
ight]$$

Problem: the expression still contains $\int p_0(y|x)dy$.

Our loss function:

$$egin{aligned} \widetilde{D}_F(p_0,p_f) := \int D_F(p_0(y|x)||p_f(y|x))\pi(x)dx \end{aligned}$$

for some $\pi(x)$ that includes the support of p(x).

Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS $\Gamma_x = I_{\mathcal{G}}k(x,\cdot)$.

$$egin{array}{lll} \Gamma_x & : & \mathcal{G}
ightarrow \mathcal{H} \ \Gamma_x \phi(y) & \mapsto & \phi(y) k(x,\cdot) \end{array}$$

Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS $\Gamma_x = I_{\mathcal{G}} k(x, \cdot)$.

$$egin{array}{lll} \Gamma_x & : & \mathcal{G}
ightarrow \mathcal{H} \ \Gamma_x \phi(y) & \mapsto & \phi(y) k(x,\cdot) \end{array}$$

Solution:

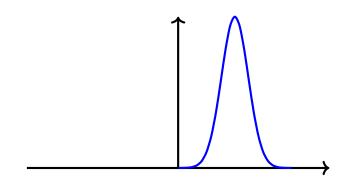
$$f_n^*(y|x) = \sum_{b=1}^n \sum_{i=1}^d eta_{(b,i)} k(X_b,x) rac{\partial_i \mathfrak{K}(Y_b,y)}{\partial_i \mathfrak{K}(Y_b,y)} + lpha \hat{\xi}$$

where

$$eta_n^* = -rac{1}{\lambda} \left(G + n\lambda I
ight)^{-1} h \ (G)_{(a,i),(b,j)} = \!\! k(X_a,X_b) \! \partial_i \partial_{j+d} \mathfrak{K} \! \left(Y_a,Y_b
ight),$$

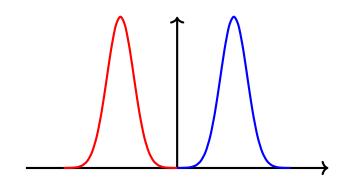
and
$$\langle \phi(y), \phi(y') \rangle_{\mathcal{G}} = \mathfrak{K}(y, y')$$
.

- P(Y|X=1)
- P(Y|X = -1)
- $P(Y) = \frac{1}{2}(P(Y|X=1) + P(Y|X=-1))$



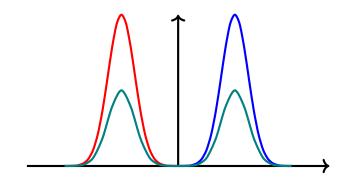
$$ilde{D}_F(\underbrace{p(y|x)}_{ ext{target}}, \underbrace{p(y)}_{ ext{model}}) = 0$$

- P(Y|X=1)
- P(Y|X = -1)
- $P(Y) = \frac{1}{2}(P(Y|X=1) + P(Y|X=-1))$



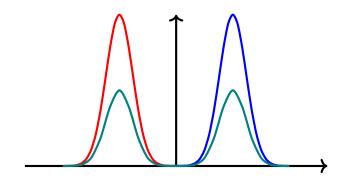
$$ilde{D}_F(\underbrace{p(y|x)}_{ ext{target}}, \underbrace{p(y)}_{ ext{model}}) = 0$$

- P(Y|X=1)
- P(Y|X = -1)
- $P(Y) = \frac{1}{2}(P(Y|X=1) + P(Y|X=-1))$



$$ilde{D}_F(\underbrace{p(y|x)}_{ ext{target}}, \underbrace{p(y)}_{ ext{model}}) = 0$$

- P(Y|X=1)
- P(Y|X = -1)
- $P(Y) = \frac{1}{2}(P(Y|X=1) + P(Y|X=-1))$



$$ilde{D}_F(\underbrace{p(y|x)}_{ ext{target}}, \underbrace{p(y)}_{ ext{model}}) = 0$$

Why does it fail? Recall

$$\widetilde{D}_F(p_0(y|x),p_f(y|x)):=\int \pi(x)D_F(p_0(y|x),p_f(y|x))dx$$

Note that

$$D_F(\underbrace{p(y|x=1)}_{ ext{target}}, \underbrace{p(y)}_{ ext{model}}) = \int p(y|1) \left\|
abla_x \log p(y|1) -
abla_x \log p(y)
ight\|^2 \ dy$$

Model p(y) puts mass where target conditional p(y|1) has no support.

■ Care needed when this failure mode approached!

Unconditional vs conditional model in practice

- Red Wine: Physiochemical measurements on wine samples.
- Parkinsons: Biomedical voice measurements from patients with early stage Parkinson's disease.

	Parkinsons	Red Wine
Dimension	15	11
Samples	5875	1599

Unconditional vs conditional model in practice

- Red Wine: Physiochemical measurements on wine samples.
- Parkinsons: Biomedical voice measurements from patients with early stage Parkinson's disease.

Comparison with

- LSCDE model: with consistency guarantees [Sugiyama et al., (2010)]
- RNADE model: mixture models with deep features of parents, no guarantees [Uria et al. (2016)]

Unconditional vs conditional model in practice

- Red Wine: Physiochemical measurements on wine samples.
- Parkinsons: Biomedical voice measurements from patients with early stage Parkinson's disease.

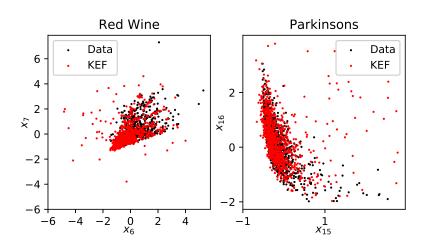
Comparison with

- LSCDE model: with consistency guarantees [Sugiyama et al., (2010)]
 - RNADE model: mixture models with deep features of parents, no guarantees [Uria et al. (2016)]

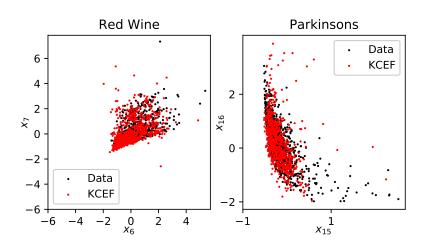
Negative log likelihoods (smaller is better, average over 5 test/train splits)

	Parkinsons	Red wine
KCEF	$\boldsymbol{2.86 \pm 0.77}$	11.8 ± 0.93
LSCDE	15.89 ± 1.48	14.43 ± 1.5
NADE	3.63 ± 0.0	9.98 ± 0.0

Results: unconditional model



Results: conditional model



Adaptive Hamiltonian Monte Carlo

Markov chain Monte Carlo

■ We have a density of the form

$$p(x) = rac{\pi(x)}{Z} \qquad Z = \int \pi(x) dx$$

Z often impractical to compute

■ Goal: to compute expectations of functions,

$$\mathbb{E}_p[f(x)] = \int f(x) p(x) dx$$

■ Given samples $\{x_i\}_{i=1}^n$ with distribution p(x),

$$\widehat{\mathbb{E}}_p[f(x)] = rac{1}{n} \sum_{i=1}^n f(x_i)$$

How to generate these samples?

Markov chain Monte Carlo

- Unnormalized target $\pi(x) \propto p(x)$
- Generate Markov chain with invariant distribution p
 - Initialize $x_0 \sim p_0$
 - At iteration $t \ge 0$, propose to move to state $x' \sim q(\cdot|x_t)$
 - Accept/Reject proposals based on ratio

$$x_{t+1} = egin{cases} x', & ext{w.p. min} \left\{1, rac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)}
ight\}, \ x_t, & ext{otherwise}. \end{cases}$$

- What proposal $q(\cdot|x_t)$?
 - Too narrow or broad: → slow convergence
 - Does not conform to support of target o slow convergence

Markov chain Monte Carlo

- Unnormalized target $\pi(x) \propto p(x)$
- Generate Markov chain with invariant distribution p
 - Initialize $x_0 \sim p_0$
 - At iteration $t \ge 0$, propose to move to state $x' \sim q(\cdot|x_t)$
 - Accept/Reject proposals based on ratio

$$x_{t+1} = egin{cases} x', & ext{w.p. min} \left\{1, rac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)}
ight\}, \ x_t, & ext{otherwise}. \end{cases}$$

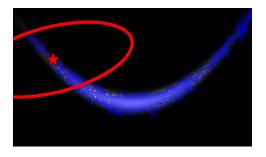
- What proposal $q(\cdot|x_t)$?
 - Too narrow or broad: → slow convergence
 - Does not conform to support of target → slow convergence

Basic adaptive Metropolis-Hastings

Adaptive Metropolis: [Haario, Saksman & Tamminen, (2001)] Update proposal $q_t(\cdot|x_t) = \mathcal{N}(x_t, \nu^2 \hat{\Sigma}_t)$, using estimates of the target covariance.

Basic adaptive Metropolis-Hastings

Adaptive Metropolis: [Haario, Saksman & Tamminen, (2001)] Update proposal $q_t(\cdot|x_t) = \mathcal{N}(x_t, \nu^2 \hat{\Sigma}_t)$, using estimates of the target covariance.



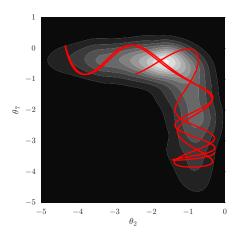
Locally miscalibrated for strongly non-linear targets: directions of large variance depend on the current location

Hamiltonian Monte Carlo

- HMC: distant moves, high acceptance probability.
- Potential energy $U(x) = -\log \pi(x)$, auxiliary momentum $p \sim \exp(-K(p))$, simulate for $t \in \mathbb{R}$ along Hamiltonian flow of H(p,x) = K(p) + U(x), using operator

$$\frac{\partial K}{\partial p}\frac{\partial}{\partial x} - \frac{\partial U}{\partial x}\frac{\partial}{\partial p}$$

 Numerical simulation (i.e. leapfrog) depends on gradient information.



Our case: target $\pi(\cdot)$ and log gradient not computable - Pseudo-Marginal MCMC

When is target not computable?

■ GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters θ :

$$p(\mathbf{f}, \mathbf{y}, \theta) = p(\theta)p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f})$$

■ Automatic Relevance Determination (ARD) covariance:

$$(\mathcal{K}_{ heta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j' | heta) = \exp\left(-rac{1}{2} \sum_{s=1}^d rac{(x_{i,s} - x_{j,s}')^2}{\exp(heta_s)}
ight)$$

 $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^n p(y_i|f(x_i))$ where

$$p(y_i|f(x_i)) = (1 - \exp(-y_i f(x_i)))^{-1}, \qquad y_i \in \{-1,1\}.$$

Our case: target $\pi(\cdot)$ and log gradient not computable - Pseudo-Marginal MCMC

When is target not computable?

■ GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters θ :

$$p(\mathbf{f},\mathbf{y}, heta) = p(heta)p(\mathbf{f}| heta)p(\mathbf{y}|\mathbf{f})$$

 $\mathbf{f}| heta \sim \mathcal{N}(0,\mathcal{K}_{ heta})$ GP with covariance $\mathcal{K}_{ heta}$

■ Automatic Relevance Determination (ARD) covariance:

$$(\mathcal{K}_{ heta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j' | heta) = \exp\left(-rac{1}{2} \sum_{s=1}^d rac{(x_{i,s} - x_{j,s}')^2}{\exp(heta_s)}
ight)$$

 $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^n p(y_i|f(x_i)) ext{ where} \ p(y_i|f(x_i)) = (1 - \exp(-y_i f(x_i)))^{-1}, \qquad y_i \in \{-1,1\}$

Our case: target $\pi(\cdot)$ and log gradient not computable -Pseudo-Marginal MCMC

When is target not computable?

 \blacksquare GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters θ :

$$p(\mathbf{f},\mathbf{y}, heta) = p(heta)p(\mathbf{f}| heta)p(\mathbf{y}|\mathbf{f})$$

 $\mathbf{f}| heta \sim \mathcal{N}(0,\mathcal{K}_{ heta})$ GP with covariance $\mathcal{K}_{ heta}$

■ Automatic Relevance Determination (ARD) covariance:

$$(\mathcal{K}_{ heta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j' | heta) = \exp\left(-rac{1}{2} \sum_{s=1}^d rac{(x_{i,s} - x_{j,s}')^2}{\exp(heta_s)}
ight)$$

 $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^n p(y_i|f(x_i))$ where $p(u_i|f(x_i)) = (1 - \exp(-y_i f(x_i)))^{-1}, \qquad y_i \in \{-1, 1\}.$

Our case: target $\pi(\cdot)$ and log gradient not computable - Pseudo-Marginal MCMC

When is target not computable?

■ GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters θ :

$$p(\mathbf{f},\mathbf{y}, heta) = p(heta)p(\mathbf{f}| heta)p(\mathbf{y}|\mathbf{f})$$

 $\mathbf{f}| heta \sim \mathcal{N}(0,\mathcal{K}_{ heta})$ GP with covariance $\mathcal{K}_{ heta}$

■ Automatic Relevance Determination (ARD) covariance:

$$(\mathcal{K}_{ heta})_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j' | heta) = \exp\left(-rac{1}{2} \sum_{s=1}^d rac{(x_{i,s} - x_{j,s}')^2}{\exp(heta_s)}
ight)$$

 $lacksquare p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^n p(y_i|f(x_i))$ where

$$p(y_i|f(x_i)) = (1 - \exp(-y_if(x_i)))^{-1}, \qquad y_i \in \{-1,1\}.$$

Example: when is target not computable?

■ Gaussian process classification, latent process f

$$p(heta|\mathbf{y}) \propto p(heta)p(\mathbf{y}| heta) = p(heta)\int p(\mathbf{f}| heta)p(\mathbf{y}|\mathbf{f}, heta)d\mathbf{f} =: \pi(heta)$$

... but cannot integrate out f

MH ratio:

$$lpha(heta, heta') = \min\left\{1,rac{p(heta')p(\mathbf{y}| heta')q(heta| heta')}{p(heta)p(\mathbf{y}| heta)q(heta'| heta)}
ight\}$$

Pseudo-Marginal MCMC: unbiased estimate of $p(y|\theta)$ via importance sampling: [Filippone & Girolami, (2013)]

$$\hat{p}(heta|\mathbf{y}) \propto p(heta)\hat{p}(\mathbf{y}| heta) pprox p(heta)rac{1}{n_{ ext{imp}}} \sum_{i=1}^{n_{ ext{imp}}} p(\mathbf{y}|\mathbf{f}^{(i)})rac{p(\mathbf{f}^{(i)}| heta)}{Q(\mathbf{f}^{(i)})}$$

Example: when is target not computable?

■ Gaussian process classification, latent process f

$$p(heta|\mathbf{y}) \propto p(heta)p(\mathbf{y}| heta) = p(heta)\int p(\mathbf{f}| heta)p(\mathbf{y}|\mathbf{f}, heta)d\mathbf{f} =: \pi(heta)$$

... but cannot integrate out f

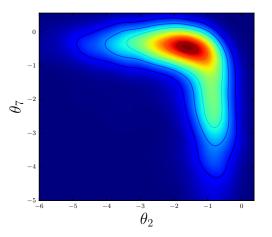
Estimated MH ratio:

$$lpha(heta, heta') = \min\left\{1,rac{p(heta')\hat{p}(\mathbf{y}| heta')q(heta| heta')}{p(heta)\hat{p}(\mathbf{y}| heta)q(heta'| heta)}
ight\}$$

■ Replacing marginal likelihood $p(y|\theta)$ with unbiased estimate $\hat{p}(y|\theta)$ still results in correct invariant distribution [Beaumont (2003); Andrieu & Roberts (2009)]

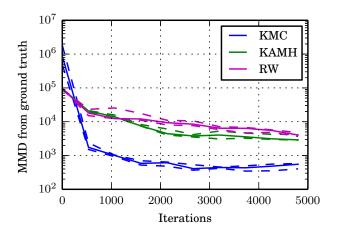
Basic adaptive Metropolis-Hastings

Sliced posterior over hyperparameters of a Gaussian Process classifier on UCI Glass dataset obtained using Pseudo-Marginal MCMC.



Basic adaptive Metropolis-Hastings

Sliced posterior over hyperparameters of a Gaussian Process classifier on UCI Glass dataset obtained using Pseudo-Marginal MCMC.



Co-authors

From Gatsby:

- Michael Arbel
- Aapo Hyvarinen
- Heiko Strathmann
- Dougal Sutherland

External collaborators:

- Kenji Fukumizu
- Revant Kumar
- Bharath Sriperumbudur

Questions?