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1 Introduction
This note contains more detailed proofs of certain results in the lecture notes
on mean embeddings and covariance operators. The notes are not as complete
as for lectures 1 and 2, but cover only the trickier concepts. Please let me know
if there are any further parts you’d like clarified, and I’ll add them to the note.

2 Mean embeddings

2.1 Proof that the mean embedding exists via Riesz
For finite dimensional feature spaces, we can define expectations in terms of
inner products.

φ(x) = k(·, x) =

[
x
x2

]
f(·) =

[
a
b

]
Then

f(x) =

[
a
b

]> [
x
x2

]
= 〈f, φ(x)〉F .

Consider random variable x ∼ P

EPf(x) = EP

([
a
b

]> [
x
x2

])
=

[
a
b

]> [
EPx

EP(x2)

]
=:

[
a
b

]>
µP.

Does this reasoning translate to infinite dimensions?

Definition 1 (Bounded operator). A linear operator A : F → R is bounded
when

Af ≤ λA‖f‖F ∀f ∈ F .

We prove via Riesz that the mean embedding exists, and that it takes the
form of the expectation of the canonical map.
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Theorem 2. [Riesz representation]In a Hilbert space F , all bounded linear
operators A can be written 〈·, gA〉F , for some gA ∈ F ,

Af = 〈f, gA〉F

Now we establish the existence of the mean embedding.

Lemma 3 (Existence of mean embedding ). If EP

√
k(x, x) <∞ then µP ∈ F .

Proof. The linear operator TPf := EPf(x) for all f ∈ F is bounded under the
assumption, since

|TPf | = |EPf(x)| ≤
(a)

EP |f(x)| = EP |〈f, φ(x)〉F | ≤ EP

(√
k(x, x) ‖f‖F

)
,

where in (a) we use Jensen’s inequality. Hence by the Riesz representer theorem
[6, Theorem II.4], there exists a µP ∈ F such that TPf = 〈f, µP〉F .

If we set f = φ(x) = k(x, ·), we obtain µP(x) = 〈µp, k(x, ·)〉 = EPk(x, x): in
other words, the mean embedding of the distribution P is the expecation under
P of the canonical feature map.

2.2 Proof that MMD injective for universal kernel
First, it is clear that P = Q implies MMD {P,Q;F} is zero. We now prove the
converse. By the universality of F , for any given ε > 0 and f ∈ C(X ) there
exists a g ∈ F such that

‖f − g‖∞ ≤ ε.
We will need [2, Lemma 9.3.2 ]:

Lemma 4. Let (X , d) be a metric space, and let P,Q be two Borel probability
measures defined on X , where we define the random variables x ∼ P and y ∼ Q.
Then P = Q if and only if EP(f(x)) = EQ(f(y)) for all f ∈ C(X ), where C(X )
is the space of bounded continuous functions on X .

We now use these two results to formulate a proof. We begin with the
expansion

|EPf(x)−EQf(y)| ≤ |EPf(x)−EPg(x)|+|EPg(x)−EQg(y)|+|EQg(y)−EQf(y)| .

The first and third terms satisfy

|EPf(x)−EPg(x)| ≤ EP |f(x)− g(x)| ≤ ε.

Next, write
EPg(x)−EQg(y) = 〈g, µP − µQ〉 = 0,

since MMD {P,Q;F} = 0 implies µP = µQ. Hence

|EPf(x)−EQf(y)| ≤ 2ε

for all f ∈ C(X ) and ε > 0, which implies P = Q by Lemma 4.
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3 Covariance operators
One of the most important and widely used tools in RKHS theory is the covari-
ance operator: this is an infinite dimensional analog to the covariance matrix.
This forms the backbone of kernel PCA, the kernel Fisher discriminant, kernel
partial least squares, the kernel canonical correlation, and so on.

In this note, we describe the Hilbert space of Hilbert-Schmidt operators. We
then introduce the covariance operator, demonstrate it is Hilbert-Schmidt, and
express it in terms of kernel functions.

3.1 Hilbert-Schmidt operators
This discussion is based on [9, Section 2.1] and [8, Section A.5.2].

Let F and G be separable Hilbert spaces. Define (ei)i∈I to be an orthonormal
basis for F , and (fj)j∈J to be an orthonormal basis for G. The index sets I, J
are assumed to be either finite our countably infinite.1 Define two compact
linear operators L : G → F and M : G → F . Define the Hilbert-Schmidt norm
of the operators L, M to be

‖L‖2HS =
∑
j∈J
‖Lfj‖2F (3.1)

=
∑
i∈I

∑
j∈J

∣∣〈Lfj , ei〉F ∣∣2 ,
where we use Parseval’s indentity on each of the norms in the first sum. The
operator L is Hilbert-Schmidt when this norm is finite.

The Hilbert-Schmidt operators mapping from G to F form a Hilbert space,
written HS(G,F), with inner product

〈L,M〉HS =
∑
j∈J
〈Lfj ,Mfj〉F , (3.2)

which is independent of the orthonormal basis chosen. It is clear the norm (3.1)
is recovered from this inner product. Another form for this inner product is

〈L,M〉HS =
∑
i∈I

∑
j∈J
〈Lfj , ei〉F 〈Mfj , ei〉F . (3.3)

Proof. Since any element of F can be expanded in terms of its orthonormal
basis, we have that this holds in the specific case of the mapping of fj by L or
M ,

Lfj =
∑
i∈I

α
(j)
i ei Mfj =

∑
i′∈I

β
(j)
i′ ei′ . (3.4)

1Recall that a Hilbert space has a countable orthonormal basis if and only if it is separable:
that is, it has a countable dense subset [6, p. 47].
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Substituting these into (3.2), we obtain

〈L,M〉HS =
∑
j∈J

〈∑
i∈I

α
(j)
i ei,

∑
i′∈I

β
(j)
i′ ei′

〉
F

=
∑
i∈I

∑
j∈J

α
(j)
i β

(j)
i .

We obtain the identical result when we substitute (3.4) into (3.3).

3.2 Rank-one operators, tensor product space
Given b ∈ G and a ∈ F , we define the tensor product a⊗b as a rank-one operator
from G to F ,

(b⊗ a)f 7→ 〈f, a〉F b. (3.5)

This is a generalization of the standard outer product in linear algebra, (ba>)f =
(a>f)b, if all three of a, b, f were vectors. First, is this operator Hilbert-Schmidt?
We compute its norm according to (3.1),

‖a⊗ b‖2HS =
∑
j∈J
‖(a⊗ b)fj‖2F

=
∑
j∈J

∥∥a 〈b, fj〉G∥∥2F
= ‖a‖2F

∑
j∈J

∣∣〈b, fj〉G∣∣2
= ‖a‖2F‖b‖2G , (3.6)

where we use Parseval’s identity. Thus, the operator is Hilbert-Schmidt.
Given a second Hilbert-Schmidt operator L ∈ HS(G,F), we have the result:

〈L, a⊗ b〉HS = 〈a, Lb〉F (3.7)

A particular instance of this result is

〈u⊗ v, a⊗ b〉HS = 〈u, a〉F 〈b, v〉G . (3.8)

Proof. The key result we use is the expansion of b in terms of the orthonormal
basis, b =

∑
j∈J 〈b, fj〉G fj . Then

〈a, Lb〉 =

〈
a, L

∑
j

〈b, fj〉Gfj

〉
F

=
∑
j

〈b, fj〉G 〈a, Lfj〉F
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and

〈a⊗ b, L〉HS =
∑
j

〈Lfj , (a⊗ b)fj〉F

=
∑
j

〈b, fj〉G 〈Lfj , a〉F .

To show (3.8), we simply substitute u ⊗ v for L above, and then apply the
definition (3.5),

〈u⊗ v, a⊗ b〉HS 〈a, (u⊗ v) b〉F
= 〈u, a〉F 〈b, v〉G

3.3 Cross-covariance operator
In this section, we define the cross-covariance operator, in the case where F and
G are reproducing kernel Hilbert spaces with respective kernels k and l, and
feature maps φ and ψ. This is a generalization of the cross-covariance matrix
to infinite dimensional feature spaces. The results we want are feature space
analogues to:

C̃XY = E
(
xy>

)
f>C̃XY g = Exy

[(
f>x

) (
g>y

)]
,

where we use the notation C̃XY to denote a covariance operator without cen-
tering. The corresponding centered covariance is

CXY := C̃XY − µXµ
>
Y ,

where µX := E(x) and µY := E(y)We now describe how we can get these results
in feature space.

The cross product φ(x)⊗ψ(y) is a random variable in HS(G,F): use the result
in [9, p. 265] that for all A ∈ HS(G,F), the linear form 〈φ(x)⊗ ψ(y), A〉HS is
measurable. For the expectation of this random variable to exist (and to be
an element of HS(G,F)), we require the expected norm of φ(x) ⊗ ψ(y) to be
bounded: in other words, Ex,y (‖φ(x)⊗ ψ(y)‖HS) < ∞. Given the expectation
exists, and writing it C̃XY , then this expectation is the unique element satisfying〈

C̃XY , A
〉
HS

= Ex,y 〈φ(x)⊗ ψ(y), A〉HS (3.9)

Proof. The operator

Txy : HS(G,F) → R
A 7→ Ex,y 〈φ(x)⊗ ψ(y), A〉HS

is bounded when Ex,y (‖φ(x)⊗ ψ(y)‖HS) < ∞, since by applying first Jensen’s
inequality, then Cauchy-Schwarz,

5



|Ex,y 〈φ(x)⊗ ψ(y), A〉HS| ≤ Ex,y |〈φ(x)⊗ ψ(y), A〉HS|
≤ ‖A‖HSEx,y (‖φ(x)⊗ ψ(y)‖HS) .

Thus by the Riesz representer theorem (Theorem (2)), the covariance operator
(3.9) exists. We can make a further simplification to the condition: substituting
(3.6), we get the requirement

Ex,y (‖φ(x)⊗ ψ(y)‖HS) = Ex,y (‖φ(x)‖F‖φ(y)‖G)

= Ex,y

(√
k(x, x)l(y, y)

)
<∞.

We could also use the weaker condition Ex,y (k(x, x)l(y, y)), which is implied from
the above by Jensen’s inequality.

We now use the particular element f ⊗ g. Combining (3.7) and (3.9), we
have the result 〈

f, C̃XY g
〉
F

=
〈
C̃XY , f ⊗ g

〉
HS

= Ex,y 〈φ(x)⊗ ψ(y), f ⊗ g〉HS

= Exy

[
〈f, φ(x)〉F 〈g, ψ(y)〉G

]
= Exy [f(x)g(y)] = cov(f, g).

What does this operator look like? To see this, we apply it to k(x, ·)l(y, ·) (just
as we plotted the mean embedding by evaluating it on k(x, ·)).

We are given an i.i.d. sample from P = PxPy, written z := ((x1, y1) . . . (xn, yn)).
Write the empirical

ĈXY :=
1

n

n∑
i=1

φ(xi)⊗ ψ(yi)− µ̂x ⊗ µ̂y,

where we have now included the centering terms µ̂x := 1
n

∑n
i=1 φ(xi). With

some algebra, this can be written

ĈXY =
1

n
XHY >,

where H = In − n−11n, and 1n is an n× n matrix of ones, and

X =
[
φ(x1) . . . φ(xn)

]
Y =

[
ψ(y1) . . . ψ(yn)

]
.

Define the kernel matrices

Kij =
(
X>X

)
ij

= k(xi, xj) Lij = l(yi, yj),

and the kernel matrices between centred variables,

K̃ = HKH L̃ = HLH

(exercise: prove that the above are kernel matrices for the variables centred in
feature space).
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4 Using the covariance operator to detect depen-
dence

There are two measures of dependence we consider: the constrained covariance
(COCO), which is the largest singular value of the covariance operator, and the
Hilbert-Schmidt Independence Criterion, which is its Hilbert-Schmidt norm.

4.1 Empirical COCO and proof
We now derive the functions satisying

maximize
〈
g, ĈXY f

〉
G

subject to ‖f‖F = 1 (4.1)
‖g‖G = 1 (4.2)

We assume that

f =

n∑
i=1

αi [φ(xi)− µ̂x] = XHα g =

n∑
j=1

βi [ψ(yi)− µ̂y] = Y Hβ,

where

µ̂x =
1

n

n∑
i=1

φ(xi) µ̂y =
1

n

n∑
i=1

φ(yi).

The associated Lagrangian is

L(f, g, λ, γ) = −f>ĈXY g +
λ

2

(
‖f‖2F − 1

)
+
γ

2

(
‖g‖2G − 1

)
,

where we have negated the covariance to make it a minimization problem (for
consistency with the optimisation lecture later in the course), and we divide the
Lagrange multipliers by 2 to simplify the discussion later . We now write this
in terms of α and β:

f>ĈXY g =
1

n
α>HX>

(
XHY >

)
Y Hβ

=
1

n
α>K̃L̃β,

where we note that H = HH. Similarly

‖f‖2F = α>HXX>Hα = α>K̃α.

Substituting these into the Lagrangian, we get a new optimization in terms of
α and β,

L(α, β, λ, γ) = − 1

n
α>K̃L̃β +

λ

2

(
α>K̃α− 1

)
+
γ

2

(
β>L̃β − 1

)
. (4.3)
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We must minimise this wrt the primal variables α, β. Differentiating wrt α and
β and setting the resulting expressions to zero,2 we obtain

− 1

n
K̃L̃β + λK̃α = 0 (4.4)

− 1

n
L̃K̃α+ γL̃β = 0 (4.5)

Multiply the first equation by α>, and the second by β>,

1

n
α>K̃L̃β = λα>K̃α

1

n
β>L̃K̃α = γβ>L̃β

Subtracting the first expression from the second, we get

λα>K̃α = γβ>L̃β.

Thus for λ 6= 0 and γ 6= 0, we conclude that λ = γ, since by our equality
constraints α>K̃α = 1 and β>L̃β = 1. Making this replacement in (4.4) and
(4.5), we must find the largest3 γ that solves the following expression wrt α, β:[

0 1
nK̃L̃

1
n L̃K̃ 0

] [
α
β

]
= γ

[
K̃ 0

0 L̃

] [
α
β

]
. (4.6)

This is a generalized eigenvalue problem, and can be solved straightforwardly in
Matlab. The maximum eigenvalue is indeed COCO: at the solution, α>K̃α = 1
and β>L̃β = 1, hence the two norm terms in the Lagrangian (4.3) vanish.4

2We use [5, eqs. (61) and (73)]

∂a>Ua

∂a
= (U + U>)a,

∂v>a

∂a
=
∂a>v

∂a
= v.

3Given λ = γ, the system of equations (4.4) and (4.5) becomes:
1

n
K̃L̃β = γK̃α

1

n
L̃K̃α = γL̃β

However we also get a valid solution by switching β̌ := −β,
1

n
K̃L̃β̌ = −γK̃α

1

n
L̃K̃α = −γL̃β̌

In other words, the solutions γ of the generalised eigenvalue problem (4.6) come in pairs ±γ,
depending on the relative sign of α and β.

4For a more roundabout way of reaching the same conclusion: pre-multiply (4.6) by [α>β>]
to get the system of equations[

1
n
α>K̃L̃β

1
n
β>L̃K̃α

]
= γ

[
1
n
α>K̃α

1
n
β>L̃β

]
= γ

[
1
1

]
,

where in the final line we substitute the constraints from (4.1).
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4.2 The Hilbert-Schmidt Independence Criterion
4.2.1 Population expression

What is the Hilbert-Schmidt norm of the covariance operator?5 Consider the
centered, squared norm of the RKHS covariance operator,

HSIC2(F ,G, Pxy) = ‖C̃XY − µX ⊗ µY ‖2HS

=
〈
C̃XY , C̃XY

〉
HS

+ 〈µX ⊗ µY , µX ⊗ µY 〉HS − 2
〈
C̃XY , µX ⊗ µY

〉
HS
,

where C̃XY is the uncentered covariance operator defined in (3.9). There are
three terms in the expansion.

To obtain the first term, we apply (3.9) twice, denoting by (x′, y′) an inde-
pendent copy of the pair of variables (x, y),

‖C̃XY ‖2HS =
〈
C̃XY , C̃XY

〉
HS

= Ex,y

〈
φ(x)⊗ ψ(y), C̃XY

〉
HS

= Ex,yEx′,y′ 〈φ(x)⊗ ψ(y), φ(x′)⊗ ψ(y′)〉HS

= Ex,yEx′,y′ 〈φ(x), [φ(x′)⊗ ψ(y′)]ψ(y)〉F
= Ex,yEx′,y′

[
〈φ(x), φ(x′)〉F 〈ψ(y′), ψ(y)〉G

]
= Ex,yEx′,y′k(x, x′)l(y, y′)

=: A

Similar reasoning can be used to show

〈µX ⊗ µY , µX ⊗ µY 〉HS = 〈µX , µX〉F 〈µY , µY 〉G
= Exx′k(x, x′)Eyy′ l(y, y

′)

=: D,

and for the cross-terms,〈
C̃XY , µX ⊗ µY

〉
HS

= Ex,y 〈φ(x)⊗ ψ(y), µX ⊗ µY 〉HS

= Ex,y

(
〈φ(x), µX〉F 〈φ(y), µY 〉G

)
= Ex,y (Ex′k(x, x′)Ey′ l(y, y

′))

=: B.

5Other norms of the operator may also be used in determining dependence, e.g. the
spectral norm from the previous section. Another statistic on the kernel spectrum is the
Kernel Mutual Information, which is an upper bound on the true mutual information near
independence, but is otherwise difficult to interpret [4]. One can also define independence
statistics on the correlation operator [1], which may be better behaved for small sample sizes,
although the asymptotic behavior is harder to analyze.
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4.2.2 Biased estimate

A biased estimate of HSIC was given in [3]. We observe a sample Z :=
{(x1, y1), . . . (xn, yn)} drawn independently and identically from Pxy, we wish
to obtain empirical expressions for HSIC,

HSIC2(F ,G, Z) := Â− 2B̂ + D̂.

A direct approach would be to replace the population uncentred covariance
operator C̃XY with an empirical counterpart,

ČXY =
1

n

n∑
i=1

φ(xi)⊗ ψ(yi),

and the population mean embeddings with their respective empirical estimates,

µ̂x =
1

n

n∑
i=1

φ(xi), µ̂y =
1

n

n∑
i=1

ψ(yi),

however the resulting estimates are biased (we will show the amount of bias in
the next section). The first term is

Âb =
∥∥ČXY

∥∥2 =

〈
1

n

n∑
i=1

φ(xi)⊗ ψ(yi),
1

n

n∑
i=1

φ(xi)⊗ ψ(yi)

〉
HS

=
1

n2

n∑
i=1

n∑
j=1

kij lij =
1

n2
tr(KL),

we use the shorthand kij = k(xi, xj), and the subscript b to denote a biased
estimate. The expression is not computationally efficient, and is written this
way for later use - in practice, we would never take the matrix product if the
intent was then to compute the trace. Next,

B̂b =
〈
ČXY , µ̂X ⊗ µ̂Y

〉
=

〈
1

n

n∑
i=1

φ(xi)⊗ ψ(yi),

(
1

n

n∑
i=1

φ(xi)

)
⊗

(
1

n

n∑
i=1

ψ(yi)

)〉
HS

=
1

n

n∑
i=1

〈
φ(xi),

(
1

n

n∑
i=1

φ(xi)

)〉
F

〈
ψ(yi),

(
1

n

n∑
i=1

ψ(yi)

)〉
G

=
1

n3

n∑
i=1

n∑
j=1

n∑
q=1

kij liq

=
1

n3
1>nKL1n =

1

n3
1>nLK1n
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(we will use both forms to get our final biased estimate of HSIC), and

D̂b = 〈µ̂X ⊗ µ̂Y , µ̂X ⊗ µ̂Y 〉 =

〈(
1

n

n∑
i=1

φ(xi)

)
⊗

(
1

n

n∑
i=1

ψ(yi)

)
,

(
1

n

n∑
i=1

φ(xi)

)
⊗

(
1

n

n∑
i=1

ψ(yi)

)〉
HS

=
1

n4

 n∑
i=1

n∑
j=1

k(xi, xj)

 n∑
i=1

n∑
j=1

l(yi, yj)


=

1

n4
(
1>nK1n

) (
1>nL1n

)
We now combine these terms, to obtain the biased estimate

HSIC2
b (F ,G, Z) =

1

n2

(
tr(KL)− 2

n
1>nKL1n +

1

n2
(
1>nK1n

) (
1>nL1n

))
=

1

n2

[
tr(KL)− 1

n
tr
(
1n1>nKL

)
− 1

n
tr
(
K1n1>nL

)
+

1

n2
tr
(
1n1>nK1n1>nL

)]
=

1

n2
tr

[(
I − 1

n
1n1>n

)
K

(
I − 1

n
1n1>n

)
L

]
=

1

n2
tr(KHLH)

where we define
H := I − 1

n
1n1>n

as a centering matrix (when pre-multiplied by a matrix it centers the rows; when
post-multiplied, it centers the columns).

4.2.3 Unbiased estimate

An unbiased estimate of A := ‖C̃XY ‖2HS is

Â :=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

kij lij =
1

(n)2

∑
(i,j)∈im2

kij lij ,

where inp is the set of all p-tuples drawn from {1, . . . , n}, and

(n)p =
n!

(n− p)!
=

1

n(n− 1) . . . (n− p+ 1)
.

Note that E(Â) = Ex,yEx′,y′k(x, x′)l(y, y′), which is not true of the biased ex-
pression (which does not properly treat the independent copies x′ of x and y′ of
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y). The difference between the biased and unbiased estimates is

Âb − Â =
1

n2

n∑
i,j=1

kij lij −
1

n(n− 1)

∑
(i,j)∈im2

kij lij

=
1

n2

n∑
i=1

kiilii +

(
1

n2
− 1

n(n− 1)

) ∑
(i,j)∈in2

kij lij


=

1

n

 1

n

n∑
i=1

kiilii −
1

n(n− 1)

∑
(i,j)∈in2

kij lij

 ,

thus the expectation of this difference (i.e., the bias) is O(n−1).
The unbiased estimates of the remaining two terms are

B̂ :=
1

(n)3

∑
(i,j,q)∈in3

kij liq

and
D̂ :=

1

(n)4

∑
(i,j,q,r)∈in4

kij lqr.

While these expressions are unbiased, they are at first sight much more expensive
to compute than the respective biased estimates, with B̂ costing O(n3) and D̂
costing O(n4). It is possible, however, to obtain these unbiased estimates in
O(n2), i.e., the same cost as the biased estimates, as shown by [7, Theorem 2].
First, we note that diagonal entries of the kernel matrices K and L never appear
in the sums, hence we immediately replace these matrices with K̃ and L̃ having
the diagonal terms set to zero. The term Â can be written concisely in matrix
form as

Â =
1

(n)2

(
K̃ � L̃

)
++

=
1

(n)2
trace

(
K̃L̃

)
,

where � is the entrywise matrix product and (A)++ is the sum of all the entries
in A. Looking next at the term B̂, and defining as 1n the n× 1 vector of ones,
we have

B̂ =
1

(n)3

∑
(i,j,q)∈in3

kij liq =
1

(n)3

 n∑
i,j=1

n∑
q 6=(i,j)

kiqlqj −
n∑

i=1

n∑
q 6=i

kiqliq


=

1

(n)3
1>n

[ ∑n
j=2 k1qlq1 . . .

∑n
q 6=(i,j) kiqlqj . . .

. . .
...

]
1n

− 1

(n)3

(
K̃ � L̃

)
++

=
1

(n)3
1>n K̃L̃1n −

1

(n)3

(
K̃ � L̃

)
++

.
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The first expression in the final line can be computed in time O(n2), as long as
the matrix-vector products are taken first. Finally, looking at the fourth term,6

D̂ =
1

(n)4

∑
(i,j,q,r)∈in4

kij lqr =
1

(n)4

[ ∑
(i,j)∈in2

∑
(q,r)∈in2

kij lqr

−
∑

(i,j,r)∈in3

kij lir︸ ︷︷ ︸
q=i

−
∑

(i,j,r)∈in3

kij ljr︸ ︷︷ ︸
q=j

−
∑

(i,j)∈in2

kij lij︸ ︷︷ ︸
(q=i,r=j)≡(q=j,r=i)

−
∑

(i,j,q)∈in3

kij liq︸ ︷︷ ︸
r=i

−
∑

(i,j,q)∈in3

kij ljq︸ ︷︷ ︸
r=j

−
∑

(i,j)∈in2

kij lij︸ ︷︷ ︸
(r=i,q=j)≡(r=j,q=i)

]

=
1

(n)4

 n∑
i=1

n∑
j 6=i

kij

 n∑
i=1

n∑
j 6=i

lij

− 41>n K̃L̃1n + 2
(
K̃ � L̃

)
++


=

1

(n)4

[(
1>n K̃1n

)(
1>n L̃1n

)
− 41>n K̃L̃1n + 2

(
K̃ � L̃

)
++

]
,

which can also be computed in O(n2). We now establish the net contribution
of each term: (

K̃ � L̃
)
++

:
1

(n)2
+

2

(n)3
+

2

(n)4

=
(n− 2)(n− 3) + (2n− 6) + 2

(n)4

=
(n− 2)(n− 1)

(n)4

and

1>n K̃L̃1n :
−2

(n)3
− 4

(n)4

=
−2(n− 3)− 4

(n)4
=
−2(n− 1)

(n)4
.

Thus, we have our empirical unbiased HSIC expression,

HSIC2(F ,G, Z) :=
1

n(n− 3)

[(
K̃ � L̃

)
++
− 2

(n− 2)
1>n K̃L̃1n +

1

(n− 1)(n− 2)

(
1>n K̃1n

)(
1>n L̃1n

)]
6The equivalences ≡ in the first line below indicate that both index matching constraints

amount to the same thing, hence these terms appear only once.

13



5 HSIC for feature selection
As we saw in the previous section, a biased estimate for the centred HSIC can
be written

HSIC :=
1

n2
trace(KHLH).

Consider the case where we wish to find a subset of features that maximizes
HSIC with respect to some set of labels. Assume we have a sample {xi, yi}ni=1,
where xi ∈ Rd, and binary class labels. We choose a particular form for the
class labels: yi ∈

{
n−1+ ,−n−1−

}
, where n+ is the number of positive labels and

n− is the number of negative labels.
We denote by xi[`] the `th coordinate of xi, and write

x[`] :=
[
x1[`] . . . xn[`]

]>
the column vector of the `th coordinate of all samples. If we use a linear kernel
on the xi, then

Ki,j = x>i xj =

d∑
`=1

xi[`]xj [`].

It follows we can write the kernel as the sum of kernels on individual dimensions,

K =

d∑
`=1

K`,

where K` := x[`]x[`]>. In this case, HSIC is the sum of HSIC values for each
such kernel,

HSIC :=
1

n2

d∑
`=1

trace(K`HLH).

What happens when we choose a linear kernel on the labels? Assuming the
classes are grouped together,

L = yy> =

[
n−2+ 1n+×n+

−n−1+ n−1− 1n+×n−
−n−1+ n−1− 1n−×n+

n−2− In−×n−

]
,

where y is the vector of all class labels, and 1a×b is an a × b matrix of ones.
Note further than

n∑
i=1

yi = 0,
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and hence HLH = L. Finally, using trace(AB) = trace(BA),

HSIC =
1

n2

d∑
`=1

trace(K`L)

=
1

n2

d∑
`=1

trace(x[`]x[`]>yy>)

=
1

n2

d∑
`=1

 1

n+

n+∑
i=1

xi[l]−
1

n−

n∑
i=n++1

xi[l]

2
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