
122 Elementary algorithms in feature space

5.2 Computing projections: Gram–Schmidt, QR and Cholesky

The basic classification function of the previous section had the form of a
thresholded linear function

h(x) = sgn (〈w,φ(x)〉) ,

where the weight vector w had the form

w =
1
!+

!+∑

i=1

φ(xi) −
1
!−

!∑

i=!++1

φ(xi).

Hence, the computation only requires knowledge of the inner product be-
tween two feature space vectors.

The projection Pw (φ(x)) of a vector φ(x) onto the vector w is given as

Pw (φ(x)) =
〈w,φ(x)〉
‖w‖2 w.

This example illustrates a general principle that also enables us to compute
projections of vectors in the feature space. For example given a general
vector

w =
!∑

i=1

αiφ(xi),

we can compute the norm of the projection Pw (φ(x)) of the image of a
point x onto the vector w as

‖Pw (φ(x))‖ =
〈w,φ(x)〉

‖w‖ =
∑!

i=1 αiκ (xi,x)√∑!
i,j=1 αiαjκ (xi,xj)

.

Using Pythagoras’s theorem allows us to compute the distance of the point
from its projection as

‖Pw (φ(x)) − φ(x)‖2 = ‖φ(x)‖2 − ‖Pw (φ(x))‖2

= κ (x,x) −

(∑!
i=1 αiκ (xi,x)

)2

∑!
i,j=1 αiαjκ (xi,xj)

.

If we have a set of orthonormal vectors w1, . . . ,wk with corresponding
dual representations given by α1, . . . ,αk, we can compute the orthogo-
nal projection PV (φ(x)) of a point φ(x) into the subspace V spanned by



5.2 Computing projections: Gram–Schmidt, QR and Cholesky 123

w1, . . . ,wk as

PV (φ(x)) =

(
!∑

i=1

αj
iκ (xi,x)

)k

j=1

,

where we have used the vectors w1, . . . ,wk as a basis for V .

Definition 5.8 A projection is a mapping P satisfying

P (φ(x)) = P 2 (φ(x)) and 〈P (φ(x)) ,φ(x) − P (φ(x))〉 = 0,

with its dimension dim (P ) given by the dimension of the image of P . The
orthogonal projection to P is given by

P⊥ (φ(x)) = φ(x) − P (φ(x))

and projects the data onto the orthogonal complement of the image of P ,
so that dim (P ) + dim

(
P⊥)

= N , the dimension of the feature space.

Remark 5.9 [Orthogonal projections] It is not hard to see that the orthog-
onal projection is indeed a projection, since

P⊥
(
P⊥ (φ(x))

)
= P⊥ (φ(x)) − P

(
P⊥ (φ(x))

)
= P⊥ (φ(x)) ,

while
〈
P⊥ (φ(x)) , φ(x) − P⊥ (φ(x))

〉

=
〈
P⊥ (φ(x)) , φ(x) − (φ(x) − P (φ(x)))

〉

= 〈(φ(x) − P (φ(x))) , P (φ(x))〉 = 0.

Projections and deflations The projection Pw (φ(x)) of φ(x) onto w
introduced above are onto a 1-dimensional subspace defined by the vector
w. If we assume that w is normalised, Pw (φ(x)) can also be expressed as

Pw (φ(x)) = ww′φ(x).

Hence, its orthogonal projection P⊥
w (φ(x)) can be expressed as

P⊥
w (φ(x)) =

(
I − ww′) φ(x).

If we have a data matrix X with rows φ(xi), i = 1, . . . , !, then deflating the
matrix X′X with respect to one of its eigenvectors w is equivalent to pro-
jecting the data using P⊥

w . This follows from the observation that projecting



124 Elementary algorithms in feature space

the data creates the new data matrix

X̃ = X
(
I − ww′)′ = X

(
I − ww′) , (5.8)

so that

X̃′X̃ =
(
I − ww′)X′X

(
I − ww′)

= X′X − ww′X′X − X′Xww′ + ww′X′Xww′

= X′X − λww′ − λww′ + λww′ww′

= X′X − λww′,

where λ is the eigenvalue corresponding to w.
The actual spread of the data may not be spherical as is implicitly as-

sumed in the novelty detector derived in the previous section. We may
indeed observe that the data lies in a subspace of the feature space of lower
dimensionality.

We now consider how to find an orthonormal basis for such a subspace.
More generally we seek a subspace that fits the data in the sense that the
distances between data items and their projections into the subspace are
small. Again we would like to compute the projections of points into sub-
spaces of the feature space implicitly using only information provided by the
kernel.

Gram–Schmidt orthonormalisation We begin by considering a well-
known method of deriving an orthonormal basis known as the Gram–Schmidt
procedure. Given a sequence of linearly independent vectors the method
creates the basis by orthogonalising each vector to all of the earlier vectors.
Hence, if we are given the vectors

φ (x1) ,φ (x2) , . . . ,φ (x!) ,

the first basis vector is chosen to be

q1 =
φ (x1)

‖φ (x1)‖
.

The ith vector is then obtained by subtracting from φ (xi) multiples of
q1, . . . ,qi−1 in order to ensure it becomes orthogonal to each of them

φ (xi) −→ φ (xi) −
i−1∑

j=1

〈qj ,φ (xi)〉qj =
(
I − Qi−1Q′

i−1

)
φ (xi) ,

where Qi is the matrix whose i columns are the first i vectors q1, . . . ,qi. The
matrix (I − QiQ′

i) is a projection matrix onto the orthogonal complement



5.2 Computing projections: Gram–Schmidt, QR and Cholesky 125

of the space spanned by the first i vectors q1, . . . ,qi. Finally, if we let

νi =
∥∥(

I − Qi−1Q′
i−1

)
φ (xi)

∥∥ ,

the next basis vector is obtained by normalising the projection

qi = ν−1
i

(
I − Qi−1Q′

i−1

)
φ (xi) .

It follows that

φ (xi) = Qi−1Q′
i−1φ (xi) + νiqi = Qi

(
Q′

i−1φ (xi)
νi

)

= Q




Q′

i−1φ (xi)
νi

0!−i



 = Qri,

where Q = Q! is the matrix containing all the vectors qi as columns. This
implies that the matrix X containing the data vectors as rows can be de-
composed as

X′ = QR,

where R is an upper triangular matrix with ith column

ri =




Q′

i−1φ (xi)
νi

0!−i



 .

We can also view ri as the respresentation of xi in the basis

{q1, . . . ,q!} .

QR-decomposition This is the well-known QR-decomposition of the ma-
trix X′ into the product of an orthonormal matrix Q and upper triangular
matrix R with positive diagonal entries.

We now consider the application of this technique in a kernel-defined
feature space. Consider the matrix X whose rows are the projections of a
dataset

S = {x1, . . . ,x!}

into a feature space defined by a kernel κ with corresponding feature map-
ping φ. Applying the Gram–Schmidt method in the feature space would
lead to the decomposition

X′ = QR,



126 Elementary algorithms in feature space

defined above. This gives the following decomposition of the kernel matrix

K = XX′ = R′Q′QR = R′R.

Definition 5.10 This is the Cholesky decomposition of a positive semi-
definite matrix into the product of a lower triangular and upper triangular
matrix that are transposes of each other.

Since the Cholesky decomposition is unique, performing a Cholesky de-
composition of the kernel matrix is equivalent to performing Gram–Schmidt
orthonormalisation in the feature space and hence we can view Cholesky
decomposition as the dual implementation of the Gram–Schmidt orthonor-
malisation.

Cholesky implementation The computation of the (j, i)th entry in the
matrix R corresponds to evaluating the inner product between the ith vector
φ (xi) with the jth basis vector qj , for i > j. Since we can decompose φ (xi)
into a component lying in the subspace spanned by the basis vectors up to
the jth for which we have already computed the inner products and the
perpendicular complement, this inner product is given by

νj 〈qj ,φ (xi)〉 = 〈φ (xj) ,φ (xi)〉 −
j−1∑

t=1

〈qt, φ (xj)〉 〈qt, φ (xi)〉 ,

which corresponds to the Cholesky computation performed for j = 1, . . . , !

Rji = ν−1
j

(
Kji −

j−1∑

t=1

RtjRti

)
, i = j + 1, . . . , !,

where νj is obtained by keeping track of the residual norm squared di of the
vectors in the orthogonal complement. This is done by initialising with the
diagonal of the kernel matrix

di = Kii

and updating with

di ← di − R2
ji

as the ith entry is computed. The value of νj is then the residual norm of
the next vector; that is

νj =
√

dj .



5.2 Computing projections: Gram–Schmidt, QR and Cholesky 127

Note that the new representation of the data as the columns of the matrix
R gives rise to exactly the same kernel matrix. Hence, we have found a new
projection function

φ̂ : xi '−→ ri

which gives rise to the same kernel matrix on the set S; that is

κ (xi,xj) = κ̂ (xi,xj) =
〈
φ̂ (xi) , φ̂ (xj)

〉
, for all i, j = 1, . . . , !.

This new projection maps data into the coordinate system determined by
the orthonormal basis q1, . . . ,q!. Hence, to compute φ̂ and thus κ̂ for new
examples, we must evaluate the projections onto these basis vectors in the
feature space. This can be done by effectively computing an additional
column denoted by r of an extension of the matrix R from an additional
column of K denoted by k

rj = ν−1
j

(
kj −

j−1∑

t=1

Rtjrt

)
, j = 1, . . . , !.

We started this section by asking how we might find a basis for the data
when it lies in a subspace, or close to a subspace, of the feature space. If the
data are not linearly independent the corresponding residual norm dj will
be equal to 0 when we come to process an example that lies in the subspace
spanned by the earlier examples. This will occur if and only if the data lies
in a subspace of dimension j−1, which is equivalent to saying that the rank
of the matrix X is j − 1. But this is equivalent to deriving

K = R′R

with R a (j − 1) × ! matrix, or in other words to K having rank j − 1. We
have shown the following result.

Proposition 5.11 The rank of the dataset S is equal to that of the kernel
matrix K and by symmetry that of the matrix X′X.

We can therefore compute the rank of the data in the feature space by
computing the rank of the kernel matrix that only involves the inner prod-
ucts between the training points. Of course in high-dimensional feature
spaces we may expect the rank to be equal to the number of data points.
If we use the Gaussian kernel this will always be the case if the points are
distinct.

Clearly the size of dj indicates how independent the next example is from



128 Elementary algorithms in feature space

the examples processed so far. If we wish to capture the most important
dimensions of the data points it is therefore natural to vary the order that
the examples are processed in the Cholesky decomposition by always choos-
ing the point with largest residual norm, while those with small residuals
are eventually ignored altogether. This leads to a reordering of the order
in which the examples are processed. The reordering is computed by the
statement

[a, I(j + 1)] = max(d);

in the Matlab code below with the array I storing the permutation.
This approach corresponds to pivoting in Cholesky decomposition, while

failing to include all the examples is referred to as an incomplete Cholesky
decomposition. The corresponding approach in the feature space is known
as partial Gram–Schmidt orthonormalisation.

Algorithm 5.12 [Cholesky decomposition or dual Gram–Schmidt] Matlab
code for the incomplete Cholesky decomposition, equivalent to the dual
partial Gram–Schmidt orthonormalisation is given in Code Fragment 5.4.

Notice that the index array I stores the indices of the vectors in the order
in which they are chosen, while the parameter η allows for the possibility
that the data is only approximately contained in a subspace. The residual
norms will all be smaller than this value, while the dimension of the feature
space obtained is given by T . If η is set small enough then T will be equal
to the rank of the data in the feature space. Hence, we can determine the
rank of the data in the feature space using Code Fragment 5.4.

The partial Gram–Schmidt procedure can be viewed as a method of re-
ducing the size of the residuals by a greedy strategy of picking the largest at
each iteration. This naturally raises the question of whether smaller residu-
als could result if the subspace was chosen globally to minimise the residuals.
The solution to this problem will be given by choosing the eigensubspace
that will be shown to minimise the sum-squared residuals. The next section
begins to examine this approach to assessing the spread of the data in the fea-
ture space, though final answers to these questions will be given in Chapter
6.

5.3 Measuring the spread of the data

The mean estimates where the data is centred, while the variance measures
the extent to which the data is spread. We can compare two zero-mean uni-



5.3 Measuring the spread of the data 129

% original kernel matrix stored in variable K
% of size ell x ell.
% new features stored in matrix R of size T x ell
% eta gives threshold residual cutoff
j = 0;
R = zeros(ell,ell);
d = diag(K);
[a,I(j+1)] = max(d);
while a > eta

j = j + 1;
nu(j) = sqrt(a);
for i = 1:ell

R(j,i) = (K(I(j),i) - R(:,i)’*R(:,I(j)))/nu(j);
d(i) = d(i) - R(j,i)^2;

end
[a,I(j+1)] = max(d);

end
T = j;
R = R(1:T,:);
% for new example with vector of inner products
% k of size ell x 1 to compute new features r
r = zeros(T, 1);
for j=1:T

r(j) = (k(I(j)) - r’*R(:,I(j)))/nu(j);
end

Code Fragment 5.4. Matlab code for performing incomplete Cholesky decomposi-
tion or dual partial Gram–Schmidt orthogonalisation.

variate random variables using a measure known as the covariance defined
to be the expectation of their product

cov (x, y) = Exy[xy].

Frequently, raw feature components from different sensors are difficult to
compare because the units of measurement are different. It is possible to
compensate for this by standardising the features into unitless quantities.
The standardisation x̂ of a feature x is

x̂ =
x − µx

σx
,

where µx and σx are the mean and standard deviation of the random variable
x. The measure x̂ is known as the standard score. The covariance

Ex̂ŷ[x̂ŷ]


