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So far...

◮ Introduction to RKHS

◮ RKHS based learning algorithms

◮ Kernel PCA

◮ Kernel regression

◮ SVMs for classification and regression

◮ Hypothesis testing (two-sample and independence tests)

◮ Feature selection, Clustering, ICA

◮ Representer theorem



This Lecture

Why RKHS?

How to choose an RKHS?

◮ Polynomial kernels

◮ Radial basis kernels

◮ Spline kernel

◮ Laplacian kernel

“Large” reproducing kernel Hilbert spaces



Binary Classification

◮ Given: D := {(xj , yj)}
N
j=1, xj ∈ X , yj ∈ {−1,+1}

◮ Goal: Learn a function f : X → R such that

yj = sign(f (xj)), ∀ j = 1, . . . ,N



Linear Classifiers

◮ Linear classifier: f (x) = 〈w , x〉+ b, w , x ∈ Rd , b ∈ R

◮ Find w ∈ Rd and b ∈ R such that

yj (〈w , xj 〉+ b) ≥ 0, ∀ j = 1, . . . ,N.



Maximum Margin Classifiers

◮ Popular Idea: Maximize the margin (distance from f to D):

max
w ,b

min
j∈{1,...,N}

|〈w , xj 〉+ b|

‖w‖

◮ Result: Linear support vector machine (SVM)

min
w ,b

{‖w‖ : yj (〈w , xj 〉+ b) ≥ 1, ∀ j = 1, . . . ,N}



Non-linear Classifiers

◮ Issue: Linear SVM is not suitable to classify samples that cannot be
linearly separated, i.e.,

∄w ∈ Rd , b ∈ R s.t. yj = sign(〈w , xj 〉+ b), ∀ j = 1, . . . ,N



Kernel Classifiers

◮ Idea: X 7→ Φ(X ) ⊂ H and build a linear SVM in the Hilbert space,
H. Φ is called the feature map.

min
{αj}N

j=1

1

2

N∑

l,j=1

αlαjylyj〈Φ(xl ),Φ(xj )〉H −

N∑

j=1

αj

s.t.

N∑

j=1

yjαj = 0, αj ≥ 0, ∀ j

where f (x) =
∑N

j=1 yjαj〈Φ(xj ),Φ(x)〉H + b.



Problem of Learning

◮ Given a set D := {(x1, y1), . . . , (xn, yn)} of input/output pairs in
X × Y .

◮ Goal: “Learn” a function f : X → Y such that f (x) is a good
approximation of the possible response y for an arbitrary x .

Without any assumptions on the seen and unseen data, no learning is
possible.

◮ Assumption: The past and future pairs (x , y) are independently
generated by the same, but of course unknown probability
distribution P on X × Y .
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Loss Function

◮ We need a means to assess the quality of an estimated response
f (x) when the true input and output pair is (x , y).

◮ Loss function: L : Y × Y → [0,∞)

◮ Squared-loss: L(y , f (x)) = (y − f (x))2

◮ Hinge-loss: L(y , f (x)) = max(0, 1− yf (x))

◮ Smaller the value of L, better is the approximation of f (x) to y for a
given pair (x , y).
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Risk Functional

◮ Knowing L(y , f (x)) to be small for a particular (x , y) is not
sufficient. Need to quantify how small the function

(x , y) 7→ L(y , f (x))

is.

◮ One common quality measure is the average loss or expected loss of
f , called the risk functional i.e.,

RL,P(f ) :=

∫

X×Y

L(y , f (x)) dP(x , y).
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Bayes Risk and Bayes Function

◮ Note that for each f , we have an associated risk, RL,P(f ).

◮ Idea: Choose f that has the smallest risk.

f ∗ := arg inf
f :X→R

RL,P(f ),

where the infimum is taken over the set of all measurable functions.

◮ f ∗ is called the Bayes function and RL,P(f
∗) is called the Bayes risk.

◮ If P is known, finding f ∗ is often a relatively easy task and there is
nothing to learn.

◮ Exercise: Find f ∗ for L(y , f (x)) = (y − f (x))2 and
L(y , f (x)) = |y − f (x)|?
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Universal Consistency

◮ But P is unknown

◮ Without additional information, it is impossible to find an
(approximate) minimizer.

◮ This additional information comes from the training set,

D := {(x1, y1), . . . , (xn, yn)}
i.i.d.
∼ P.

◮ Given D, the goal is to construct fD : X → R such that

RL,P(fD) ≈ RL,P(f
∗)

◮ Universally consistent learning algorithm: for all P on X × Y , we
have

RL,P(fD) → RL,P(f
∗), n → ∞

in probability.
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Empirical Risk Minimization

◮ Since P is unknown but is known through D, it is tempting to
replace RL,P(f ) by

RL,D(f ) :=
1

n

n∑

i=1

L(yi , f (xi )),

called the empirical risk and find fD by

fD := arg min
f :X→R

RL,D(f )

◮ Is it a good idea?

◮ No! Choose fD such that fD(x) = yi , x = xi , ∀ i and
fD(x) = 0, otherwise.

◮ RL,D(fD) = 0 but can be very far from RL,P(f
∗)

Overfitting!!
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Empirical Risk Minimization

◮ How to avoid overfitting: Choose a small set F of functions
f : X → R that is assumed to contain a reasonably good
approximation to f ∗.

◮ Do minimization over F:

fD := argmin
f∈F

RL,D(f )

◮ Total error: Define R∗
L,P,F := inf f∈F RL,P(f )

RL,P(fD)−RL,P(f
∗) =

Estimation error
︷ ︸︸ ︷

RL,P(fD)−R∗
L,P,F

+

Approximation error
︷ ︸︸ ︷

R∗
L,P,F −RL,P(f

∗)



Approximation and Estimation Errors

Approximation

       error

Estimation

      error



Regularized Learning

◮ Let Ω be some functional on F such that for c1 ≤ c2,

{f ∈ F : Ω(f ) ≤ c1} ⊂ {f ∈ F : Ω(f ) ≤ c2}.

◮ Define

fD = arg min
f∈F : Ω(f )≤c

RL,D(f )

= arg min
f∈F : Ω(f )≤c

1

n

n∑

i=1

L(yi , f (xi ))

◮ In the Lagrangian formulation, we have

fD = argmin
f∈F

RL,D(f ) + λΩ(f )

= argmin
f∈F

1

n

n∑

i=1

L(yi , f (xi )) + λΩ(f )



Why RKHS?

◮ Various choices for F (with evaluation functional bounded):

◮ Lipschitz functions with Ω(f ) = ‖f ‖L

◮ Bounded Lipschitz functions with Ω(f ) = ‖f ‖L + ‖f ‖∞

◮ Bounded measurable functions with Ω(f ) = ‖f ‖∞

◮ RKHS, (H, k) with Ω(f ) = ‖f ‖H

◮ Advantage with RKHS: For convex L, the regularized objective is a
nice convex program.

◮ Hinge loss: Support vector machine

◮ Squared loss: Kernel regression

◮ How: By the representer theorem

Can I choose any RKHS?
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Loss Interpretation of Maximum Mean Discrepancy
Suppose Y = {−1, 1} and L(y , t) = −2yt.

R∗
L,P,F = inf

f∈F

∫

X×Y

L(y , f (x)) dP(x , y)

= inf
f∈F

∫

X×Y

L(y , f (x)) dP(x |y) dP(y)

= inf
f∈F

∫

X

L(1, f (x))P(y = 1) dP(x |y = 1)

+

∫

X

L(−1, f (x))P(y = −1) dP(x | − 1)

Let P(y = 1) = 1
2 , P(x |y = 1) = P(x) and P(x |y = −1) = Q(x).

Therefore,

R∗
L,P,F = inf

f∈F

∫

X

f (x) dQ(x)−

∫

X

f (x) dP(x)

= − sup
f∈F

∫

X

f (x) dP(x)−

∫

X

f (x) dQ(x)
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Loss Interpretation of Maximum Mean Discrepancy

R∗
L,P,F = −MMD(P,Q,F)

◮ MMD(P,Q,F) is a pseudometric on the space of probability
measures

◮ MMD(P,P,F) = 0

◮ Symmetry: MMD(P,Q,F) = MMD(Q,P,F)

◮ Triangle inequality:
MMD(P,R,F) ≤ MMD(P,Q,F) +MMD(Q,R,F)

◮ However, MMD(P,Q,F) = 0 ; P = Q

◮ Only for certain F, MMD(P,Q,F) = 0 ⇒ P = Q
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Choice of F

◮ Unit Lipschitz ball, F = {‖f ‖L ≤ 1}: Wasserstein distance

◮ Unit bounded Lipschitz ball, F = {‖f ‖L + ‖f ‖∞ ≤ 1}: Dudley
metric

◮ Unit sup ball, F = {‖f ‖∞ ≤ 1} : Total-variation distance

F is a unit ball in an RKHS?



F is an RKHS
◮ When F = {f ∈ H : ‖f ‖H ≤ 1}, then

MMD2(P,Q,F) =

∥
∥
∥
∥
∥
∥
∥
∥

µP

︷ ︸︸ ︷∫

X

k(·, x) dP(x)−

µQ

︷ ︸︸ ︷∫

X

k(·, x) dQ(x)

∥
∥
∥
∥
∥
∥
∥
∥

2

H

=

〈µP,µP〉H
︷ ︸︸ ︷∫

X

∫

X

k(x , y) dP(x) dP(y)
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Not all Kernels are Useful

◮ k(x , y) = c for all x , y ∈ X

MMD(P,Q,F) = 0, ∀P, Q.

◮ Another example: k(x , y) = 〈x , y〉Rd , x , y ∈ Rd

MMD(P,Q,F) = ‖MP −MQ‖Rd ,

where MP is the mean of P.

◮ Separable distributions can be made inseparable if the RKHS is not
chosen properly.

How to choose H?
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Computation: RKHS vs. Other F

◮ Suppose {X1, . . . ,Xm}
i.i.d.
∼ P and {Y1, . . . ,Yn}

i.i.d.
∼ Q.

◮ Define Pm := 1
m

∑m
i=1 δXi

and Qn := 1
n

∑n
i=1 δYi

, where δx represents
the Dirac measure at x .

◮ MMD(Pm,Qn, {‖f ‖H ≤ 1}) is obtained in a closed form as:

MMD2(Pm,Qn, {‖f ‖H ≤ 1}) =
1

m2

m∑

i,j=1

k(Xi ,Xj) +
1

n2

n∑

i,j=1

k(Yi ,Yj)

−
2

mn

∑

i,j

k(Xi ,Yj).

Very easy to compute!!



Computation: RKHS vs. Other F

◮ MMD(Pm,Qn,F) is obtained by solving a linear program for F =
Lipschitz and bounded Lipschitz balls. [Sriperumbudur et al., 2010a]

◮ Define Zi = Xi for i = 1, . . . ,m and Zm+i = Yi for i = 1, . . . , n. Let
ρ be a metric on X .

◮ MMD(Pm,Qn, {‖f ‖L ≤ 1}) = 1
m

∑m
i=1 a

⋆

i −
1
n

∑m+n
i=m+1 a

⋆

i , and

{a⋆i }
m+n
i=1 solve the following linear program,

max
a1,...,am+n

{

1

m

m∑

i=1

ai −
1

n

m+n∑

i=m+1

ai : −ρ(Zi ,Zj) ≤ ai − aj ≤ ρ(Zi ,Zj), ∀ i , j

}

.

More complex than with RKHS!!
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Error: RKHS vs. Other F

|MMD(Pm,Qn,F)−MMD(P,Q,F)| =?

◮ RKHS: [Gretton et al., 2007]

|MMD(Pm,Qn,F)−MMD(P,Q,F)| → 0, m, n → ∞

There exists C > 0 (independent of m and n) such that

|MMD(Pm,Qn,F)−MMD(P,Q,F)| ≤ C

√

m + n

mn

◮ Lipschitz and Bounded Lipschitz on Rd :
[Sriperumbudur et al., 2010a]

|MMD(Pm,Qn,F)−MMD(P,Q,F)| → 0, m, n → ∞

There exists C > 0 (independent of m and n) such that

|MMD(Pm,Qn,F)−MMD(P,Q,F)| ≤ C

(
m + n

mn

) 1
d+1

Curse of dimensionality!!
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How to choose H?



Large RKHS: Universal Kernel/RKHS

◮ Universal kernel: A kernel k on a compact metric space, X is said to
be universal if the RKHS, H is dense (w.r.t. uniform norm) in C (X ).

◮ [Steinwart and Christmann, 2008]: For certain conditions on L, if k
is universal, then

inf
f∈H

RL,P(f ) = RL,P(f
∗)

◮ Squared loss, Hinge loss,...



Large RKHS



Strictly Positive Definite Kernels

A symmetric function k : X × X → R is positive definite if ∀ n ≥ 1,
∀ (a1, . . . , an) ∈ Rn, ∀ (x1, . . . , xn) ∈ X n,

n∑

i=1

n∑

j=1

aiajk(xi , xj ) ≥ 0.

k is strictly positive definite if for mutually distinct xi , the equality holds
only when all the ai are zero.



Stronger than Strictly Positive Definite Kernels

◮ Mb(X ) = set of finite signed measure on X .

[Sriperumbudur et al., 2010b]: k is universal if and only if

µ 7→

∫

X

k(·, x) dµ(x), µ ∈ Mb(X )

is injective, i.e., ∫

X

k(·, x) dµ(x) = 0 ⇒ µ = 0

which is equivalent to

∫

X

∫

X

k(x , y) dµ(x) dµ(y) > 0, ∀µ ∈ Mb(X )\{0}

Generalization of strictly positive definite kernels
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Why Useful?

◮ Denseness characterization is not easy to check

◮ In general, though

∫

X

∫

X

k(x , y) dµ(x) dµ(y) > 0, ∀µ ∈ Mb(X )\{0}

is also not easy to check, for certain X and for certain families of k ,
the above condition is easy to check

◮ Later: Gaussian and Spline kernels are universal; Sinc kernel is not
but is strictly positive definite.



MMD: What Kernels are Useful?

◮ Note that

MMD2(P,Q,F) =

∫

X

∫

X

k(x , y) d(P−Q)(x) d(P−Q)(y)

◮ If k is universal, which means
∫

X

∫

X

k(x , y) dµ(x) dµ(y) = 0 ⇒ µ = 0,

then
MMD(P,Q,F) = 0 ⇒ P = Q (characteristic)

◮ In other words, universal kernel ⇒ characteristic kernel



When is a Kernel Universal?

◮ [Sriperumbudur et al., 2010b]: The notion of universality can be
generalized to non-compact X and we define bounded k to be
universal if

∫

X

∫

X

k(x , y) dµ(x) dµ(y) > 0, ∀µ ∈ Mb(X )\{0}.

◮ Nice characterization can be obtained if k is a bounded continuous
translation invariant kernel on Rd , i.e.,

k(x , y) = ψ(x − y)

◮ Examples: Gaussian, e−‖x−y‖22 , Laplacian, e−‖x−y‖1

◮ Bochner’s Theorem: ψ is positive definite if and only it is the
Fourier transform of a non-negative finite Borel measure, Λ,

ψ(x) =

∫

Rd

e−
√
−1xT

ω dΛ(ω).
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Translation Invariant Kernels on Rd

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:

Result: universal ⇔ characteristic ⇔ support of Λ is Rd

◮ Support of a function, f is {x ∈ X : f (x) 6= 0}

Proof: support of Λ is Rd ⇒ universal ⇒ characteristic

∫ ∫

Rd

k(x , y) dµ(x) dµ(y) =

∫ ∫ ∫

Rd

e−
√
−1(x−y)Tω dΛ(ω) dµ(x) dµ(y)

=

∫ ∫

Rd

e−
√
−1xT

ω dµ(x)

∫

Rd

e
√
−1yT

ω dµ(y) dΛ(ω)

=

∫

Rd

µ̂(ω)µ̂(ω) dΛ(ω)

=

∫

Rd

|µ̂(ω)|
2
dΛ(ω).

If the support of Λ is Rd , then
∫∫

Rd ψ(x − y) dµ(x) dµ(y) = 0 implies
µ̂ = 0 and therefore µ = 0.
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Result: universal ⇔ characteristic ⇔ support of Λ is Rd

◮ Support of a function, f is {x ∈ X : f (x) 6= 0}

Proof: support of Λ is Rd ⇒ universal ⇒ characteristic

∫ ∫

Rd

k(x , y) dµ(x) dµ(y) =

∫ ∫ ∫

Rd

e−
√
−1(x−y)Tω dΛ(ω) dµ(x) dµ(y)

=

∫ ∫

Rd

e−
√
−1xT

ω dµ(x)

∫

Rd

e
√
−1yT

ω dµ(y) dΛ(ω)

=

∫

Rd

µ̂(ω)µ̂(ω) dΛ(ω)

=

∫

Rd

|µ̂(ω)|
2
dΛ(ω).

If the support of Λ is Rd , then
∫∫

Rd ψ(x − y) dµ(x) dµ(y) = 0 implies
µ̂ = 0 and therefore µ = 0.



Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency
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Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency

Gaussian kernel

|φP − φQ|
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Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency

Universal
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Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency

B-Spline kernel

|φP − φQ|
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Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency
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Translation Invariant Kernels on Rd
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◮ Example: P differs from Q at (roughly) one frequency
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Proof Idea of the Converse

◮ supp(Λ) = Rd ⇒ universal ⇒ characteristic

◮ If we show that characteristic ⇒ supp(Λ) = Rd , then we are DONE.

◮ Equivalently, we need to show that if the support of Λ is NOT Rd ,
then ∃P 6= Q such that MMD(P,Q, {‖f ‖H ≤ 1}) = 0



Proof Idea of the Converse

◮ supp(Λ) = Rd ⇒ universal ⇒ characteristic

◮ If we show that characteristic ⇒ supp(Λ) = Rd , then we are DONE.

◮ Equivalently, we need to show that if the support of Λ is NOT Rd ,
then ∃P 6= Q such that MMD(P,Q, {‖f ‖H ≤ 1}) = 0



Proof Idea of the Converse

◮ supp(Λ) = Rd ⇒ universal ⇒ characteristic

◮ If we show that characteristic ⇒ supp(Λ) = Rd , then we are DONE.

◮ Equivalently, we need to show that if the support of Λ is NOT Rd ,
then ∃P 6= Q such that MMD(P,Q, {‖f ‖H ≤ 1}) = 0



Proof

◮ Suppose support of Λ is NOT Rd .

◮ Then there exists an open set, U ⊂ Rd\supp(Λ).

◮ Construct a non-zero real-valued symmetric function, θ supported on
U with θ(0) = 0.

◮ Define dµ(x) = θ̂(x) dx where θ̂ is the Fourier transform of θ.

◮ Also µ(Rd ) = 0.

◮ There exists positive measures µ+ 6= µ− such that µ = µ+ − µ−

(Jordan decomposition)

◮ Define α := µ+(Rd ), P := α−1µ+ and Q := α−1µ−

◮ Clearly φP − φQ = α−1θ which is NOT supported on supp(Λ)

◮ Therefore, there exits P 6= Q such that MMD(P,Q,F) = 0
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Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency

Sinc kernel

|φP − φQ|
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Translation Invariant Kernels on Rd

MMD(P,Q,F) = ‖φP − φQ‖L2(Rd ,Λ)

◮ Example: P differs from Q at (roughly) one frequency

NOT universal
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Summary

◮ Why RKHS?

◮ Problem of learning

◮ Loss function, Risk functional

◮ Bayes risk and Bayes function

◮ Empirical risk minimization

◮ Approximation and estimation errors

◮ RKHS allows great computational advantage

◮ How to choose an RKHS?

◮ Universal RKHS that makes the approximation error to be zero.

◮ Universal kernels generalize strictly positive definite kernels

◮ Nice characterization for translation invariant kernels on Rd .
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