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Outline

Motivating application:
m Fast estimation of complex multivariate densities
The infinite exponential family:

m Multivariate Gaussian — Gaussian process
m Finite mixture model — Dirichlet process mixture model
m Finite exponential family — 777

In this talk:

m Guaranteed speed improvements by Nystrom
m Conditional models

m Adaptive Hamiltonian Markov chain Monte Carlo
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Goal 1 learn high dimensional, complex densities
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We want:

m Efficient computation and representation

m Statistical guarantees
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The (infinite) exponential family

[Sriperumbudur, Fukumizu, G., Hyvarinen, Kumar (2017)]
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The exponential family

The exponential family in in R¢

p(w)zexp< n o, T(z) >— A(n) 9o()
~—

N—— e N——
natural sufficient log base
parameter startistic normaliser measure

Examples:
m Gaussian density: T'(z) = [ z 2 }
m Gamma density: T'(z) = [ Inz «z ]

Can we extend this to infinite dimensions?
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The kernel exponential family

Kernel exponential families [canu and smola (2006), Fukumizu (2000)] and their
G‘P Counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P = {pi(2) = U #Dn 4 gy(a), s € 0, f € F)

where
F = {f eEH : A(f) :log/ef(m)qo(:z:) dz < oo}
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The kernel exponential family

Kernel exponential families [canu and smola (2006), Fukumizu (2000)] and their
G‘P Counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P = {pi(2) = U #Dn 4 gy(a), s € 0, f € F)

where
F = {f eEH : A(f) :log/ef(m)qo(:z:) dz < oo}

Finite dimensional RKHS: one-to-one correspondence between finite
dimensional exponential family and RKHS.

m Example: Gaussian kernel, T'(z) = [ r z° ] = ¢(z) and

k(z,y) = zy + z?y?
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Fitting an infinite dimensional exponential family

Given random samples, Xj,..., X, drawn i.i.d. from an unknown
density, po := pf, € P, estimate po
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How not to do it: maximum likelihood

Maximum likelihood:
n
= 1 X;
fuL arg?le‘?‘; og p(X:)
n
= argmafo(Xi) - nlog/ e/ (@) go(z) da.
fer i3
Solving the above yields that fis;, satisfies

=3 0l@) = [ e@)psule) do
=1

dp
where pg,, = <2k

Can this be solved?
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How not to do it: maximum likelihood

m Finite dimensional case: Normal distribution N (u, o)

k(-,z) = [x :cz]T

m Max. likelihood equations give

= [[o @] @ o= [maz @3+ )]

m System of likelihood equations: solvable.
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How not to do it: maximum likelihood

m Finite dimensional case: Normal distribution N (u, o)

k(-,z) = [x :nz]T

m Max. likelihood equations give

= [[o @] @ o= [maz @3+ )]

m System of likelihood equations: solvable.

m Infinite dimensional case, characteristic kernel: ill-posed! [Fukumizu
(2009)]
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Score

matching

Journal of Machine Leaming Research 6 (2005) 695-708 Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models
by Score Matching

Aapo Hyvirinen AAPO.HYVARINEN@HELSINKI.FI

Helsinki Institute for Information Technology (BRU)
Department of Computer Science
FIN-00014 University of Helsinki, Finland

Editor: Peter Dayan

Loss is Fisher Score:

Dr(po, pf) : /po )|V log po(z) — V5 log ps(z)|* dz
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Score matching: 1-D proof

Dr(po, py)

/ (dlogpo z) dlogpf(cv))Qdm
2 dz
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Score matching: 1-D proof

Dr(po, pf)
2/ (dlogpo z) dlogpf( )>2dm

:;/tlpo(:z:) (dlogio ) dz + - / (dlogpf )>2dm

_pro(m)<d10gd§f( )) (dlogdzo( )> iz
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Score matching: 1-D proof

Dr(po, py)
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Score matching: 1-D proof

Dr(po, pf)
2/ (dlogpo z) dlogpf( )>2dm

:;/tlpo(:z:) (dlogio ) dz + / (dlogpf ))zdm

_/abpo(m)<d10gd§f( )) (dlogdzo( )) iz

Final term:

/ o (dlogpf )) (dlogdg;o(a:)>d$

- [ty (D) D
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Score matching: 1-D proof

Dr(po, py)

/ (dlogpo dlogpf( )>2dm
3

_ / (dlogpo )d—l—/ (dlogpf )2dm
dz

B (leng )dlogpo )

Final term

(dlogpf )
_/M<d10gpf 2(/}%@;}3 )

[( dlog pf > / d2 log p¢(z
—_— p .

dz?

d log po(z >




Empirical score matching

Py, represents n i.i.d. samples from Py

310gpf(X)>2 8° log ps(Xa)
Dy (pn, pf) ZZ<2( 3z, 3 +C

alzl i

Since Dp(pn, pr) is independent of A(f),
fr = argmin Dr(pn, py)

should be easily computable, unlike the MLE.
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Empirical score matching

P, represents n i.i.d. samples from Py

310gpf(X)>2 8° log ps(Xa)
Dy (pn, pf) ZZ<2< 3z, 3 +C

alzl i

Since Dp(pn, pr) is independent of A(f),
fr = argmin Dr(pn, py)

should be easily computable, unlike the MLE.

Add extra term A|[f||3, to regularize.
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A kernel solution

Infinite exponential family:

pr(z) = €
Thus

) ) 8
55 08 pf(z) = 32 (fro(z))y + 5 108 q(z).
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A kernel solution

Infinite exponential family:

frp(@))n—A(f)

ps(z) = €' do()

Thus

) ) 8
55 08 pf(z) = 32 (fro(z))y + 5 108 q(z).

Kernel trick for derivatives:

5] 15}

X) = —p(X
52100 = (£, p(5))
Dot product between feature derivatives:

K (X) 9 (X' _872;9()( )'d)
3:1% v ' B:Ej v ’H N (9:121'3(1:(1_1_]‘ '
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A kernel solution

Infinite exponential family:

Thus 5 5 5
—1 = — —1 .
5g 108 Pr(2) = o {f,9(2))y + 5 -log qo(2)
Kernel trick for derivatives:

5 f 00 = (. 5m0X))

Dot product between feature derivatives:

9 (X)i (X' _872;9()( )'d)
3:1% v ' B:Ej v ’H N (9:121'3(1:(1_1_]‘ '
By representer theorem:
=af+ Z Z Be ]

=1j=1 ] 13/46



An RKHS solution

The RKHS solution

—a£+zz,3]

{=17=1

Need to solve a linear system
-1
Br=—=| Gxx +nAl hx
——

ndxnd

Very costly in high dimensions!

0.4
0.2

-0.2
-0.4
-0.6
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The Nystrom approximation

[Sutherland, Strathmann, Arbel, G. (2018)
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Nystrom approach for efficient solution

m Find best estimator f; ,, in Hy := span {0:k(Ya, ')}ag[m],iqd] , Where
Yo € {z;}]; chosen at random.

m Nystrom solution:

t
Brm = — 1p} Bxy + X Gyy | hy
n,m n XY

mdxnd mdxmd

Solve in time O(nm?d?), evaluate in time O(md).

Sill cubic in d, but similar results if we take a random dimension per
datapoint.
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Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

m Rates of convergence: Suppose
fo € R(CP) for some 8 > 0.
)\ = nimax{é’m} asn — oo.
Then )
L2
Dr(po, pf.) = Opo (n_mln{372(ﬁ+1)}>
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Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

m Rates of convergence: Suppose
* fo € R(CP) for some B > 0.

— max{

i 1
e A=n 3’2<ﬁ+1>}asn—>oo.

Then )
- f2
Dr(po, pf.) = Opo <n_mln{372(ﬁ+1)}>

m Convergence in other metrics: KL, Hellinger, L,,1 < r < 00.
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Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

m Suppose
fo € R(CP) for some B > 0.
Number of subsampled points m = Q(n? logn) for
6 = (min(28,1) +2)7* € [3, ]
A= @5 ) asn o oo,
m Then

DF(pO:pfn,m) — OPO (n_min{g’Z(ﬂil)})
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Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

m Suppose
fo € R(CP) for some B > 0.
Number of subsampled points m = Q(n? logn) for
6 = (min(28,1) +2)7* € [3, ]
A= @5 ) asn o oo,
m Then

DF(pO:pfn,m) — OPO (n_min{g’Z(ﬂil)})

m Convergence in other metrics: KL, Hellinger, L,,1 < r < co. Same
rate but saturates sooner.
Full KL original saturates at Op, (n_i)
Nystrom saturates at Op, (n_i)
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Experimental results: ring

200

150

100
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Experimental results: comparison with autoencoder

Score

m Comparison with regularized

auto-encoders [Alain and Bengio

(JMLR, 2014)] %=
m n=>500 training points e

full

nystrom, m = 42

nystrom, m = 167
dae, m = 100
dae, m = 5000
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Experimental results: grid of Gaussians
Sample:
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Experimental results: comparison with autoencoder

500 -

Score

m Comparison with regularized

auto-encoders [Alain and Bengio

(JMLR, 2014)] %=
m n=>500 training points e

full

nystrom, m = 42

nystrom, m = 167
dae, m = 100
dae, m = 5000
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The kernel conditional exponential
family e e oo,
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The kernel conditional exponential family

m Can we take advantage of the
graphical structure of
(X1, .y X4)?

m Start from a general
factorization of P

Conditional densities PYIX

Xy X2)

parents
of )(;

m Estimate each factor
independently
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Kernel conditional exponential family

General definition, kernel conditional exponential family

[Smola and Canu, 2006]

pr(yle) = eV V@In=Al2) gy (y) log/ go(y) e H@n gy

(joint feature map ¥(z,v))
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Kernel conditional exponential family

Our kernel conditional exponential family:

ps(z) = eV?Wem AUl gy (y) log/ go(y) el

linear in the sufficient statistic ¢(vy) € G.
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Kernel conditional exponential family

Our kernel conditional exponential family:

linear in the sufficient statistic ¢(y) € G.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

(fe, 0(¥))g

27/46



Kernel conditional exponential family

Our kernel conditional exponential family:

ps(z) = el #(¥e= 402N gy (y) log/ go(y) et

linear in the sufficient statistic ¢(y) € G.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

<fm¢£y)>g m ]_"; : H — G is a linear
= (T2f,8(v))g operator
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Kernel conditional exponential family

Our kernel conditional exponential family:

ps(z) = el #(¥e= 402N gy (y) log/ go(y) et

linear in the sufficient statistic ¢(y) € G.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

(fz, 8(¥))g
= (T2, ¢(¥))g m [, : G— Hisalinear
= (f,T20(¥))n operator.

m The feature map

Y(z,y) = Tz(y)
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What is our loss function?

The obvious approach: minimise

Dr [po(z)po(yl|z)l ps(z)pr(y|2)]

Problem: the expression still contains [ po(y|z)dy.
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What is our loss function?

The obvious approach: minimise

Dr [po(z)po(yl|z)l ps(z)pr(y|2)]

Problem: the expression still contains [ po(y|z)dy

Our loss function:

Br(po, 1) i= [ Dalpo(ylo)lIps(y]2))m(a)ds

for some 7(z) that includes the support of p(z).
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Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS I'; = Igk(z, ).

', : G—oH
P:z:¢(y) = ¢(y)k($))
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Finite sample estimate of the conditional density
Use the simplest operator-valued RKHS I'; = Igk(z, ).

r, : G—H
Tep(y) = o(v)k(z,)
Solution:
n d
Frwlz) =300 By k(Xs, )3, 8( Vs, v) + af
b—1:1=1
where

B = —% (G+nAI) th
(G)(a,i)(b.5) =k(Xa, X5)0:0; 1 aR(Ya, Y3),
and (¢(v), d(v'))g = S, v').
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Expected conditional score: a failure case

m P(Y|X =1)

~
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Expected conditional score: a failure case

m P(Y|X =1)
s P(Y|X = -1)

~
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Expected conditional score: a failure case

m P(Y|X =1)
m P(Y|X =-1)
m P(Y)=4(P(Y|X =1)+ P(Y|X =-1))

AN

~
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Expected conditional score: a failure case

m P(Y|X =1)
m P(Y|X =-1)
m P(Y)=4(P(Y|X =1)+ P(Y|X =-1))

AN

Drp(p(ylz), p(y)) =0
~——— N~
target model

~
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Expected conditional score: a failure case

Why does it fail? Recall

Dr(po(ylz), ps(y|z)) == /W(%)DF(JOo(ylﬂc),ZfJf(yIfE))dﬂc
Note that

Dr(p(yle = 1), p(s)) = [ p(v[1) [ V=log p(v]1) — Valog p(v) dy

target model

Model p(y) puts mass where target conditional p(y|1) has no support.

m Care needed when this failure mode approached!
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Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.

m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Parkinsons Red Wine
Dimension 15 11
Samples 5875 1599
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Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.
m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

m LSCDE model: with consistency guarantees [sugiyama et a1, (2010)]
m RNADE model: mixture models with deep features of parents, no
guarantees [uria et al. (2016)]
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Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.
m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

m LSCDE model: with consistency guarantees [sugiyama et a1, (2010)]

m RNADE model: mixture models with deep features of parents, no
guarantees [uria et al. (2016)]

Negative log likelihoods (smaller is better, average over 5 test/train
splits)

Parkinsons Red wine

KCEF 286+0.77 11.8+0.93
LSCDE 15.89+148 1443+15
NADE 3.63+£0.0 9.98 £ 0.0
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Results: unconditional model

Red Wine Parkinsons
Data ’ - . . . Data
61 KEF : KEF
4 -
. 21
~ 21 ' 9
x ¢ <
0 - v X
0 -
_2 _
_4 -
_6 T T T T T _2 i T
-6 -4 -2 O 2 4 -1 1
X6 X15
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Results: conditional model

Red Wine Parkinsons
) Data
61 KCEF
4 -
2 .
2 -
L 2
0 - X
0 .
_2 . .
4 Data *
KCEF 5 ] .
_6 T T T T T T
-6 -4 -2 0 2 4 -1 1
X6 X15
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Adaptive Hamiltonian Monte Carlo



Markov chain Monte Carlo

m We have a density of the form

Z often impractical to compute
m Goal: to compute expectations of functions,

B,[f(2)] = [ f(a)p(a)ds

m Given samples {z;}7 ; with distribution p(z),

How to generate these samples?

Z = /w(m)dm
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Markov chain Monte Carlo

® Unnormalized target 7(z) « p(z)

m Generate Markov chain with invariant distribution p
Initialize zg ~ po
At iteration ¢ >0, propose to move to state z’ ~ g(-|z:)
Accept/Reject proposals based on ratio

! : m(z')q(z|z’)
Tyt z', w.p. mln{l,m},

x¢, otherwise.

38/46



Markov chain Monte Carlo

® Unnormalized target 7(z) « p(z)

m Generate Markov chain with invariant distribution p
Initialize zg ~ po
At iteration ¢ >0, propose to move to state z’ ~ g(-|z:)
Accept/Reject proposals based on ratio

! : m(z')q(z|z’)
Tyt z', w.p. mln{l,m},

x¢, otherwise.

m What proposal g(-|z:)?
Too narrow or broad: — slow convergence
Does not conform to support of target — slow convergence
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Basic adaptive Metropolis-Hastings

Adaptive Metropolis: [maario, Saksman & Tamminen, (2001)] Update proposal
a:(-|z¢) = N (z¢,v%5;), using estimates of the target covariance.
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Basic adaptive Metropolis-Hastings

Adaptive Metropolis: [maario, Saksman & Tamminen, (2001)] Update proposal
g(-|z¢) = N(z¢,v?5), using estimates of the target covariance.

Locally miscalibrated for strongly non-linear targets: directions of
large variance depend on the current location
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Hamiltonian Monte Carlo
m HMC: distant moves, high
acceptance probability.

m Potential energy
U(z) = —log7(z), auxiliary
momentum p ~ exp(—K(p)),
simulate for ¢ € R along
Hamiltonian flow of
H(p,z) = K(p) + U(z),
using operator

86K 6 0U &

Op 0z Oz Op

m Numerical simulation (i.e.
leapfrog) depends on gradient
information.
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Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is target not computable?
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Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is target not computable?

m GPC model: latent process f, labels y, (with covariate matrix X),
and hyperparameters 8:

p(f,y,6) = p(9)p(£]6)p(y|f)
£|6 ~ N(0, Ky) GP with covariance Ky
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Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is target not computable?

m GPC model: latent process f, labels y, (with covariate matrix X),
and hyperparameters 8:

p(f,y,8) = p(6)p(£6)p(ylf)
£|6 ~ N(0, Ky) GP with covariance Ky
m Automatic Relevance Determination (ARD) covariance:
d
1

(:Bz s zl )2
o . _ 4 NS TS
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Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is target not computable?

m GPC model: latent process f, labels y, (with covariate matrix X),

and hyperparameters 8:
p(f,y,6) = p(9)p(£]6)p(y|f)
£|6 ~ N(0, Ky) GP with covariance Ky
m Automatic Relevance Determination (ARD) covariance:
d
1

(:Bz s zl )2
o . _ 4 NS TS

m p(y|f) = [Ti=; p(vi|f(z:)) where

p(uilf(z:)) = (1 —exp(-wif (=) ", wie{-1,1}
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Bayesian Gaussian process classification

Example: when is target not computable?

m Gaussian process classification, latent process f

p(6ly) o p(O)p(v16) = p(6) [ p(FI0)p(yF,6)df =: 7(6)

. but cannot integrate out f

m MH ratio: (@)p(y16)9(619)
"\ — min p\o)ply|v)q
a(0,0) = min {1, 5 o e

m Pseudo-Marginal MCMC: unbiased estimate of p(y|6) via importance

Samplingi [Filippone & Girolami, (2013)]

Mmp : (®)
Bl6ly) o p(O)2(316) ~ 2(6)— . oyl B
WP =1
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Bayesian Gaussian process classification

Example: when is target not computable?

m Gaussian process classification, latent process f

p(6ly) o p(O)p(v16) = p(6) | p(FI0)p(vIE,6)dt =: 7(6)
. but cannot integrate out f

m Estimated MH ratio:

N P®)p(y1)a(6]6)
a(0,9) = min {1, p(©)3(v10)a(8) |

m Replacing marginal likelihood p(y|f) with unbiased estimate p(y|68)

still results in correct invariant distribution (Beaumont (2003); Andrieu &
Roberts (2009)]
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Basic adaptive Metropolis-Hastings

Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.

Can you learn an HMC sampler? 43/46



Basic adaptive Metropolis-Hastings

Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.

107

MMD from ground truth

0 1000 2000 3000 4000 5000

Iterations

Significant improvements over random walk 44/46
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