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1 Outline
• Normed and inner product spaces. Cauchy sequences and completeness.

Banach and Hilbert spaces.

• Linearity, continuity and boundedness of operators. Riesz representation
of functionals.

• Definition of an RKHS and reproducing kernels.

• Relationship with positive definite functions. Moore-Aronszajn theorem.

2 Some functional analysis
We start by reviewing some elementary Banach and Hilbert space theory. Two
key results here will prove useful in studying the properties of reproducing kernel
Hilbert spaces: (a) that a linear operator on a Banach space is continuous if
and only if it is bounded, and (b) that all continuous linear functionals on a
Banach space arise from the inner product. The latter is often termed Riesz
representation theorem.

2.1 Definitions of Banach and Hilbert spaces
Definition 1 (Norm). Let F be a vector space over the field K. A function
‖·‖F : F → K is said to be a norm on F if

1. ‖f‖F = 0 if and only if f = 0 (norm separates points),

2. ‖λf‖F = |λ| ‖f‖F , ∀λ ∈ K, ∀f ∈ F (positive homogeneity),

3. ‖f + g‖F ≤ ‖f‖F + ‖g‖F , ∀f, g ∈ F (triangle inequality).

The norm ‖·‖F induces a metric, i.e., a notion of distance on F : d(f, g) =
‖f − g‖F . This means that F is endowed with a certain topological structure,
allowing us to study notions like continuity and convergence. In particular, we
can consider when a sequence of elements of F converges with respect to induced
distance. This gives rise to the definition of a Cauchy sequence:
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Definition 2 (Cauchy sequence). A sequence {fn}∞n=1 of elements of a normed
vector space (F , ‖·‖F ) is said to be a Cauchy (fundamental) sequence if for every
ε > 0, there exists N = N(ε) ∈ N, such that for all n,m ≥ N , ‖fn − fm‖F < ε.

Cauchy sequences are always bounded [2, Exercise 4 p. 32], i.e., there exists
M < ∞, s.t., ‖fn‖F ≤ M , ∀n ∈ N. However, note that not every Cauchy
sequence converges: 1, 1.4, 1.41, 1.414, 1.4142, ... is a Cauchy sequence in Q (a
normed vector space over itself) which does not converge - because

√
2 /∈ Q.

Next we define a complete space [2, Definition 1.4-3]:

Definition 3 (Complete space). A space X is complete if every Cauchy se-
quence in X converges: it has a limit, and this limit is in X .

Definition 4 (Banach space). Banach space is a complete normed space, i.e.,
it contains the limits of all its Cauchy sequences.

Note that all elements in a Banach space must have finite norm - if an
element has infinite norm, it is not in the space.

In order to study useful geometrical notions analogous to those of Euclidean
space Rd, e.g., orthogonality, one requires additional structure on a Banach
space, that is provided by a notion of inner product:

Definition 5 (Inner product). Let F be a vector space over the field K (R or
C). A function 〈·, ·〉F : F × F → K is said to be an inner product on F if

1. 〈α1f1 + α2f2, g〉F = α1 〈f1, g〉F + α2 〈f2, g〉F

2. 〈f, g〉F = 〈g, f〉F (complex conjugate)

3. 〈f, f〉F ≥ 0 and 〈f, f〉F = 0 if and only if f = 0.

Vector space with an inner product is said to be an inner product (or unitary)
space. Some immediate consequences of Definition 5 are that:

• 〈0, f〉F = 0, ∀f ∈ F ,

• 〈f, α1g1 + α2g2〉F = ᾱ1 〈f, g1〉F + ᾱ2 〈f, g2〉F .

One can always define a norm induced by the inner product:

‖f‖F = 〈f, f〉1/2F ,

and the following useful relations between the norm and the inner product hold:

• | 〈f, g〉 | ≤ ‖f‖ · ‖g‖ (Cauchy-Schwarz inequality)

• ‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2 (the parallelogram law, K = R)

• 4 〈f, g〉 = ‖f + g‖2−‖f − g‖2+ i ‖f + ig‖2− i ‖f − ig‖2 (the polarization
identity, K = C)

• 4 〈f, g〉 = ‖f + g‖2 − ‖f − g‖2 (the polarization identity if K = R)
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Definition 6 (Hilbert space). Hilbert space is a complete inner product space,
i.e., it is a Banach space with an inner product.

As in the Banach space case, all elements in a Hilbert space must have finite
norm.

Example 7. For an index set A, the space `2(A) of complex sequences {xα}α∈A,
satisfying

∑
α∈A |xα|2 <∞, endowed with the inner product

〈{xα} , {yα}〉`2(A) =
∑
α∈A

xαyα

is a Hilbert space.

Example 8. If µ is a positive measure on X , then the space

L2
µ(X ) :=

{
f : X → C measurable

∣∣∣∣∣ ‖f‖2 =

(ˆ
X
|f(x)|2dµ

)1/2

<∞

}
(2.1)

is a Hilbert space with inner product

〈f, g〉 =

ˆ
X

f(x)g(x)dµ.

Strictly speaking, L2
µ(X ) is the space of equivalence classes of functions that

differ by at most a set of µ-measure zero.

More Hilbert space examples: [2, p. 132 and 133 ].

2.2 Bounded/Continuous linear operators
In the following, we take F and G to be normed vector1 spaces over K (for
instance, they could both be the Banach spaces of functions mapping from
X ⊂ R to R, with Lp-norm)

Definition 9 (Linear operator). A function A : F → G, where F and G are
both normed linear spaces over K, is called a linear operator if and only if it
satisfies the following properties:

• Homogeneity: A(αf) = α (Af) ∀α ∈ K, f ∈ F ,

• Additivity: A(f + g) = Af +Ag ∀f, g ∈ F .

Example 10. Let F be an inner product space. For g ∈ F , operator Ag :
F → K, defined with Ag(f) := 〈f, g〉F is a linear operator. Note that the image
space of Ag is the underlying field K, which is trivially a normed linear space
over itself. Such scalar-valued operators are called functionals on F .

1A vector space can also be known as a linear space [2, Definition 2.1-1].
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Definition 11 (Continuity). A function A : F → G is said to be continuous
at f0 ⊂ F , if for every ε > 0, there exists a δ = δ(ε, f0) > 0, such that

‖f − f0‖F < δ implies ‖Af −Af0‖G < ε.

A is continuous on F , if it is continuous at every point of F .

In other words, a convergent sequence in F is mapped to a convergent se-
quence in G.

Example 12. For g ∈ F , Ag : F → K, defined2 with Ag(f) := 〈f, g〉F is
continuous on F :

|Ag(f1)−Ag(f2)| = |〈f1 − f2, g〉F | ≤ ‖g‖F ‖f1 − f2‖F .

Definition 13 (Operator norm). The operator norm of a linear operator A :
F → G is defined as

‖A‖ = sup
f∈F

‖Af‖G
‖f‖F

Definition 14 (Bounded operator). The linear operator A : F → G is said to
be a bounded operator if ‖A‖ <∞.

It can be shown that A is bounded if and only if there exists a non-negative
real number λ for which ‖Af‖G ≤ λ ‖f‖F , for all f ∈ F , and that the smallest
such λ is precisely the operator norm.

It can readily be shown [2] that this satisfies all the requirements of a norm
(triangle inequality, zero iff the operator maps only to the zero function, ‖cA‖ =
|c| ‖A‖ for c ∈ K), and that the set of bounded linear operators A : F → G (for
which the norm is defined) is therefore itself a normed vector space. Another
way to write the above is to say that, for f ∈ F (possibly) not attaining the
supremum, we have

‖Af‖G
‖f‖F

≤ ‖A‖

‖Af‖G ≤ ‖A‖ ‖f‖F .

In other words, a bounded subset in F is mapped to a bounded subset in G.

WARNING: In calculus, a bounded function is a function whose range is a
bounded set. This definition is not the same as the above, which simply states
that the effect of A on f is bounded by some scaling of the norm of f . There is
a useful geometric interpretation of the operator norm: A maps the closed unit
ball in F , into a subset of the closed ball in G centered at 0 ∈ G and with radius
‖A‖ . Note also the result in [2, p. 96]: every linear operator on a normed, finite
dimensional space is bounded.

Theorem 15. Let (F , ‖·‖F ) and (G, ‖·‖G) be normed linear spaces. If L is a
linear operator, then the following three conditions are equivalent:

2Here |·| is the norm on K.
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1. L is a bounded operator.

2. L is continuous on F .

3. L is continuous at one point of F .

Proof. (1)⇒(2), since ‖L(f1 − f2)‖G ≤ ‖L‖ ‖f1 − f2‖F , L is Lipschitz contin-
uous with a Lipschitz constant ‖L‖, and (2)⇒(3) trivially. Now assume that
L is continuous at one point f0 ∈ F . Then, there is a δ > 0, s.t. ‖L∆‖G =
‖L(f0 + ∆)− Lf0)‖G ≤ 1, whenever ‖∆‖F ≤ δ. But then, ∀f ∈ F\{0}, since∥∥∥δ f
‖f‖

∥∥∥
F

= δ,

‖Lf‖G = δ−1 ‖f‖F

∥∥∥∥L(δ f

‖f‖

)∥∥∥∥
G

≤ δ−1 ‖f‖F ,

so ‖L‖ ≤ δ−1, and (3)⇒(1), q.e.d.

Definition 16 (Algebraic dual). If F is a normed space, then the space F ′ of
linear functionals A : F → K is called the algebraic dual space of F .

Definition 17 (Topological dual). If F is a normed space, then the space F ′
of continuous linear functionals A : F → K is called the topological dual space
of F .

In finite-dimensional space, the two notions of dual spaces coincide. However,
this is not the case in infinite dimensions. Unless otherwise specified, we refer
to the topological dual when discussing the dual of F .

We have seen in Examples 10, 12 that the functionals of the form 〈·, g〉F on
an inner product space F are both linear and continuous, i.e., they lie in the
topological dual F ′ of F . It turns out that if F is a Hilbert space, all elements
of F ′ take this form.

Theorem 18. [Riesz representation]In a Hilbert space F , all continous linear
functionals are of the form 〈·, g〉F , for some g ∈ F .

Note that there is a natural isomorphism ψ : g 7→ 〈·, g〉F between F and F ′,
whereby ‖ψ(g)‖F ′ = ‖g‖F . This property will be used below when defining a
kernel on RKHSs.3

3 Reproducing kernel Hilbert space

3.1 Definition of an RKHS
We begin by describing in general terms the reproducing kernel Hilbert space,
and its associated kernel. Let H be a Hilbert space4 of functions mapping from

3AG: Define isometric isomorphism.
4This is a complete linear space with a dot product - see earlier.
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some non-empty set X to the field of complex numbers C. A very interesting
property of an RKHS is that if two functions f ∈ H and g ∈ H are close in
the norm of H, then f(x) and g(x) are close for all x ∈ X . We write the inner
product on H as 〈f, g〉H, and the associated norm ‖f‖2H = 〈f, f〉H. We may
alternatively write the function f as f(·), to indicate it takes an argument in X .

Note that since H is now a space of functions on X , there is for every x ∈ X
a very special functional on H: the one that assigns to each f ∈ H, its value at
x:

Definition 19 (Evaluation functional). Let H be a Hilbert space of functions
f : X → K, defined on a non-empty set X . For a fixed x ∈ X , map δx : H → K,
δx : f 7→ f(x) is called the (Dirac) evaluation functional at x.

It is clear that evaluation functionals are always linear: For f, g ∈ H and
α, β ∈ K, δx(αf + βg) = (αf + βg)(x) = αf(x) + βg(x) = αδx(f) + βδx(g). So
the natural question is whether they are also continuous (recall that this is the
same as bounded). This is exactly how reproducing kernel Hilbert space are
defined [3, Definition 4.18(ii)]:

Definition 20 (Reproducing kernel Hilbert space). A Hilbert space H of func-
tions f : X → K, defined on a non-empty set X is said to be a Reproducing
Kernel Hilbert Space (RKHS) if δx is continuous ∀x ∈ X .

A useful consequence is that RKHSs are particularly well behaved, relative
to other Hilbert spaces.

Corollary 21. (Norm convergence in H implies pointwise convergence)[1, Corol-
lary 1] If two functions converge in RKHS norm, then they converge at every
point, i.e., if limn→∞ ‖fn − f‖H = 0, then limn→∞ fn(x) = f(x), ∀x ∈ X .

Proof. For any x ∈ X ,

|fn(x)− f(x)| = |δxfn − δxf |
≤ ‖δx‖ ‖fn − f‖H ,

where ‖δx‖ is the norm of the evaluation operator (which is bounded by defini-
tion on the RHKS).

Example 22. [1, p. 2] If we are not in an RKHS, then norm convergence does
not necessarily imply pointwise convergence. Let5 H = L2([0, 1]), endowed with
the metric

‖f1 − f2‖L2([0,1])
=

(ˆ 1

0

|f1(x)− f2(x)|2 dx
)1/2

,

5Note that L2([0, 1]) is a Hilbert space [2].
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and consider the sequence of functions {qn}, where qn = xn. Then

lim
n→∞

‖qn − 0‖L2([0,1])
= lim

n→∞

(ˆ 1

0

x2ndx

)1/2

= lim
n→∞

1√
2n+ 1

= 0,

and yet qn(1) = 1 for all n. In other words, the evaluation of functions at
point 1 is not continuous on the set {qn}.

3.2 Reproducing kernels
The reader will note that there is no mention of a kernel in the definition of an
RKHS! We next define what is meant by a kernel, and then show how it fits
in with the above definition. Recall that we use K to denote either R or C,
depending on the case considered.

Definition 23. (Reproducing kernel [1, p. 7])
Let H be a Hilbert space of K-valued functions defined on a non-empty set

X . A function k : X × X → K is called a reproducing kernel of H if it satisfies

• ∀x ∈ X , k(·, x) ∈ H,

• ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x) (the reproducing property).

In particular, for any x, y ∈ X ,

k(x, y) = 〈k (·, x) , k (·, y)〉H. (3.1)

The definition above raises a number of questions. What does the kernel
have to do with the definition of the RKHS? Does this kernel exist? What
properties does it have? To answer the first two questions, we will make use of
the Riesz representation theorem 18.6

Theorem 24 (Existence of the reproducing kernel). H is a reproducing kernel
Hilbert space (i.e., its evaluation functionals δx are continuous linear operators),
if and only if H has a reproducing kernel.

Proof. Given that a Hilbert space H has a reproducing kernel k with the repro-
ducing property 〈f, k(·, x)〉H = f(x), then

|δx[f ]| = |f(x)|
= |〈f, k(·, x)〉H|
≤ ‖k(·, x)‖H ‖f‖H
= 〈k(·, x), k(·, x)〉1/2H ‖f‖H
= k(x, x)1/2 ‖f‖H

6The proof may be found in [?, p 346]. AG: fix footnote.
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where the third line uses the Cauchy-Schwarz inequality. Consequently, δx :
F → K is a bounded linear operator.

To prove the other direction, we use [3, Theorem 4.20]. Define H′ as the dual
space on H (Definition 17), and assume δx ∈ H′, i.e. δx : F → K is a bounded
linear functional. The Riesz representation theorem (Theorem 18) states that
there exists an element fδx ∈ H such that

δx[f ] = 〈f, fδx〉H, ∀f ∈ H,

and that there is an isometric anti-linear isomorphism I : H′ → H which maps
δx 7→ fδx . We define the reproducing kernel of H as

k(x, x′) = 〈δx, δx′〉H′ .

This gives us the canonical feature map k(·, x′) = Iδx′ , since

k(x, x′) = 〈δx, δx′〉H′ =
(a)
〈Iδx′ , Iδx〉H =

(b)
δx(Iδx′) = Iδx′(x).

where in (a) we used the anti-linear isometry, and in (b) we use that Iδx = fδx .
The canonical feature map satisfies the reproducing property,

f(x′) = δx′f = 〈f, Iδx′〉H = 〈f, k(·, x)〉H ,

and thus k is the reproducing kernel.

From the above, we see k(·, x) is in fact the representer of evaluation at x.
We now turn to one of the most important properties of the kernel function:
specifically, that it is positive definite [1, Definition 2], [3, Definition 4.15].

Definition 25 (Positive definite functions). A function h : X × X → C is
positive definite if ∀n ≥ 1, ∀(a1, . . . an) ∈ Cn, ∀(x1, . . . , xn) ∈ Xn for pairwise
distinct xi, xj ,

n∑
i=1

n∑
j=1

aiājh(xi, xj) ≥ 0.

The function h(·, ·) is strictly positive definite if for mutually distinct xi, the
equality holds only when all the ai are zero.7

Every inner product is a positive definite function, and more generally:

Lemma 26. Let F be any Hilbert space (not necessarily an RKHS), X a non-
empty set and φ : X → F . Then h(x, y) := 〈φ(x), φ(y)〉F is a positive definite
function.

7Note that [4, Definition 6.1 p. 65] uses the terminology “positive semi-definite” vs “positive
definite”. This is probably more logical, since it then coincides with the terminology used in
linear algebra.
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Proof.

n∑
i=1

n∑
j=1

aiājh(xi, xj) =

n∑
i=1

n∑
j=1

〈aiφ(xi), ajφ(xj)〉

=

∥∥∥∥∥
n∑
i=1

aiφ(xi)

∥∥∥∥∥
2

F

.

Corollary 27. Reproducing kernels are positive definite.

Proof. For a reproducing kernel k in an RKHSH, one has k(x, y) = 〈k(·, x), k(·, y)〉H,
so it is sufficient to take φ : x 7→ k(·, x).

3.3 Feature space, and other kernel properties
This section summarizes the relevant parts of [3, Section 4.1]. Recall that we
use K to denote either R or C, depending on the case considered.

Following Lemma 26, one can define a positive definite kernel (or just ker-
nel), as a function which can be represented via inner product, and that is the
approach taken in [3, Section 4.1]:

Definition 28 (Positive definite kernel). Let X be a non-empty set. The
function k : X ×X → K is a positive definite kernel if there exists a K-Hilbert
space H and a map φ : X → H such that ∀x, y ∈ H ,

k(x, y) = 〈φ(x), φ(y)〉H .

Such map φ : X → H is referred to as the feature map, and space H as the
feature space. For a given kernel, there may be more than one feature map. As
a simple example, consider X = R, and

k(x, y) = xy =
[

x√
2

x√
2

] [ y√
2
y√
2

]
,

where we defined the feature maps φ(x) = x and φ̃(x) =
[

x√
2

x√
2

]
, and

where the feature spaces are respectively, H = R, and H̃ = R2.

Lemma 29 (`2 convergent sequences are kernel feature maps). For every x ∈ X ,
assume the sequence {fn(x)} ∈ `2 for n ∈ N, where fn : X → K. Then

k(x1, x2) :=

∞∑
n=1

fn(x1)fn(x2) (3.2)

is a kernel.
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Proof. Hölder’s inequality states
∞∑
n=1

|fn(x1)fn(x2)| ≤ ‖fn(x1)‖`2 ‖fn(x2)‖`2 .

so the series (3.2) converges absolutely. Definining H := `2 and φ(x) =
{
fn(x)

}
completes the proof.

Lemma 30 (Sums of kernels are kernels). If k, k1, and k2 are kernels on X ,
and α ≥ 0 is a scalar, then αk, k1 + k2, and k1 · k2 are kernels.

Note that a difference of kernels is not necessarily a kernel! This is because
we cannot have k1(x, x)− k2(x, x) < 0, since we would then have a feature map
for which 〈φ(x), φ(x)〉 < 0. Mathematically speaking, these properties give the
set of all kernels the structure of a convex cone (not a linear space).

4 Construction of an RKHS from a kernel: Moore-
Aronsajn

We have seen previously that given a reproducing kernel Hilbert space H, we
may define a unique reproducing kernel associated with H, which is a positive
definite function.

Our goal now is to show that for every positive definite function k(x, y),
there corresponds a unique RKHS H, for which k is a reproducing kernel. The
proof is rather tricky, but also very revealing of the properties of RKHSs, so it
is worth understanding (it also occurs in very incomplete form in a number of
books and tutorials, so it is worth seeing what a complete proof looks like).

Starting with the kernel, we will construct a pre-RKHS H0, from which we
will form the RKHS H. The pre-RKHS H0 must satisfy two properties:

1. the evaluation functionals δx are continuous on H0,

2. Any Cauchy sequence fn in H0 which converges pointwise to 0 also con-
verges in H0-norm to 0.

The last result has an important implication: Any Cauchy sequence {fn} in
H0 that converges pointwise to f ∈ H0, also converges to f in ‖·‖H0

, since
in that case {fn − f} converges pointwise to 0, and thus ‖fn − f‖H0

→ 0.
PREVIEW: we can already say what the pre-RKHS H0 will look like: it is
the set of functions

f(x) =

n∑
i=1

αik(xi, x). (4.1)

After the proof, we’ll show in Section (4.5) that these functions satisfy conditions
(1) and (2) of the pre-Hilbert space.

Next, define H to be the set of functions f ∈ CX for which there exists an
H0-Cauchy sequence {fn} ∈ H0 converging pointwise to f : note that H0 ⊂ H,
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since the limits of these Cauchy sequences might not be in H0. Our goal is to
prove that H is an RKHS. The two properties above hold if and only if

• H0 ⊂ H ⊂ CX and the topology induced by 〈·, ·〉H0
on H0 coincides with

the topology induced on H0 by H.

• H has reproducing kernel k(x, y).

We concern ourselves with proving that (1), (2) imply the above bullet points,
since the reverse direction is easy to prove. This takes four steps:

1. We define the inner product between f, g ∈ H as the limit of an inner prod-
uct of the Cauchy sequences {fn}, {gn} converging to f and g respectively.
Is the inner product well defined, and independent of the sequences used?
This is proved in Section 4.1.

2. Recall that an inner product space must satisfy 〈f, f〉H = 0 iff f = 0. Is
this true when we define the inner product on H as above? (Note that we
can also check that the remaining requirements for an inner product on
H hold, but these are straightforward)

3. Are the evaluation functionals still continuous on H?

4. Is H complete? I.e., is it a Hilbert space?

Finally, we’ll see that the functions (4.1) define a valid pre-RKHS H0. We will
also show that the kernel k(·, x) has the reproducing property on the RKHS H.

4.1 Is the inner product well defined in H?
In this section we prove that if we define the inner product in H of all limits of
Cauchy sequences as (4.2) below, then this limit is well defined : (1) it converges,
and (2) it depends only on the limits of the Cauchy sequences, and not the
particular sequences themselves.

This result is from [?, Lemma 5].

Lemma 31. For f, g ∈ H and Cauchy sequences (wrt the H0 norm) {fn},
{gn} converging pointwise to f and g, define αn = 〈fn, gn〉H0

. Then, {αn} is
convergent and its limit depends only on f and g. We thus define

〈f, g〉H := lim
n→∞

〈fn, gn〉H0
(4.2)

Proof that αn = 〈fn, gn〉H0
is convergent: For n,m ∈ N,

|αn − αm| =
∣∣〈fn, gn〉H0

− 〈fm, gm〉H0

∣∣∣∣〈fn, gn〉H0
− 〈fm, gn〉H0

+ 〈fm, gn〉H0
− 〈fm, gm〉H0

∣∣
=

∣∣〈fn − fm, gn〉H0
+ 〈fm, gn − gm〉H0

∣∣
≤

∣∣〈fn − fm, gn〉H0

∣∣+
∣∣〈fm, gn − gm〉H0

∣∣
≤ ‖gn‖H0

‖fn − fm‖H0
+ ‖fm‖H0

‖gn − gm‖H0
.
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Take ε > 0. Every Cauchy sequence is bounded, so ∃A,B ∈ R, ‖fm‖H0
≤ A,

‖gn‖H0
≤ B, ∀n,m ∈ N.

By taking N1 ∈ N s.t. ‖fn − fm‖H0
< ε

2B , for n,m ≥ N1, and N2 ∈ N
s.t. ‖gn − gm‖H0

< ε
2A , for n,m ≥ N1, we have that |αn − αm| < ε, for

n,m ≥ max(N1, N2), which means that {αn} is a Cauchy sequence in C, which
is complete, and the sequence is convergent in C.

Proof that limit is independent of Cauchy sequence chosen:
If some H0-Cauchy sequences {f ′n}, {g′n} also converge pointwise to f and

g, and α′n = 〈f ′n, g′n〉H0
, one similarly shows that

|αn − α′n| ≤ ‖gn‖H0
‖fn − f ′n‖H0

+ ‖f ′n‖H0
‖gn − g′n‖H0

.

Now, since {fn} and {f ′n} both converge pointwise to f , {fn − f ′n} converges
pointwise to 0, and so does {gn − g′n}. But then they also converge to 0 in ‖·‖H0

by the pre-RKHS axiom 2, and therefore {αn} and {α′n} must have the same
limit.

4.2 Does it hold that 〈f, f〉H = 0 iff f = 0?
In this section, we verify that all the expected properties of an inner product
from Definition (5) hold for H. It turns out that the only challenging property
to show is the third one - the others follow from the inner product definition on
the pre-RKHS. This is [?, Lemma 6].

Lemma 32. Let {fn} be Cauchy sequence in H0 converging pointwise to f ∈ H.
If limn→∞ 〈fn, fn〉H0

= ‖fn‖2H0
= 0, then f(x) = 0 pointwise for all x (we

assumed pointwise convergence implies norm convergence - we now want to prove
the other direction, bearing in mind that the inner product in H is defined as
the limit of inner products in H0 by (4.2)).

Proof : ∀x ∈ X , f(x) = limn→∞ fn(x) = limn→∞ δx(fn) ≤
(a)

limn→∞ ‖δx‖ ‖fn‖H0
=
(b)

0, where in (a) we used that the evaluation functional δx is continuous on H0,
by the pre-RKHS axiom 1 (hence bounded, with a well defined operator norm
‖δx‖); and in (b) we used the assumption in the lemma that fn converges to 0
in ‖·‖H0

.

4.3 Are the evaluation functionals continuous on H?
Here we need to establish a preliminary lemma, before we can continue.

Lemma 33. H0 is dense in H [?, Lemma 7, Corollary 2].

Proof. It suffices to show that given any f ∈ H and its associated Cauchy
sequence {fn} wrt H0 converging pointwise to f (which exists by definition),
{fn} also converges to f in ‖·‖H (note: this is the new norm which we defined
above in terms of limits of Cauchy sequences in H0).

12



Since{fn} is Cauchy inH0-norm, for all ε > 0, there isN ∈ N, s.t. ‖fm − fn‖H0
<

ε, ∀m,n ≥ N . Fix n∗ ≥ N . The sequence {fm − fn∗}∞m=1 converges pointwise
to f − fn∗ . We now simply use the definition of the inner product in H from
(4.2),

‖f − fn∗‖2H = lim
m→∞

‖fm − fn∗‖2H0
≤ ε2,

whereby {fn}∞n=1 converges to f in ‖·‖H.

Lemma 34. The evaluation functionals are continuous on H [?, Lemma 8].

Proof. We show that δx is continuous at f = 0, since this implies by linearity
that it is continuous everywhere. Let x ∈ X , and ε > 0. By pre-RKHS axiom
1, δx is continuous on H0. Thus, ∃η, s.t.

‖g − 0‖H0
= ‖g‖H0

< η ⇒ |δx(g)| = |g(x)| < ε/2. (4.3)

To complete the proof, we just need to show that there is a g ∈ H0 close (in
H-norm) to some f ∈ H with small norm, and that this function is also close
at each point.

We take f ∈ H with ‖f‖H < η/2. By Lemma (33) there is a Cauchy sequence
{fn} in H0 converging both pointwise to f and in ‖·‖H to f , so one can find
N ∈ N, s.t.

|f(x)− fN (x)| < ε/2,

‖f − fN‖H < η/2.

We have from these definitions that

‖fN‖H0
= ‖fN‖H ≤ ‖f‖H + ‖f − fN‖H < η.

Thus ‖f‖H < η/2 implies ‖fN‖H0
< η. Using (4.3) and setting g := fN , we

have that ‖fN‖H0
< η implies |fN (x)| < ε/2, and thus |f(x)| ≤ |f(x)−fN (x)|+

|fN (x)| < ε. In other words, ‖f‖H < η/2 is shown to imply |f(x)| < ε. This
means that δx is continuous at 0 in the ‖·‖H sense, and thus by linearity on all
H.

4.4 Is H complete (a Hilbert space)?
The idea here is to show that every Cauchy sequence wrt the H-norm converges
to a function in H.

Lemma 35. H is complete.

Let {fn} be any Cauchy sequence in H. Since evaluation functionals are
linear continuous on H by (34), then for any t ∈ E, {fn(t)} is convergent in C
to some f(t) ∈ C (since C is complete, it contains this limit). The question is
thus whether the function f(t) defined pointwise in this way is still in H (recall
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that H is defined as containing the limit of H0-Cauchy sequences that converge
pointwise).

The proof strategy is to define a sequence of functions{gn}, where gn ∈ H0,
which is “close” to the H-Cauchy sequence {fn}. These functions will then be
shown (1) to converge pointwise to f , and (2) to be Cauchy in H0. Hence by
our original construction of H, we have f ∈ H. Finally, we show fn → f in
H-norm.

Define f(x) := limn→∞ fn(x). For n ∈ N, choose gn ∈ H0 such that
‖gn − fn‖H <

1
n . This can be done since H0 is dense in H. From

|gn(x)− f(x)| ≤ |gn(x)− fn(x)|+ |fn(x)− f(x)|
≤ |δx(gn − fn)|+ |fn(x)− f(x)|,

The first term in this sum goes to zero due to the continuity of δx on H (Lemma
(34)), and thus{gn(x)} converges to f(x), satisfying criterion (1). For criterion
(2), we have

‖gm − gn‖H0
= ‖gm − gn‖H
≤ ‖gm − fm‖H + ‖fm − fn‖H + ‖fn − gn‖H

≤ 1

m
+

1

n
+ ‖fm − fn‖H ,

hence {gn} is Cauchy in H0.
Finally, is this limiting f a limit with respect to the H-norm? Yes, since by

Lemma (33) (denseness of H0 in H: see the first lines of the proof), gn tends to
f in the H-norm sense, and thus fn converges to f in H-norm,

‖fn − f‖H ≤ ‖fn − gn‖H + ‖gn − f‖H

≤ 1

n
+ ‖gn − f‖H .

Thus H is complete.

4.5 How to build a valid pre-RKHS H0

Here we show how to build a valid pre-RKHS. Imporantly, in doing this, we
prove that for every positive definite kernel, there corresponds a unique RKHS
H.

Theorem 36. (Moore-Aronszajn)
Let k : X × X → C be positive definite. There is a unique RKHS H ⊂ CX

with reproducing kernel k. Moreover, if space H0 =
[
{k(·, x)}x∈X

]
is endowed

with the inner product

〈f, g〉H0
=

n∑
i=1

m∑
j=1

αiβ̄jk(yj , xi), (4.4)

where f =
∑n
i=1 αik(·, xi) and g =

∑m
j=1 βjk(·, yj), then H0 is a valid pre-

RKHS.
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We first need to show that (4.4) is a valid inner product. First, is it
independent of the particular αi and βi used to define f, g? Yes, since

〈f, g〉H0
=

n∑
i=1

αig(xi) =

m∑
j=1

β̄jf(yj).

As a useful consequence of this result we get the reproducing property on
H0, by setting g = k(x, ·),

〈f, g〉H0
=

n∑
i=1

αiḡ(xi) =

n∑
i=1

αik(xi, x) = f(x).

Next, we check that the form (4.4) is indeed a valid inner product on H0. The
only nontrivial axiom to be verified is

〈f, f〉H0
= 0 =⇒ f = 0.

This is true since

∀x ∈ X , f(x) = 〈f(·), k(x, ·)〉 ≤
(a)
‖f‖H0

k1/2(x, x) = 0,

where in (a) we use Cauchy-Schwarz. We now proceed to the main proof.

Proof. (that H0 satisfies the pre-RKHS axioms). Let t ∈ E. Note that for
f =

∑n
i=1 αik(·, xi)

〈f, k(·, t)〉H0
=

n∑
i=1

αik(t, xi) = f(t), (4.5)

and thus for f, g ∈ H0,

|δx(f)− δx(g)| = | 〈f − g, k(·, x)〉H0
|

≤ k1/2(x, x) ‖f − g‖H0
,

meaning δx is continuous on H0, and the first pre-RKHS requirement is satis-
fied.

Now, take ε > 0 and define a Cauchy {fn} in H0 that converges pointwise to
0. Since Cauchy sequences are bounded, we may define A > 0, s.t. ‖fn‖H0

< A,
∀n ∈ N. One can find N1 ∈ N, s.t. ‖fn − fm‖H0

< ε/2A, for n,m ≥ N1. Write
fN1 =

∑k
i=1 αik(·, xi). Take N2 ∈ N, s.t. |fn(xi)| < ε

2k|αi| , for i = 1, . . . , k.
Now, for n ≥ max(N1, N2)

‖fn‖2H0
≤ | 〈fn − fN1

, fn〉H0
|+ | 〈fN1

, fn〉H0
|

≤ ‖fn − fN1‖H0
‖fn‖H0

+

k∑
i=1

|αifn(xi)|

< ε,
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so fn converges to 0 in ‖·‖H0
. Thus, all the pre-RKHS axoims are satisfied, and

H is an RKHS.
To see that the reproducing kernel on H is k, simply note that if f ∈ H,

and {fn} in H0 converges to f pointwise,

〈f, k(·, x)〉H =
(a)

lim
n→∞

〈fn, k(·, x)〉H0

= lim
n→∞

fn(x)

= f(x).

where in (a) we use the defnition of an inner product on H in (4.2). Since H0

is dense in H, H is the unique RKHS that contains H0. But since k(·, x) ∈ H,
∀x ∈ X , it is clear that any RKHS with reproducing kernel k must contain
H0.

5 Further results
• Separable RKHS: [3, Lemma 4.33]

• Measurability of canonical feature map: [3, Lemma 4.25]

• Relation between RKHS and L2(µ): [3, Theorem 4.26, Theorem 4.27].
Note in particular [3, Theorem 4.47]: the mapping from L2 to H for the
Gaussian RKHS is injective.

• Expansion of kernel in terms of basis functions: [1, Theorem 14 p. 32]

• Mercer’s theorem: [3, p. 150].

6 What functions are in an RKHS?
• Gaussian RKHSs do not contain constants: [3, Corollary 4.44].

• Universal RKHSs are dense in the space of bounded continuous functions:
[3, Section 4.6]

• The bandwidth of the kernel limits the bandwidth of the functions in the
RKHS: Walder thesis appendix.
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