"Large" Reproducing Kernel Hilbert Spaces

Advanced Topics in Machine Learning: COMPGI13

Bharath K. Sriperumbudur and Arthur Gretton

Gatsby Unit
20 March 2012

So far...

- Introduction to RKHS
- RKHS based learning algorithms
- Kernel PCA
- Kernel regression
- SVMs for classification and regression
- Hypothesis testing (two-sample and independence tests)
- Feature selection, Clustering, ICA
- Representer theorem

This Lecture

Why RKHS?
 How to choose an RKHS?

- Polynomial kernels
- Radial basis kernels
- Spline kernel
- Laplacian kernel
"Large" reproducing kernel Hilbert spaces

Binary Classification

- Given: $\mathcal{D}:=\left\{\left(x_{j}, y_{j}\right)\right\}_{j=1}^{N}, x_{j} \in \mathcal{X}, y_{j} \in\{-1,+1\}$
- Goal: Learn a function $f: \mathcal{X} \rightarrow \mathbb{R}$ such that

$$
y_{j}=\operatorname{sign}\left(f\left(x_{j}\right)\right), \forall j=1, \ldots, N
$$

Linear Classifiers

- Linear classifier: $f(x)=\langle w, x\rangle+b, w, x \in \mathbb{R}^{d}, b \in \mathbb{R}$
- Find $w \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$ such that

$$
y_{j}\left(\left\langle w, x_{j}\right\rangle+b\right) \geq 0, \forall j=1, \ldots, N .
$$

Maximum Margin Classifiers

- Popular Idea: Maximize the margin (distance from f to \mathcal{D}):

$$
\max _{w, b} \min _{j \in\{1, \ldots, N\}} \frac{\left|\left\langle w, x_{j}\right\rangle+b\right|}{\|w\|}
$$

- Result: Linear support vector machine (SVM)

$$
\min _{w, b}\left\{\|w\|: y_{j}\left(\left\langle w, x_{j}\right\rangle+b\right) \geq 1, \forall j=1, \ldots, N\right\}
$$

Non-linear Classifiers

- Issue: Linear SVM is not suitable to classify samples that cannot be linearly separated, i.e.,

$$
\nexists w \in \mathbb{R}^{d}, b \in \mathbb{R} \text { s.t. } y_{j}=\operatorname{sign}\left(\left\langle w, x_{j}\right\rangle+b\right), \forall j=1, \ldots, N
$$

Kernel Classifiers

- Idea: $\mathcal{X} \mapsto \Phi(\mathcal{X}) \subset \mathcal{H}$ and build a linear SVM in the Hilbert space, \mathcal{H}. Φ is called the feature map.

$$
\begin{aligned}
\min _{\left\{\alpha_{j}\right\}_{j=1}^{N}} & \frac{1}{2} \sum_{l, j=1}^{N} \alpha_{l} \alpha_{j} y_{l} y_{j}\left\langle\Phi\left(x_{l}\right), \Phi\left(x_{j}\right)\right\rangle_{\mathcal{H}}-\sum_{j=1}^{N} \alpha_{j} \\
\text { s.t. } & \sum_{j=1}^{N} y_{j} \alpha_{j}=0, \alpha_{j} \geq 0, \forall j
\end{aligned}
$$

where $f(x)=\sum_{j=1}^{N} y_{j} \alpha_{j}\left\langle\Phi\left(x_{j}\right), \Phi(x)\right\rangle_{\mathcal{H}}+b$.

Problem of Learning

- Given a set $D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ of input/output pairs in $X \times Y$.
- Goal: "Learn" a function $f: X \rightarrow Y$ such that $f(x)$ is a good approximation of the possible response y for an arbitrary x.

Without any assumptions on the seen and unseen data, no learning is possible.

- Assumption: The past and future pairs (x, y) are independently generated by the same, but of course unknown probability distribution P on $X \times Y$.

Problem of Learning

- Given a set $D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ of input/output pairs in $X \times Y$.
- Goal: "Learn" a function $f: X \rightarrow Y$ such that $f(x)$ is a good approximation of the possible response y for an arbitrary x.

Without any assumptions on the seen and unseen data, no learning is possible.

- Assumption: The past and future pairs (x, y) are independently generated by the same, but of course unknown probability distribution P on $X \times Y$.

Problem of Learning

- Given a set $D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ of input/output pairs in $X \times Y$.
- Goal: "Learn" a function $f: X \rightarrow Y$ such that $f(x)$ is a good approximation of the possible response y for an arbitrary x.

Without any assumptions on the seen and unseen data, no learning is possible.

- Assumption: The past and future pairs (x, y) are independently generated by the same, but of course unknown probability distribution P on $X \times Y$.

Loss Function

- We need a means to assess the quality of an estimated response $f(x)$ when the true input and output pair is (x, y).
- Loss function: $L: Y \times Y \rightarrow[0, \infty)$
- Squared-loss: $L(y, f(x))=(y-f(x))^{2}$
- Hinge-loss: $L(y, f(x))=\max (0,1-y f(x))$
- Smaller the value of L, better is the approximation of $f(x)$ to y for a given pair (x, y).

Loss Function

- We need a means to assess the quality of an estimated response $f(x)$ when the true input and output pair is (x, y).
- Loss function: $L: Y \times Y \rightarrow[0, \infty)$
- Squared-loss: $L(y, f(x))=(y-f(x))^{2}$
- Hinge-loss: $L(y, f(x))=\max (0,1-y f(x))$
- Smaller the value of L, better is the approximation of $f(x)$ to y for a given pair (x, y).

Loss Function

- We need a means to assess the quality of an estimated response $f(x)$ when the true input and output pair is (x, y).
- Loss function: $L: Y \times Y \rightarrow[0, \infty)$
- Squared-loss: $L(y, f(x))=(y-f(x))^{2}$
- Hinge-loss: $L(y, f(x))=\max (0,1-y f(x))$
- Smaller the value of L, better is the approximation of $f(x)$ to y for a given pair (x, y).

Risk Functional

- Knowing $L(y, f(x))$ to be small for a particular (x, y) is not sufficient. Need to quantify how small the function

$$
(x, y) \mapsto L(y, f(x))
$$

is.

- One common quality measure is the average loss or expected loss of f, called the risk functional i.e.,

Risk Functional

- Knowing $L(y, f(x))$ to be small for a particular (x, y) is not sufficient. Need to quantify how small the function

$$
(x, y) \mapsto L(y, f(x))
$$

is.

- One common quality measure is the average loss or expected loss of f, called the risk functional i.e.,

$$
\mathcal{R}_{L, \mathbf{P}}(f):=\int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y) .
$$

Bayes Risk and Bayes Function

- Note that for each f, we have an associated risk, $\mathcal{R}_{L, \mathbf{P}}(f)$.
- Idea: Choose f that has the smallest risk.

$$
f^{*}:=\arg \inf _{f: X \rightarrow \mathbb{R}} \mathcal{R}_{L, \mathbf{P}}(f),
$$

where the infimum is taken over the set of all measurable functions.

- f^{*} is called the Bayes function and $\mathcal{R}_{L, \mathbf{p}}\left(f^{*}\right)$ is called the Bayes risk.
- If \mathbf{P} is known, finding f^{*} is often a relatively easy task and there is nothing to learn.
- Exercise: Find f^{*} for $L(y, f(x))=(y-f(x))^{2}$ and

Bayes Risk and Bayes Function

- Note that for each f, we have an associated risk, $\mathcal{R}_{L, \mathbf{P}}(f)$.
- Idea: Choose f that has the smallest risk.

$$
f^{*}:=\arg \inf _{f: X \rightarrow \mathbb{R}} \mathcal{R}_{L, \mathbf{P}}(f),
$$

where the infimum is taken over the set of all measurable functions.

- f^{*} is called the Bayes function and $\mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)$ is called the Bayes risk.
- If \mathbf{P} is known, finding f^{*} is often a relatively easy task and there is nothing to learn.
- Exercise: Find f^{*} for $L(y, f(x))=(y-f(x))^{2}$ and $L(y, f(x))=|y-f(x)|$?

Universal Consistency

- But \mathbf{P} is unknown
- Without additional information, it is impossible to find an (approximate) minimizer.
- This additional information comes from the training set,
$D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} \mathbf{P}$.
- Given D, the goal is to construct $f_{D}: X \rightarrow \mathbb{R}$ such that

- Universally consistent learning algorithm: for all \mathbf{P} on $X \times Y$, we have

$$
\mathcal{R}_{L, \mathbf{P}}\left(f_{D}\right) \rightarrow \mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right),
$$

in probability.

Universal Consistency

- But \mathbf{P} is unknown
- Without additional information, it is impossible to find an (approximate) minimizer.
- This additional information comes from the training set, $D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \stackrel{i . i . d .}{\sim} \mathbf{P}$.
- Given D, the goal is to construct $f_{D}: X \rightarrow \mathbb{R}$ such that $\mathcal{R}_{L, \mathrm{P}}\left(f_{D}\right) \approx \mathcal{R}_{L, \mathrm{P}}\left(f^{*}\right)$
- Universally consistent learning algorithm: for all \mathbf{P} on $X \times Y$, we have

$$
\mathcal{R}_{L, \mathrm{p}}\left(f_{D}\right) \rightarrow \mathcal{R}_{L, \mathrm{p}}\left(f^{*}\right)
$$

in probability.

Universal Consistency

- But \mathbf{P} is unknown
- Without additional information, it is impossible to find an (approximate) minimizer.
- This additional information comes from the training set, $D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \stackrel{i . i . d .}{\sim} \mathbf{P}$.
- Given D, the goal is to construct $f_{D}: X \rightarrow \mathbb{R}$ such that

$$
\mathcal{R}_{L, \mathbf{P}}\left(f_{D}\right) \approx \mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)
$$

- Universally consistent learning algorithm: for all \mathbf{P} on $X \times Y$, we have

$$
\mathcal{R}_{L, \mathrm{P}}\left(f_{D}\right) \rightarrow \mathcal{R}_{L, \mathrm{P}}\left(f^{*}\right),
$$

in probability.

Universal Consistency

- But \mathbf{P} is unknown
- Without additional information, it is impossible to find an (approximate) minimizer.
- This additional information comes from the training set, $D:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \stackrel{i . i . d .}{\sim} \mathbf{P}$.
- Given D, the goal is to construct $f_{D}: X \rightarrow \mathbb{R}$ such that

$$
\mathcal{R}_{L, \mathbf{P}}\left(f_{D}\right) \approx \mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)
$$

- Universally consistent learning algorithm: for all \mathbf{P} on $X \times Y$, we have

$$
\mathcal{R}_{L, \mathbf{P}}\left(f_{D}\right) \rightarrow \mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right), \quad n \rightarrow \infty
$$

in probability.

Empirical Risk Minimization

- Since \mathbf{P} is unknown but is known through D, it is tempting to replace $\mathcal{R}_{L, \mathbf{P}}(f)$ by

$$
\mathcal{R}_{L, D}(f):=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)
$$

called the empirical risk and find f_{D} by

$$
f_{D}:=\arg \min _{f: X \rightarrow \mathbb{R}} \mathcal{R}_{L, D}(f)
$$

- Is it a good idea?
- No! Choose f_{D} such that $f_{D}(x)=y_{i}, x=x_{i}, \forall i$ and $f_{D}(x)=0$, otherwise.
- $\mathcal{R}_{L, D}\left(f_{D}\right)=0$ but can be very far from $\mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)$

Empirical Risk Minimization

- Since \mathbf{P} is unknown but is known through D, it is tempting to replace $\mathcal{R}_{L, \mathbf{p}}(f)$ by

$$
\mathcal{R}_{L, D}(f):=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)
$$

called the empirical risk and find f_{D} by

$$
f_{D}:=\arg \min _{f: X \rightarrow \mathbb{R}} \mathcal{R}_{L, D}(f)
$$

- Is it a good idea?
- No! Choose f_{D} such that $f_{D}(x)=y_{i}, x=x_{i}, \forall i$ and $f_{D}(x)=0$, otherwise.
- $\mathcal{R}_{L, D}\left(f_{D}\right)=0$ but can be very far from $\mathcal{R}_{L, \mathrm{P}}\left(f^{*}\right)$

Empirical Risk Minimization

- Since \mathbf{P} is unknown but is known through D, it is tempting to replace $\mathcal{R}_{L, \mathbf{P}}(f)$ by

$$
\mathcal{R}_{L, D}(f):=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right),
$$

called the empirical risk and find f_{D} by

$$
f_{D}:=\arg \min _{f: X \rightarrow \mathbb{R}} \mathcal{R}_{L, D}(f)
$$

- Is it a good idea?
- No! Choose f_{D} such that $f_{D}(x)=y_{i}, x=x_{i}, \forall i$ and $f_{D}(x)=0$, otherwise.
- $\mathcal{R}_{L, D}\left(f_{D}\right)=0$ but can be very far from $\mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)$

Overfitting!!

Empirical Risk Minimization

- How to avoid overfitting: Choose a small set \mathcal{F} of functions $f: X \rightarrow \mathbb{R}$ that is assumed to contain a reasonably good approximation to f^{*}.
- Do minimization over \mathcal{F} :

$$
f_{D}:=\arg \min _{f \in \mathcal{F}} \mathcal{R}_{L, D}(f)
$$

- Total error: Define $\mathcal{R}_{L, \mathrm{P}, \mathcal{F}}^{*}:=\inf _{f \in \mathcal{F}} \mathcal{R}_{L, \mathrm{P}}(f)$

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}}\left(f_{D}\right)-\mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)= & \overbrace{\mathcal{R}_{L, \mathbf{P}}\left(f_{D}\right)-\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}}^{\text {Estimation error }} \\
& +\overbrace{\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}-\mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)}^{\text {Approximation error }}
\end{aligned}
$$

Approximation and Estimation Errors

Regularized Learning

- Let Ω be some functional on \mathcal{F} such that for $c_{1} \leq c_{2}$,

$$
\left\{f \in \mathcal{F}: \Omega(f) \leq c_{1}\right\} \subset\left\{f \in \mathcal{F}: \Omega(f) \leq c_{2}\right\} .
$$

- Define

$$
\begin{aligned}
f_{D} & =\arg \min _{f \in \mathcal{F}: \Omega(f) \leq c} R_{L, D}(f) \\
& =\arg \min _{f \in \mathcal{F}: \Omega(f) \leq c} \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)
\end{aligned}
$$

- In the Lagrangian formulation, we have

$$
\begin{aligned}
f_{D} & =\arg \min _{f \in \mathcal{F}} R_{L, D}(f)+\lambda \Omega(f) \\
& =\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega(f)
\end{aligned}
$$

Why RKHS?

- Various choices for \mathcal{F} (with evaluation functional bounded):
- Lipschitz functions with $\Omega(f)=\|f\|_{L}$
- Bounded Lipschitz functions with $\Omega(f)=\|f\|_{L}+\|f\|_{\infty}$
- Bounded measurable functions with $\Omega(f)=\|f\|_{\infty}$
- RKHS, (\mathcal{H}, k) with $\Omega(f)=\|f\|_{\mathcal{H}}$
- Advantage with RKHS: For convex L, the regularized objective is a nice convex program.
- Hinge loss: Support vector machine
- Squared loss: Kernel regression
- How: By the representer theorem

Why RKHS?

- Various choices for \mathcal{F} (with evaluation functional bounded):
- Lipschitz functions with $\Omega(f)=\|f\|_{L}$
- Bounded Lipschitz functions with $\Omega(f)=\|f\|_{L}+\|f\|_{\infty}$
- Bounded measurable functions with $\Omega(f)=\|f\|_{\infty}$
- RKHS, (\mathcal{H}, k) with $\Omega(f)=\|f\|_{\mathcal{H}}$
- Advantage with RKHS: For convex L, the regularized objective is a nice convex program.
- Hinge loss: Support vector machine
- Squared loss: Kernel regression
- How: By the representer theorem

Can I choose any RKHS?

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$.
Therefore,

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=\inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y)
$$

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$. Therefore,

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y) \\
= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x \mid y) d \mathbf{P}(y) \\
= & \inf _{f \in \mathcal{F}} \int_{X} L(1, f(x)) \mathbb{P}(y=1) d \mathbb{P}(x \mid y=1) \\
& \quad+\int_{X} L(-1, f(x)) \mathbb{P}(y=-1) d \mathbb{P}(x \mid-1)
\end{aligned}
$$

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$. Therefore,

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y) \\
= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x \mid y) d \mathbf{P}(y) \\
= & \inf _{f \in \mathcal{F}} \int_{X} L(1, f(x)) \mathbf{P}(y=1) d \mathbf{P}(x \mid y=1) \\
& \quad+\int_{X} L(-1, f(x)) \mathbf{P}(y=-1) d \mathbf{P}(x \mid-1)
\end{aligned}
$$

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$.
Therefore,
$\mathcal{R}_{L, \mathrm{P}, \mathcal{F}}^{*}=\inf _{f \in \mathcal{F}} \int_{X} f(x) d \mathbb{Q}(x)-\int_{X} f(x) d \mathbb{P}(x)$

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y) \\
= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x \mid y) d \mathbf{P}(y) \\
= & \inf _{f \in \mathcal{F}} \int_{X} L(1, f(x)) \mathbf{P}(y=1) d \mathbf{P}(x \mid y=1) \\
& \quad \quad \int_{X} L(-1, f(x)) \mathbf{P}(y=-1) d \mathbf{P}(x \mid-1)
\end{aligned}
$$

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$.
Therefore,

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y) \\
= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x \mid y) d \mathbf{P}(y) \\
= & \inf _{f \in \mathcal{F}} \int_{X} L(1, f(x)) \mathbf{P}(y=1) d \mathbf{P}(x \mid y=1) \\
& \quad \quad \int_{X} L(-1, f(x)) \mathbf{P}(y=-1) d \mathbf{P}(x \mid-1)
\end{aligned}
$$

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$.
Therefore,

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=\inf _{f \in \mathcal{F}} \int_{X} f(x) d \mathbb{Q}(x)-\int_{X} f(x) d \mathbb{P}(x)
$$

Loss Interpretation of Maximum Mean Discrepancy

Suppose $Y=\{-1,1\}$ and $L(y, t)=-2 y t$.

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x, y) \\
= & \inf _{f \in \mathcal{F}} \int_{X \times Y} L(y, f(x)) d \mathbf{P}(x \mid y) d \mathbf{P}(y) \\
= & \inf _{f \in \mathcal{F}} \int_{X} L(1, f(x)) \mathbf{P}(y=1) d \mathbf{P}(x \mid y=1) \\
& \quad \quad \int_{X} L(-1, f(x)) \mathbf{P}(y=-1) d \mathbf{P}(x \mid-1)
\end{aligned}
$$

Let $\mathbf{P}(y=1)=\frac{1}{2}, \mathbf{P}(x \mid y=1)=\mathbb{P}(x)$ and $\mathbf{P}(x \mid y=-1)=\mathbb{Q}(x)$.
Therefore,

$$
\begin{aligned}
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*} & =\inf _{f \in \mathcal{F}} \int_{X} f(x) d \mathbb{Q}(x)-\int_{X} f(x) d \mathbb{P}(x) \\
& =-\sup _{f \in \mathcal{F}} \int_{X} f(x) d \mathbb{P}(x)-\int_{X} f(x) d \mathbb{Q}(x)
\end{aligned}
$$

Loss Interpretation of Maximum Mean Discrepancy

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})
$$

- $M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})$ is a pseudometric on the space of probability measures
- $\operatorname{MMD}(\mathbb{P}, \mathbb{P}, \mathcal{F})=0$
. Symmetry: $M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=M M D(\mathbb{Q}, \mathbb{P}, \mathcal{F})$
- Triangle inequality:
$M M D(\mathbb{P}, \mathbb{R}, \mathcal{F}) \leq M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})+M M D(\mathbb{Q}, \mathbb{R}, \mathcal{F})$
- However, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \nRightarrow \mathbb{P}=\mathbb{Q}$
- Only for certain $\mathcal{F}, M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q}$

Loss Interpretation of Maximum Mean Discrepancy

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})
$$

- $M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})$ is a pseudometric on the space of probability measures
- $M M D(\mathbb{P}, \mathbb{P}, \mathcal{F})=0$
- Symmetry: $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=M M D(\mathbb{Q}, \mathbb{P}, \mathcal{F})$
- Triangle inequality:
$M M D(\mathbb{P}, \mathbb{R}, \mathcal{F}) \leq M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})+M M D(\mathbb{Q}, \mathbb{R}, \mathcal{F})$
- However, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \nRightarrow \mathbb{P}=\mathbb{Q}$
- Only for certain $\mathcal{F}, \operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q}$

Loss Interpretation of Maximum Mean Discrepancy

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})$ is a pseudometric on the space of probability measures
- $M M D(\mathbb{P}, \mathbb{P}, \mathcal{F})=0$
- Symmetry: $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\operatorname{MMD}(\mathbb{Q}, \mathbb{P}, \mathcal{F})$
- Triangle inequality:
$M M D(\mathbb{P}, \mathbb{R}, \mathcal{F}) \leq M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})+M M D(\mathbb{Q}, \mathbb{R}, \mathcal{F})$
- However, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \nRightarrow \mathbb{P}=\mathbb{Q}$
- Only for certain $\mathcal{F}, \operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q}$

Loss Interpretation of Maximum Mean Discrepancy

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})
$$

- $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})$ is a pseudometric on the space of probability measures
- $M M D(\mathbb{P}, \mathbb{P}, \mathcal{F})=0$
- Symmetry: $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\operatorname{MMD}(\mathbb{Q}, \mathbb{P}, \mathcal{F})$
- Triangle inequality:
$\operatorname{MMD}(\mathbb{P}, \mathbb{R}, \mathcal{F}) \leq M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})+\operatorname{MMD}(\mathbb{Q}, \mathbb{R}, \mathcal{F})$
- However, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \nRightarrow \mathbb{P}=\mathbb{Q}$
- Only for certain $\mathcal{F}, \operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q}$

Loss Interpretation of Maximum Mean Discrepancy

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})
$$

- $M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})$ is a pseudometric on the space of probability measures
- $M M D(\mathbb{P}, \mathbb{P}, \mathcal{F})=0$
- Symmetry: $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\operatorname{MMD}(\mathbb{Q}, \mathbb{P}, \mathcal{F})$
- Triangle inequality:
$\operatorname{MMD}(\mathbb{P}, \mathbb{R}, \mathcal{F}) \leq M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})+\operatorname{MMD}(\mathbb{Q}, \mathbb{R}, \mathcal{F})$
- However, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \nRightarrow \mathbb{P}=\mathbb{Q}$
- Only for certain $\mathcal{F}, \operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q}$

Loss Interpretation of Maximum Mean Discrepancy

$$
\mathcal{R}_{L, \mathbf{P}, \mathcal{F}}^{*}=-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})
$$

- $M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})$ is a pseudometric on the space of probability measures
- $M M D(\mathbb{P}, \mathbb{P}, \mathcal{F})=0$
- Symmetry: $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\operatorname{MMD}(\mathbb{Q}, \mathbb{P}, \mathcal{F})$
- Triangle inequality: $\operatorname{MMD}(\mathbb{P}, \mathbb{R}, \mathcal{F}) \leq M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})+\operatorname{MMD}(\mathbb{Q}, \mathbb{R}, \mathcal{F})$
- However, $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \nRightarrow \mathbb{P}=\mathbb{Q}$
- Only for certain $\mathcal{F}, \operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q}$

Choice of \mathcal{F}

- Unit Lipschitz ball, $\mathcal{F}=\left\{\|f\|_{L} \leq 1\right\}$: Wasserstein distance
- Unit bounded Lipschitz ball, $\mathcal{F}=\left\{\|f\|_{L}+\|f\|_{\infty} \leq 1\right\}$: Dudley metric
- Unit sup ball, $\mathcal{F}=\left\{\|f\|_{\infty} \leq 1\right\}$: Total-variation distance

$$
\mathcal{F} \text { is a unit ball in an RKHS? }
$$

\mathcal{F} is an RKHS

- When $\mathcal{F}=\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq 1\right\}$, then

for $\mu=\mathbb{P}-\mathbb{Q}$.

\mathcal{F} is an RKHS

- When $\mathcal{F}=\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq 1\right\}$, then

$$
M M D^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\|\overbrace{\int_{X} k(\cdot, x) d \mathbb{P}(x)}^{\mu_{\mathrm{P}}}-\overbrace{\int_{X} k(\cdot, x) d \mathbb{Q}(x)}^{\mu_{0}}\|_{\mathcal{H}}^{2}
$$

\mathcal{F} is an RKHS

- When $\mathcal{F}=\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq 1\right\}$, then

$$
\begin{aligned}
M M D^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{F})= & \|\overbrace{\int_{x} k(\cdot, x) d \mathbb{P}(x)}^{\mu_{\mathbb{P}}}-\overbrace{\int_{X} k(\cdot, x) d \mathbb{Q}(x)}^{\mu_{\mathbb{Q}}}\|_{\mathcal{H}} \\
= & \overbrace{\int_{x} \int_{X} k(x, y) d \mathbb{P}(x) d \mathbb{P}(y)}^{\left\langle\mu_{\mathbb{P}}, \mu_{\mu}\right\rangle \mathcal{H}} \\
& +\overbrace{\int_{x} \int_{X} k(x, y) d \mathbb{Q}(x) d \mathbb{Q}(y)}^{\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle_{\mathcal{H}}} \\
= & \int_{x} \int_{X} k(x, y) d \mu(x) d \mu(y)
\end{aligned}
$$

for $\mu=\mathbb{P}-\mathbb{Q}$.

Not all Kernels are Useful

- $k(x, y)=c$ for all $x, y \in X$

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0, \forall \mathbb{P}, \mathbb{Q} .
$$

- Another example: $k(x, y)=\langle x, y\rangle_{\mathbb{R}^{d}}, x, y \in \mathbb{R}^{d}$

$$
\operatorname{MMAD}(\mathbb{T}, \mathbb{O}, \mathcal{T})=\|M-M \mathbb{M}\|
$$

where $M_{\mathbb{P}}$ is the mean of \mathbb{P}.

- Separable distributions can be made inseparable if the RKHS is not chosen properly.

How to choose \mathcal{H} ?

Not all Kernels are Useful

- $k(x, y)=c$ for all $x, y \in X$

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0, \forall \mathbb{P}, \mathbb{Q} .
$$

- Another example: $k(x, y)=\langle x, y\rangle_{\mathbb{R}^{d}}, x, y \in \mathbb{R}^{d}$

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|M_{\mathbb{P}}-M_{\mathbb{Q}}\right\|_{\mathbb{R}^{d}},
$$

where $M_{\mathbb{P}}$ is the mean of \mathbb{P}.

- Separable distributions can be made inseparable if the RKHS is not chosen properly.

Not all Kernels are Useful

- $k(x, y)=c$ for all $x, y \in X$

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0, \forall \mathbb{P}, \mathbb{Q} .
$$

- Another example: $k(x, y)=\langle x, y\rangle_{\mathbb{R}^{d}}, x, y \in \mathbb{R}^{d}$

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|M_{\mathbb{P}}-M_{\mathbb{Q}}\right\|_{\mathbb{R}^{d}},
$$

where $M_{\mathbb{P}}$ is the mean of \mathbb{P}.

- Separable distributions can be made inseparable if the RKHS is not chosen properly.

How to choose \mathcal{H} ?

Computation: RKHS vs. Other \mathcal{F}

- Suppose $\left\{X_{1}, \ldots, X_{m}\right\} \stackrel{\text { i.i.d. }}{\sim} \mathbb{P}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$.
- Define $\mathbb{P}_{m}:=\frac{1}{m} \sum_{i=1}^{m} \delta X_{i}$ and $\mathbb{Q}_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta Y_{i}$, where δ_{x} represents the Dirac measure at x.
- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n},\left\{\|f\|_{\mathcal{H}} \leq 1\right\}\right)$ is obtained in a closed form as:

$$
\begin{gathered}
M M D^{2}\left(\mathbb{P}_{m}, \mathbb{Q}_{n},\left\{\|f\|_{\mathcal{H}} \leq 1\right\}\right)=\frac{1}{m^{2}} \sum_{i, j=1}^{m} k\left(X_{i}, X_{j}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} k\left(Y_{i}, Y_{j}\right) \\
-\frac{2}{m n} \sum_{i, j} k\left(X_{i}, Y_{j}\right) .
\end{gathered}
$$

Very easy to compute!!

Computation: RKHS vs. Other \mathcal{F}

- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)$ is obtained by solving a linear program for $\mathcal{F}=$ Lipschitz and bounded Lipschitz balls. [Sriperumbudur et al., 2010a]
- Define $Z_{i}=X_{i}$ for $i=1, \ldots, m$ and $Z_{m+i}=Y_{i}$ for $i=1, \ldots, n$. Let ρ be a metric on X.
 $\left\{a_{i}^{\star}\right\}_{i=1}^{m+n}$ solve the following linear program,

Computation: RKHS vs. Other \mathcal{F}

- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)$ is obtained by solving a linear program for $\mathcal{F}=$ Lipschitz and bounded Lipschitz balls. [Sriperumbudur et al., 2010a]
- Define $Z_{i}=X_{i}$ for $i=1, \ldots, m$ and $Z_{m+i}=Y_{i}$ for $i=1, \ldots, n$. Let ρ be a metric on X.
- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n},\left\{\|f\|_{L} \leq 1\right\}\right)=\frac{1}{m} \sum_{i=1}^{m} a_{i}^{\star}-\frac{1}{n} \sum_{i=m+1}^{m+n} a_{i}^{\star}$, and $\left\{a_{i}^{\star}\right\}_{i=1}^{m+n}$ solve the following linear program,

$$
\max _{a_{1}, \ldots, a_{m+n}}\left\{\frac{1}{m} \sum_{i=1}^{m} a_{i}-\frac{1}{n} \sum_{i=m+1}^{m+n} a_{i}:-\rho\left(Z_{i}, Z_{j}\right) \leq a_{i}-a_{j} \leq \rho\left(Z_{i}, Z_{j}\right), \forall i, j\right\} .
$$

More complex than with RKHS!!

Computation: RKHS vs. Other \mathcal{F}

- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)$ is obtained by solving a linear program for $\mathcal{F}=$ Lipschitz and bounded Lipschitz balls. [Sriperumbudur et al., 2010a]
- Define $Z_{i}=X_{i}$ for $i=1, \ldots, m$ and $Z_{m+i}=Y_{i}$ for $i=1, \ldots, n$. Let ρ be a metric on X. and $\left\{a_{i}^{\star}\right\}_{i=1}^{m+n}$ solve the following linear program,

Computation: RKHS vs. Other \mathcal{F}

- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)$ is obtained by solving a linear program for $\mathcal{F}=$ Lipschitz and bounded Lipschitz balls. [Sriperumbudur et al., 2010a]
- Define $Z_{i}=X_{i}$ for $i=1, \ldots, m$ and $Z_{m+i}=Y_{i}$ for $i=1, \ldots, n$. Let ρ be a metric on X.
- $\operatorname{MMD}\left(\mathbb{P}_{m}, \mathbb{Q}_{n},\left\{\|f\|_{L}+\|f\|_{\infty} \leq 1\right\}\right)=\frac{1}{m} \sum_{i=1}^{m} a_{i}^{\star}-\frac{1}{n} \sum_{i=m+1}^{m+n} a_{i}^{\star}$, and $\left\{a_{i}^{\star}\right\}_{i=1}^{m+n}$ solve the following linear program,

$$
\begin{aligned}
\max _{a_{1}, \ldots, a_{m+n}, b, c} & \frac{1}{m} \sum_{i=1}^{m} a_{i}-\frac{1}{n} \sum_{i=m+1}^{m+n} a_{i} \\
\text { s.t. } & -b \rho\left(Z_{i}, Z_{j}\right) \leq a_{i}-a_{j} \leq b \rho\left(Z_{i}, Z_{j}\right), \forall i, j \\
& -c \leq a_{i} \leq c, \forall i, b+c \leq 1 .
\end{aligned}
$$

More complex than with RKHS!!

Error: RKHS vs. Other \mathcal{F}

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right|=\text { ? }
$$

- RKHS: [Gretton et al., 2007]

There exists $C>0$ (independent of m and n) such that $\left.\mid M M D(\mathbb{T}), Q_{n}, \mathcal{T}\right)-M M D(\mathbb{T}, \mathbb{Q}, \mathcal{T}) \left\lvert\, \leq C \sqrt{\frac{m+n}{m n}}\right.$

- Lipschitz and Bounded Lipschitz on \mathbb{R}^{d} : [Sriperumbudur et al., 2010a]

There exists $C>0$ (independent of m and n) such that
\qquad

Error: RKHS vs. Other \mathcal{F}

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right|=?
$$

- RKHS: [Gretton et al., 2007]

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right| \rightarrow 0, m, n \rightarrow \infty
$$

There exists $C>0$ (independent of m and n) such that

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right| \leq C \sqrt{\frac{m+n}{m n}}
$$

- Lipschitz and Bounded Lipschitz on \mathbb{R}^{d} : [Sriperumbudur et al., 2010a]

There exists $C>0$ (independent of m and n) such that

Error: RKHS vs. Other \mathcal{F}

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right|=?
$$

- RKHS: [Gretton et al., 2007]

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right| \rightarrow 0, m, n \rightarrow \infty
$$

There exists $C>0$ (independent of m and n) such that

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right| \leq C \sqrt{\frac{m+n}{m n}}
$$

- Lipschitz and Bounded Lipschitz on \mathbb{R}^{d} :
[Sriperumbudur et al., 2010a]

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right| \rightarrow 0, m, n \rightarrow \infty
$$

There exists $C>0$ (independent of m and n) such that

$$
\left|M M D\left(\mathbb{P}_{m}, \mathbb{Q}_{n}, \mathcal{F}\right)-M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})\right| \leq C\left(\frac{m+n}{m n}\right)^{\frac{1}{d+1}}
$$

Curse of dimensionality!!

How to choose \mathcal{H} ?

Large RKHS: Universal Kernel/RKHS

- Universal kernel: A kernel k on a compact metric space, X is said to be universal if the RKHS, \mathscr{H} is dense (w.r.t. uniform norm) in $C(X)$.
- [Steinwart and Christmann, 2008]: For certain conditions on L, if k is universal, then

$$
\inf _{f \in \mathcal{H}} \mathcal{R}_{L, \mathbf{P}}(f)=\mathcal{R}_{L, \mathbf{P}}\left(f^{*}\right)
$$

- Squared loss, Hinge loss,...

Large RKHS

Strictly Positive Definite Kernels

A symmetric function $k: X \times X \rightarrow \mathbb{R}$ is positive definite if $\forall n \geq 1$, $\forall\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}, \forall\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

k is strictly positive definite if for mutually distinct x_{i}, the equality holds only when all the a_{i} are zero.

Stronger than Strictly Positive Definite Kernels

- $M_{b}(X)=$ set of finite signed measure on X.
[Sriperumbudur et al., 2010b]: k is universal if and only if

is injective, i.e.,

$$
\int_{X} k(\cdot, x) d \mu(x)=0 \Rightarrow \mu=0
$$

which is equivalent to

Stronger than Strictly Positive Definite Kernels

- $M_{b}(X)=$ set of finite signed measure on X.
[Sriperumbudur et al., 2010b]: k is universal if and only if

$$
\mu \mapsto \int_{X} k(\cdot, x) d \mu(x), \mu \in M_{b}(X)
$$

is injective, i.e.,

$$
\int_{X} k(\cdot, x) d \mu(x)=0 \Rightarrow \mu=0
$$

which is equivalent to

Generalization of strictly positive definite kernels

Stronger than Strictly Positive Definite Kernels

- $M_{b}(X)=$ set of finite signed measure on X.
[Sriperumbudur et al., 2010b]: k is universal if and only if

$$
\mu \mapsto \int_{X} k(\cdot, x) d \mu(x), \mu \in M_{b}(X)
$$

is injective, i.e.,

$$
\int_{X} k(\cdot, x) d \mu(x)=0 \Rightarrow \mu=0
$$

which is equivalent to

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)>0, \forall \mu \in M_{b}(X) \backslash\{0\}
$$

Generalization of strictly positive definite kernels

Why Useful?

- Denseness characterization is not easy to check
- In general, though

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)>0, \forall \mu \in M_{b}(X) \backslash\{0\}
$$

is also not easy to check, for certain X and for certain families of k, the above condition is easy to check

- Later: Gaussian and Spline kernels are universal; Sinc kernel is not but is strictly positive definite.

MMD: What Kernels are Useful?

- Note that

$$
M M D^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\int_{X} \int_{X} k(x, y) d(\mathbb{P}-\mathbb{Q})(x) d(\mathbb{P}-\mathbb{Q})(y)
$$

- If k is universal, which means

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)=0 \Rightarrow \mu=0
$$

then

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0 \Rightarrow \mathbb{P}=\mathbb{Q} \quad \text { (characteristic })
$$

- In other words, universal kernel \Rightarrow characteristic kernel

When is a Kernel Universal?

- [Sriperumbudur et al., 2010b]: The notion of universality can be generalized to non-compact X and we define bounded k to be universal if

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)>0, \forall \mu \in M_{b}(X) \backslash\{0\} .
$$

- Nice characterization can be obtained if k is a bounded continuous translation invariant kernel on \mathbb{R}^{d}, i.e.,
- Examples: Gaussian, $e^{-\|x-y\|_{2}^{2}}$, Laplacian, $e^{-\|x-y\|_{1}}$
- Bochner's Theorem: ψ is positive definite if and only it is the Fourier transform of a non-negative finite Borel measure, \wedge,

When is a Kernel Universal?

- [Sriperumbudur et al., 2010b]: The notion of universality can be generalized to non-compact X and we define bounded k to be universal if

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)>0, \forall \mu \in M_{b}(X) \backslash\{0\}
$$

- Nice characterization can be obtained if k is a bounded continuous translation invariant kernel on \mathbb{R}^{d}, i.e.,

$$
k(x, y)=\psi(x-y)
$$

- Bochner's Theorem: ψ is positive definite if and only it is the Fourier transform of a non-negative finite Borel measure, \wedge,

When is a Kernel Universal?

- [Sriperumbudur et al., 2010b]: The notion of universality can be generalized to non-compact X and we define bounded k to be universal if

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)>0, \forall \mu \in M_{b}(X) \backslash\{0\}
$$

- Nice characterization can be obtained if k is a bounded continuous translation invariant kernel on \mathbb{R}^{d}, i.e.,

$$
k(x, y)=\psi(x-y)
$$

- Examples: Gaussian, $e^{-\|x-y\|_{2}^{2}}$, Laplacian, $e^{-\|x-y\|_{1}}$
- Bochner's Theorem: ψ is positive definite if and only it is the Fourier transform of a non-negative finite Borel measure, Λ,

When is a Kernel Universal?

- [Sriperumbudur et al., 2010b]: The notion of universality can be generalized to non-compact X and we define bounded k to be universal if

$$
\int_{X} \int_{X} k(x, y) d \mu(x) d \mu(y)>0, \forall \mu \in M_{b}(X) \backslash\{0\} .
$$

- Nice characterization can be obtained if k is a bounded continuous translation invariant kernel on \mathbb{R}^{d}, i.e.,

$$
k(x, y)=\psi(x-y)
$$

- Examples: Gaussian, $e^{-\|x-y\|_{2}^{2}}$, Laplacian, $e^{-\|x-y\|_{1}}$
- Bochner's Theorem: ψ is positive definite if and only it is the Fourier transform of a non-negative finite Borel measure, Λ,

$$
\psi(x)=\int_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \Lambda(\omega)
$$

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

$$
\begin{aligned}
& \text { Support of a function, } f \text { is } \overline{\{x \in X: f(x) \neq 0\}} \\
& \text { Proof: support of } \Lambda \text { is } \mathbb{R}^{d}
\end{aligned} \Rightarrow \text { universal } \Rightarrow \text { characteristic } \quad \begin{aligned}
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y) & =\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{\top} \omega} d \Lambda(\omega) d \mu(x) d \mu(y) \\
& =\iint_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \mu(x) \int_{\mathbb{R}^{d}} e^{\sqrt{-1} y^{\top} \omega} d \mu(y) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}} \hat{\mu}(\omega) \overline{\mu(\omega)} d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}|\hat{\mu}(\omega)|^{2} d \Lambda(\omega) .
\end{aligned}
$$

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

- Support of a function, f is $\overline{\{x \in X: f(x) \neq 0\}}$

$$
\begin{aligned}
\text { Proof: support of } \Lambda \text { is } \mathbb{R}^{d} & \Rightarrow \text { universal } \Rightarrow \text { characteristic } \\
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y) & =\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{T} \omega} d \Lambda(\omega) d \mu(x) d \mu(y) \\
& =\iint_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \mu(x) \int_{\mathbb{R}^{d}} e^{\sqrt{-1} y^{\top} \omega} d \mu(y) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}} \hat{\mu}(\omega) \overline{\hat{\mu}(\omega)} d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}|\hat{\mu}(\omega)|^{2} d \Lambda(\omega) .
\end{aligned}
$$

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

- Support of a function, f is $\overline{\{x \in X: f(x) \neq 0\}}$

Proof: support of Λ is $\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic

$$
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y)=\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{\top} \omega} d \Lambda(\omega) d \mu(x) d \mu(y)
$$

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

- Support of a function, f is $\overline{\{x \in X: f(x) \neq 0\}}$

Proof: support of Λ is $\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic

$$
\begin{aligned}
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y) & =\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{\top} \omega} d \Lambda(\omega) d \mu(x) d \mu(y) \\
& =\iint_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \mu(x) \int_{\mathbb{R}^{d}} e^{\sqrt{-1} y^{\top} \omega} d \mu(y) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}} \hat{\mu}(\omega) \overline{\hat{\mu}(\omega)} d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}|\hat{\mu}(\omega)|^{2} d \Lambda(\omega) .
\end{aligned}
$$

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

- Support of a function, f is $\overline{\{x \in X: f(x) \neq 0\}}$

Proof: support of Λ is $\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic

$$
\begin{aligned}
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y) & =\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{\top} \omega} d \Lambda(\omega) d \mu(x) d \mu(y) \\
& =\iint_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \mu(x) \int_{\mathbb{R}^{d}} e^{\sqrt{-1} y^{\top} \omega} d \mu(y) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}} \hat{\mu}(\omega) \overline{\hat{\mu}(\omega)} d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}|\hat{\mu}(\omega)|^{2} d \Lambda(\omega) .
\end{aligned}
$$

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

- Support of a function, f is $\overline{\{x \in X: f(x) \neq 0\}}$

Proof: support of Λ is $\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic

$$
\begin{aligned}
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y) & =\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{\top} \omega} d \Lambda(\omega) d \mu(x) d \mu(y) \\
& =\iint_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \mu(x) \int_{\mathbb{R}^{d}} e^{\sqrt{-1} y^{\top} \omega} d \mu(y) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}} \hat{\mu}(\omega) \overline{\hat{\mu}(\omega)} d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}|\hat{\mu}(\omega)|^{2} d \Lambda(\omega) .
\end{aligned}
$$

If the support of Λ is \mathbb{R}^{d}, then $\iint_{\mathbb{R}^{d}} \psi(x-y) d \mu(x) d \mu(y)=0$ implies
$\hat{\mu}=0$ and therefore $\mu=0$.

Translation Invariant Kernels on \mathbb{R}^{d}

[Sriperumbudur et al., 2010c, Sriperumbudur et al., 2010b]:
Result: universal \Leftrightarrow characteristic \Leftrightarrow support of Λ is \mathbb{R}^{d}

- Support of a function, f is $\overline{\{x \in X: f(x) \neq 0\}}$

Proof: support of Λ is $\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic

$$
\begin{aligned}
\iint_{\mathbb{R}^{d}} k(x, y) d \mu(x) d \mu(y) & =\iiint_{\mathbb{R}^{d}} e^{-\sqrt{-1}(x-y)^{\top} \omega} d \Lambda(\omega) d \mu(x) d \mu(y) \\
& =\iint_{\mathbb{R}^{d}} e^{-\sqrt{-1} x^{\top} \omega} d \mu(x) \int_{\mathbb{R}^{d}} e^{\sqrt{-1} y^{\top} \omega} d \mu(y) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}} \hat{\mu}(\omega) \overline{\hat{\mu}(\omega)} d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}|\hat{\mu}(\omega)|^{2} d \Lambda(\omega) .
\end{aligned}
$$

If the support of Λ is \mathbb{R}^{d}, then $\iint_{\mathbb{R}^{d}} \psi(x-y) d \mu(x) d \mu(y)=0$ implies $\hat{\mu}=0$ and therefore $\mu=0$.

Translation Invariant Kernels on \mathbb{R}^{d}

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency Gaussian kernel

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

Universal

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency B-Spline kernel

Translation Invariant Kernels on \mathbb{R}^{d}

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency
???

Translation Invariant Kernels on \mathbb{R}^{d}

$$
\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

Universal

Proof Idea of the Converse

- $\operatorname{supp}(\Lambda)=\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic
- If we show that characteristic $\Rightarrow \operatorname{supp}(\Lambda)=\mathbb{R}^{d}$, then we are DONE.
- Equivalently, we need to show that if the support of \wedge is NOT \mathbb{R}^{d}, then $\exists \mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}\left(\mathbb{P}, \mathbb{Q},\left\{\|f\|_{\mathcal{H}} \leq 1\right\}\right)=0$

Proof Idea of the Converse

- $\operatorname{supp}(\Lambda)=\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic
- If we show that characteristic $\Rightarrow \operatorname{supp}(\Lambda)=\mathbb{R}^{d}$, then we are DONE.
- Equivalently, we need to show that if the support of Λ is NOT \mathbb{R}^{d}, then $\exists \mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}\left(\mathbb{P}, \mathbb{Q},\left\{\|f\|_{\mathcal{H}} \leq 1\right\}\right)=0$

Proof Idea of the Converse

- $\operatorname{supp}(\Lambda)=\mathbb{R}^{d} \Rightarrow$ universal \Rightarrow characteristic
- If we show that characteristic $\Rightarrow \operatorname{supp}(\Lambda)=\mathbb{R}^{d}$, then we are DONE.
- Equivalently, we need to show that if the support of \wedge is NOT \mathbb{R}^{d}, then $\exists \mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}\left(\mathbb{P}, \mathbb{Q},\left\{\|f\|_{\mathcal{H}} \leq 1\right\}\right)=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right), \mathbb{P}:=\alpha^{-1} \mu^{+}$and $\mathbb{Q}:=\alpha^{-1} \mu^{-}$
\triangleright Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu^{-}$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right)$,
- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
\downarrow There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right)$
- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right)$
- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.

There exists positive mea
(Jordan decomposition)
$>$ Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right), \mathbb{P}:=a^{-1} \mu^{+}$and $\mathbb{Q}:=a^{-1} \mu$

- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
> Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu^{-}$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right), \mathbb{P}:=\alpha^{-1} \mu^{+}$and $\mathbb{Q}:=\alpha^{-1} \mu^{-}$ - Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$ = Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{T}, \mathbb{Q}, \mathcal{T})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu^{-}$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right), \mathbb{P}:=\alpha^{-1} \mu^{+}$and $\mathbb{Q}:=\alpha^{-1} \mu^{-}$
- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu^{-}$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right), \mathbb{P}:=\alpha^{-1} \mu^{+}$and $\mathbb{Q}:=\alpha^{-1} \mu^{-}$
- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Proof

- Suppose support of Λ is NOT \mathbb{R}^{d}.
- Then there exists an open set, $U \subset \mathbb{R}^{d} \backslash \operatorname{supp}(\Lambda)$.
- Construct a non-zero real-valued symmetric function, θ supported on U with $\theta(0)=0$.
- Define $d \mu(x)=\hat{\theta}(x) d x$ where $\hat{\theta}$ is the Fourier transform of θ.
- Also $\mu\left(\mathbb{R}^{d}\right)=0$.
- There exists positive measures $\mu^{+} \neq \mu^{-}$such that $\mu=\mu^{+}-\mu^{-}$ (Jordan decomposition)
- Define $\alpha:=\mu^{+}\left(\mathbb{R}^{d}\right), \mathbb{P}:=\alpha^{-1} \mu^{+}$and $\mathbb{Q}:=\alpha^{-1} \mu^{-}$
- Clearly $\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}=\alpha^{-1} \theta$ which is NOT supported on $\operatorname{supp}(\Lambda)$
- Therefore, there exits $\mathbb{P} \neq \mathbb{Q}$ such that $\operatorname{MMD}(\mathbb{P}, \mathbb{Q}, \mathcal{F})=0$

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

Sinc kernel

Translation Invariant Kernels on \mathbb{R}^{d}

$$
M M D(\mathbb{P}, \mathbb{Q}, \mathcal{F})=\left\|\phi_{\mathbb{P}}-\phi_{\mathbb{Q}}\right\|_{L^{2}\left(\mathbb{R}^{d}, \Lambda\right)}
$$

- Example: \mathbb{P} differs from \mathbb{Q} at (roughly) one frequency

NOT universal

Summary

- Why RKHS?
- Problem of learning
- Loss function, Risk functional
- Bayes risk and Bayes function
- Empirical risk minimization
- Approximation and estimation errors
- RKHS allows great computational advantage
- How to choose an RKHS?
- Universal RKHS that makes the approximation error to be zero.
- Universal kernels generalize strictly positive definite kernels
- Nice characterization for translation invariant kernels on \mathbb{R}^{d}.

References

- Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., and Smola, A. (2007).

A kernel method for the two sample problem.
In Schölkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural Information Processing Systems 19, pages 513-520. MIT Press.

- Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G. R. G. (2010a). Non-parametric estimation of integral probability metrics.
In Proc. IEEE International Symposium on Information Theory, pages 1428-1432.
- Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R. G. (2010b).

On the relation between universality, characteristic kernels and RKHS embedding of measures.
In Teh, Y. W. and Titterington, M., editors, Proc. $13^{\text {th }}$ International Conference on Artificial Intelligence and Statistics, volume 9 of Workshop and Conference Proceedings. JMLR.

- Sriperumbudur, B. K., Gretton, A., Fukumizu, K., chölkopf, B. S., and Lanckriet, G. R. G. (2010c). Hilbert space embeddings and metrics on probability measures.
Journal of Machine Learning Research, 11:1517-1561.
- Steinwart, I. and Christmann, A. (2008). Support Vector Machines.
Springer.

