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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?
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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=50
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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=500
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Motivating example: detect differences in AM signals

Samples from P Samples from Q




Case of discrete domains

e How do you compare distributions. . .

e ...In a discrete domain? isesdamd cresie, doss)



Case of discrete domains

e How do you compare distributions. . .

e ...in a discrete domain? (e amt crossio, doss)

Xl: Now disturbing reports out of Newfound-
land show that the fragile snow crab industry is
in serious decline. First the west coast salmon,
the east coast salmon and the cod, and now the

snow crabs off Newfoundland.

X2: To my pleasant surprise he responded that
he had personally visited those wharves and that
he had already announced money to fix them.
What wharves did the minister visit in my riding
and how much additional funding is he going to
provide for Delaps Cove, Hampton, Port Lorne,

{?

Py = Py

Yl: Honourable senators, I have a question for
the Leader of the Government in the Senate with
regard to the support funding to farmers that has
been announced. Most farmers have not received
any money yet.

YQ .On the grain transportation system we have
had the Estey report and the Kroeger report.
We could go on and on. Recently programs have
been announced over and over by the government
such as money for the disaster in agriculture on
the prairies and across Canada.

Are the pink extracts from the same distribution as the gray ones?
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Another motivating question

e How do you detect dependence. . .

e ...In a discrete domain? isesdamd cresie, doss)
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Another motivating question

e How do you detect dependence. ..

e ...in a discrete domain? (e amt crossio, doss)

Xl: Honourable senators, I have a question for
the Leader of the Government in the Senate with
regard to the support funding to farmers that has
been announced. Most farmers have not received
any money yet.

X2: No doubt there is great pressure on provin-
cial and municipal governments in relation to the
issue of child care, but the reality is that there
have been no cuts to child care funding from the
federal government to the provinces. In fact,
we have increased federal investments for early
childhood development.

Yl: Honorables sénateurs, ma question
s’adresse au leader du gouvernement au Sénat
et concerne l’aide financiére qu’on a annoncée
pour les agriculteurs. La plupart des agriculteurs
n’ont encore rien reu de cet argent.

YQ:I] est évident que les ordres de gouverne-
ments provinciaux et municipaux subissent de
fortes pressions en ce qui concerne les ser-
vices de garde, mais le gouvernement n’a pas
réduit le financement qu’il verse aux provinces
pour les services de garde. Au contraire, nous
avons augmenté le financement fédéral pour le
développement des jeunes enfants.

Are the French text extracts translations of the English ones?



Another motivating question

e How do you detect dependence. ..

e ...In a continuous domain? Dependent P,
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Another motivating question

e ...in a continuous domain?

Sample from P,
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Another motivating question

e How do you detect dependence. ..

Discretized empirical P:-w

e ...in a continuous domain?

Sample from PXY

15 ‘ ‘ ‘ ‘
1t “. 1 /
3%
0.5} .ﬁ"’ —
% ¢ o
> 0 PY ®
> A ?
~05 }0' o° ] * Discretized empirical P, P,
| w2 |
-1.5 ‘ ‘ ‘ ‘ ‘ \(
15 -1 -05 0 05 1 15




Another motivating question

e How do you detect dependence. . .

e ...in a continuous domain?

e Problem: fails even in “low” dimensions! irsora. avros

— X and Y in R*, statistic=Power divergence, samples= 1024, cases
where dependence detected=0/500

e Too few points per bin



Another motivating question

e How do you detect dependence. ..

e ...in a continuous domain?

e Problem: fails even in “low” dimensions! irsora. avros

— X and Y in R*, statistic=Power divergence, samples= 1024, cases
where dependence detected=0/500

e Too few points per bin

Can we represent and compare distributions

in high dimensions?




Further motivating questions

e Compare distributions with high dimension/ low sample size/ “complex”

structure
— Microarray data (aggregation problem)
— Neuroscience: naturalistic stimulus, complex response

— Images and text on web (kernels on structured data)



Further motivating questions

e Compare distributions with high dimension/ low sample size/ “complex”

structure
— Microarray data (aggregation problem)
— Neuroscience: naturalistic stimulus, complex response

— Images and text on web (kernels on structured data)

e Discover structure in high dimensional data
— Feature selection (microarrays, image and text,. . .)

— Low dimensional visualization clustering, taxonomy fitting, max.

variance unfolding,. ..

— Blind source separation (e.g. ICA)



Outline

e Kernel metric on the space of probability measures
— Function revealing differences in distributions
— Distance between means in space of features (RKHS)

— For which feature spaces are mappings unique?



Outline

e Kernel metric on the space of probability measures
— Function revealing differences in distributions
— Distance between means in space of features (RKHS)

— For which feature spaces are mappings unique?

e Dependence detection

— Covariance and Correlation in feature space



Kernel distance between distributions



Feature mean difference

e Simple example: 2 Gaussians with different means

e Answer: t-test

Two Gaussians with different means

Prob. density




Prob. density

Feature mean difference

e Two Gaussians with same means, different variance
e Idea: look at difference in means of features of the RVs

o In Gaussian case: second order features of form ¢(x) = z°

Two Gaussians with different variances
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Prob. density

Feature mean difference

e Two Gaussians with same means, different variance

e Idea: look at difference in means of features of the RVs

e In Gaussian case: second order features of form p(x) = x

Two Gaussians with different variances
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Feature mean difference

e Gaussian and Laplace distributions
e Same mean and same variance

e Difference in means using higher order features... RKHS

Gaussian and Laplace densities
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Reminder: feature maps and the RKHS

o Feature map of x € R?, written ¢,

oP(@)=[ a2 23 w1022 | o) = |V eilw) .| €
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e Inner product between feature maps:
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Reminder: feature maps and the RKHS

o Feature map of x € R?, written ¢,

oP(@)= | &? 2} m1a2vE | P9 (@) = .. Vhieil@)..| € 6
e Inner product between feature maps:
(p) (p) _ 2 (9) (9) _ o U — yll?
(¢P @), ¢P (W) = (z.3) (¢ @), ¢ w)) = exp (o |z —y|*)
— Z Niei(x)e;(x))
i=1

e In general,
<S0:E17 90332>-7: — ]{(513'1, $2)
for positive definite k(z,y)

Kernels are inner products of feature maps




Probabilities in feature space: the mean trick

The kernel trick

e Given z € X for some set X,

define feature map ¢, € F,

Oy = [\/)\jez(x)} € £y

e For positive definite k(x, z),

k(z, :U/) = (Pzs Pur ) F

e The kernel trick: Vf € F,

f(il?) — <f7 9056>]:



Probabilities in feature

space: the mean trick

The kernel trick

e Given z € X for some set X,

define feature map ¢, € F,

Oy = [\/)\jez(a;)} € £y

e For positive definite k(x, z),

k(z, CC/) = (Pzs Pur ) F

e The kernel trick: Vf € F,

f(ZE) — <f7 9056>]:

The mean trick

e Given P a Borel probability
measure on X, define feature

map up € F

up = [...\/)\TEP [eZ(X)]} € U

e For positive definite k(x, z'),

Ep k(X,Y) = (pp, pa)r

for X ~Pand Y ~ Q.

e The mean trick: (we call up a

mean /distribution embedding)

Ep(f(X)) =: {1p, f>]-"



Feature embeddings of probabilities

The kernel trick:

The mean trick:
Ep(f(X)) = (f,pp) £

Empirical mean embedding:

m
~ — i.i.d.
MP:mli:%’i x; ~ P
1=1

Lp gives you expectations of all RKHS functions

...but does this reasoning work in infinite dimensions?



Does the teature space mean exist?

Does there exist an element yup € F such that

Epf(x) =(f(),ne())r  VfeF



Does the teature space mean exist?

Does there exist an element yup € F such that

Epf(x) =(f(),ne())r  VfeF

We recall the concept of a bounded operator: a linear operator A : F — R is

bounded when

Afl < Aallfl Vf € F.

Riesz representation theorem: In a Hilbert space F, all bounded linear

operators A can be written (-, g4) r, for some g4 € F,
gA) rF g

Af = (f(),940)) 5



Does the teature space mean exist?

Existence of mean embedding: If Ep+/k(x,x) < oo then up € F.
Proof:
The linear operator Tp f := Ep f(x) for all f € F is bounded under the

assumption, since
Tef < |Epf(x)| < Ep|f(X)| =Ep|(f(-), ¢(x)) | < Ep (\/ k(x, x) Hf”]—“) -
Hence by Riesz (with Ar, = Epy/k(x,%)), Jup € F such that

Tef = (f(),mp())F-



Lp 1s feature map ot probability

Embedding of P to feature space
e Mean embedding up € F

(e (), F()) 7 = Epf(X).

e What does prob. feature map
look like?

pp(x) = (up (), o(@)) 7
= (up(*), k(7$)>]—" = Epk(x, x).

Expectation of kernel!

e Empirical estimate:

m
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Lp 1s feature map ot probability

Embedding of P to feature space
e Mean embedding up € F

(e (), F()) 7 = Epf(X).

e What does prob. feature map
look like?

pp (@) = (up(-), o(2)) 7
= (up(*), k(7$)>]—" = Epk(x, x).

Expectation of kernel!

e Empirical estimate:

m

Zk‘(xz,x) x; ~ P

1=1

1
m
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Function Showing Difference in Distributions

e Are P and @ different?

Samples from P and Q
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Function Showing Difference in Distributions

e Are P and @ different?

Samples from P and Q
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 [Epf(x) — Eqf(y)].

Smooth function
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 [Epf(x) — Eqf(y)].

Smooth function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?1612 [Epf(x) — Eqf(y)].

Bounded continuous function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?"EIF) [Epf(x) — Eqf(y)].

Bounded continuous function
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ]Sflellﬁ)’ [Epf(x) — Eqf(y)].

e Gauss P vs Laplace Q

Witness f for Gauss and Laplace densities

0.8
—f

06 = Gauss |/
— = |_aplace
©
C
@©
=
‘»
c
(O]
©
o
2
o




Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161112 [Epf(x) — Eqf(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F =bounded continuous mudtey, 2a62]
— [ = bounded variation 1 (Kolmogorov metric) puiiten, to97

— F' = bounded Lipschitz (Earth mover’s distances) pudtey, 2002
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F') := ?’161112 [Epf(x) — Eqf(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F' =bounded continuous mudiey, 2002
— [ = bounded variation 1 (Kolmogorov metric) fpuiten, to97]
— [ = bounded Lipschitz (Earth mover’s distances) pudicy, 2002]

e MMD(P,Q; F') =0 iff P = Q when F' =the unit ball in a characteristic

RKHS F [smBos, N1PS06a, NIPS07b, NIPS08a, JMLR10]

How do smooth functions relate to feature maps?




Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)
MMD(P, Q; F)

= sup [Epf(X) — EQf(y)]
fEF

Witness f for Gauss and Laplace densities
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Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD(P, Q; F) use
— Jscgg Epf(x) —Eqf(y)] Ep(f(x) =:



Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)
MMD(P, Q; F)

= sup [Epf(x) — Eq/f(y)] Ep(f(x) =:

— Sup <f7 Hp — MQ>]—"
fer



Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD(P, Q; F) use
— sup [Epf(x) — E

rep P 0 — Bafly) 1o = s £.6);
— Sup <f7 Hp — MQ>]—" )

fek since F' := {f € F
= ||up — pall£ £l < 1}

Function view and feature view equivalent




Empirical estimate of MMD

e An unbiased empirical estimate: for {x;},~; ~ P and {y;};"; ~ Q,

MMD™ = ol S S0, [k(ai, ) + k(g yj)
—m 27;21 Zj:l[ (Yi, z5) + k(zi,y5)]
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Empirical estimate of MMD

e An unbiased empirical estimate: for {x;},~; ~ P and {y;};"; ~ Q,

/\2
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e Proof:;
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= (up, ) + (uQ, Q) — 2 (1P, Q)
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Empirical estimate of MMD

e An unbiased empirical estimate: for {x;},~; ~ P and {y;};"; ~ Q,

MMD™ = ol S S0, [k(ai, ) + k(g yj)
—m D ie1 Zj:l k(i 25) + k(@ y5)]

e Proof:
2
lpp — 1Qllz = (P — pQ, e — pQ) ~
= (up,pp) + (1Q,pqQ) — 2 (1P, 1Q)
= Ep[pp(x)] + ...

= Ep (up(-), k(x,)) + ...
— Epk(x,X) + Eqk(y,y’) — 2Ep qk(x,y)



Empirical estimate of MMD

e An unbiased empirical estimate: for {x;},~; ~ P and {y;};"; ~ Q,

MMD™ = ol S S0, [k(ai, ) + k(g yj)
—m D ie1 Zj:l k(i 25) + k(@ y5)]

e Proof:
9
lpp —pallz = (wp —1q, e — 1Q)F
= (pp, 1p) + (1Q, HQ) — 2 (1P, 1Q)
— Eelp()] + ...

= Ep (up(-), k(x,)) + ...
— Epk(x,X) + Eqk(y,y’) — 2Ep qk(x,y)

Then Ek(x,x") = m D i1 Z;’;&z k(wi, zj)
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The maximum mean discrepancy

— 2
MMD = Kp7p—|—KQ7Q — QKP,Q

(diagonal terms removed from Kp p and K¢g )



MMD for independence: HSIC

e Dependence measure: the Hilbert Schmidt Independence Criterion (avros,

NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuervergen, Etm]and [Székely andRizzao, 2009, Székely et—ahi, 2007)

HS[O(PXY, PXPY) = H:uPXY o MPXPYH2



MMD for independence: HSIC

e Dependence measure: the Hilbert Schmidt Independence Criterion [arros,

NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuervergen, ]and [Székely andRizzao, 2009, Székely et—ahi, 2007)

HS[C(PXY, PXPY) = H:uPXY o MPXPYH2

K(©,@) (9,9)

~'v




MMD for independence: HSIC

e Dependence measure: the Hilbert Schmidt Independence Criterion [arros,

NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuervergen, ]and [SzékelyandRizzo, 2009, Székety et—atl, 2007]

HSIC(Pxy,PxPy) = ||upyy — ppypy |2

HSIC using expectations of kernels:

Define RKHS F on X with kernel £, RKHS G on ) with kernel [. Then

HSIC(Pxy,PxPy)
— EXYEX’Y’k<X7 X/)l(y7 y/) + EXEX’k(Xv X/)EYEY’l<y7 y,)
— 2Exy [Exk(x,xX)Eyi(y,y")].



HSIC: empirical estimate and intuition

Text from dogtime.com and petfinder.com

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.



HSIC: empirical estimate and intuition

) Their noses guide them through life, and
f K they're never happier than when following
an interesting scent. They need plenty of L

exercise, about an hour a day if possible.

A large animal who slings slok
distinctive houndy odor, and

than to follow his nose. They
amount of exercise and ment

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Text from dogtime.com and petfinder.com




HSIC: empirical estimate and intuition

) Their noses guide them through life, and
f K they're never happier than when following
an interesting scent. They need plenty of L

exercise, about an hour a day if possible.

A large animal who slings slok
distinctive houndy odor, and

than to follow his nose. They
amount of exercise and ment

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Text from dogtime.com and petfinder.com

Empirical HSIC(PXy, PXpy):

1
~ (HKH o HLH) .,




Characteristic kernels (Version 1: Via Universality)
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Characteristic Kernels (via universality)

Characteristic kernels are those for which MMD is a metric (MMD = 0 iff

P = Q) [NIPS07b, COLTOS]

Classical result: P = Q if and only if Ep(f(x)) = Eq(f(y

the space of bounded continuous functions on X pudiey.

)) for all f e C(X),

662]

Universal RKHS: k(x,2") continuous, X compact, and F dense in C(X) with

I’eSpeCt to L [Steimwart, 2007

If 7 universal, then MMD{P,Q; F} =0iff P =Q



Characteristic Kernels (via universality)

Proof:
First, it is clear that P = Q implies MMD {P, Q; F'} is zero.
Converse: by the universality of F, for any given e > 0 and f € C(X) dg € F

Hf o gHoo S €.



Characteristic Kernels (via universality)

Proof:
First, it is clear that P = Q implies MMD {P, Q; F'} is zero.
Converse: by the universality of F, for any given e > 0 and f € C(X) dg € F

Hf o gHoo S €.

We next make the expansion

[Epf(x) —Eqf(y)| < [Epf(x) — Epg(x)|+|Epg(x) — Eqg(y)|+|Eqg(y) — Eqf(y)|-

The first and third terms satisfy

Epf(x) — Epg(x)| < Ep[f(x) —g(x)[ <



Characteristic Kernels (via universality)

Proof (continued):

Next, write
Epg(x) —Eqg(y) = (9(-), np — pa)r =0,
since MMD {P, Q; F'} = 0 implies up = uq. Hence
Epf(x) —Eq/f(y)| < 2e

for all f € C'(X) and € > 0, which implies P = Q.



Characteristic kernels (Version 2: Via Fourier)



Lp 1s feature map ot probability

Reminder: Embedding of P to fea-

ture space

e Mean embedding up € F

<:LLP(')7f(°)>]-“ — xf(x)‘

e What does prob. feature map
look like?

pe(@) = (up(-), p(2))

= (up (). k(- 2)) 7 = Bk(, ).

Expectation of kernel!

e Maximum mean discrepancy

MMD(P, Q) = [lup — pall7
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Characteristic Kernels (via Fourier)

Reminder: Fourier series

e Function [—7, 7] with periodic boundary.

Z Foexp(ulx) Z fe (cos(€x) + 1sin(lx)) .
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Characteristic Kernels (via Fourier)

Reminder: Fourier series of kernel

k(o y) =k(z —y) =k(2),  k(z)= )  kpexp(1l2),
{=—00

E.g., k(x) = 119(%, 2;), k‘g— exp(_U;EQ).

¥ is the Jacobi theta function, close to Gaussian when o2 sufficiently narrower than [—m, 7].

Kernel Fourier series coefficients
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Characteristic Kernels (via Fourier)

Maximum mean embedding via Fourier series:
e Fourier series for P is characteristic function ¢p

e Fourier series for mean embedding is product of fourier series!
(convolution theorem)

0

1p(z) = Bg(x — z) = / bz — )dP(t)  fips = by X dpy

—1Tr



Characteristic Kernels (via Fourier)

Maximum mean embedding via Fourier series:
e Fourier series for P is characteristic function ¢p

e Fourier series for mean embedding is product of fourier series!
(convolution theorem)

0

1p(z) = Bg(x — z) = / bz — )dP(t)  fips = by X dpy

—1Tr

e MMD can be written in terms of Fourier series:

0@

) [(¢P,€ — ¢q,0) ]A%] exp(1)

f=—00

MMD(P,Q; F) :=

F
e Characteristic: MMD a metric (MMD = 0 iff P = Q) nesors, corros,

JMLR10]



A simpler Fourier expression for MMD

e Recall MMD expression:

oo

Z [WP,K — dq.) 7%4 exp(vfx)

{=—00

MMD(P,Q; F) :=

F

e The squared norm of a function f in F is:

5= Pr= > =

e Simple, interpretable expression for squared MMD:

0. @)

MMD?(P,Q; F) = Z ‘gb”_gb‘”‘k = 3" Igpe—

[=—0o0 K [=—o0

£
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Example

e Example: P differs from Q at one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Example

Is the Gaussian-spectrum kernel characteristic?

Kernel Fourier series coefficients
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Example

Is the Gaussian-spectrum kernel characteristic? Y S

Kernel Fourier series coefficients
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Example

Is the triangle kernel characteristic?

Triangle Fourier series coefficients
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Example

Is the triangle kernel characteristic? NO
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Characteristic Kernels (via Fourier)

e Can we prove characteristic on RI? (not just [x, 7] periodic)
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e Can we prove characteristic on RI? (not just [x, 7] periodic)

e Characteristic function of P via Fourier transform

o) = [ e “aP(a)



Characteristic Kernels (via Fourier)

Can we prove characteristic on RI? (not just [x, 7] periodic)

Characteristic function of P via Fourier transform
oplw) = [ T aP(a)
Rd

Translation invariant kernels: k(z,y) = k(z — y) = k(z2)
Bochner’s theorem:

k(z) = /R d e WA (w)

— A finite non-negative Borel measure



Characteristic Kernels (via Fourier)

Can we prove characteristic on RI? (not just [x, 7] periodic)

Characteristic function of P via Fourier transform
oplw) = [ T aP(a)
Rd

Translation invariant kernels: k(z,y) = k(z — y) = k(z2)
Bochner’s theorem:

k(z) = /R d e WA (w)

— A finite non-negative Borel measure



Characteristic Kernels (via Fourier)

Fourier representation of MMD:

MMD?(P, Q) : //\gbp 2 dA(w)

¢p characteristic function of P

Proof: Using Bochner’s theorem (a) ...

MMD?(P, Q) := Epk(x — ') + Eqk(y —y') — 2Ep qk(x — y)
— [ [ [t - nae - @] ae - Q)
D[] anw) ae - Qe de - @)



Characteristic Kernels (via Fourier)

Fourier representation of MMD:

MMD?*(P,Q; F) = //\¢p w)|* dA(w)

¢p characteristic function of P

Proof: Using Bochner’s theorem (a)... and Fubini’s theorem (b)

MMD?(P, Q) := Epk(x — x') + Eqk(y — ') — 2Ep qk(x,y)

— [ [ [ss - na® - @] ae - @)
(@ / / /R e A ) d(P - Q) (s) d(P — Q)(t)

- / /R e (P — Q)(s) /R e d(P — Q)(t) dA(w)

= | |¢p(w) — ¢@(w)|" dA(w)
Rd



Example

e Example: P differs from Q at (roughly) one frequency

0.35

0.3

0.25

0 o.15

0.1

0.05

0
-10 -5

> o




Example

e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency

Gaussian kernel
Difference |¢pp — ¢
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Example

e Example: P differs from Q at (roughly) one frequency

Characteristic
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Example

e Example: P differs from Q at (roughly) one frequency

Sinc kernel
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Example

e Example: P differs from Q at (roughly) one frequency

NO'T characteristic
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Example

e Example: P differs from Q at (roughly) one frequency

Triangle (B-spline) kernel
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Example

e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency

Characteristic
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Choosing the kernel

e (Gaussian kernel example
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e MMD vs frequency of perturbation to P
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Choosing the kernel

e B-spline kernel example
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Why does MMD decay with increasing perturbation freq.”

e Recall simple MMD expression, Fourier series case:

o
MMD?*(P,Q; F) = )  [¢p, — bl ke
l[=—0o0
and that ky decays as £ grows.
e Fourier representation for more general case on R?:
MMD?(P,Q: F) = [ [ [op(w) ~ da(w)* dAw)

has similar behavior.



Summary: Characteristic Kernels

e Characteristic kernel: (MMD =0 iff P = Q) purson, cormos

e Main theorem: k characteristic for prob. measures on R?
if and only if supp(A) = R? (corros. v
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Summary: Characteristic Kernels

e Characteristic kernel: (MMD =0 iff P = Q) purson, cormos

e Main theorem: k characteristic for prob. measures on R?
if and only if supp(A) = R? (corros. v

— Corollary: continuous, compactly supported k characteristic

e Similar reasoning wherever extensions of Bochner’s
theorem exist: nirsosq
— Locally compact Abelian groups (periodic domains, as we saw)
— Compact, non-Abelian groups (orthogonal matrices)

— The semigroup R, (histograms)



Statistical hypothesis testing



Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

LFP near sp'ke bu st LFP w'tho t sp'ke bu st
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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=50
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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=500
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Statistical test using MMD (1)

e Two hypotheses:
— Hy: null hypothesis (P = Q)
— Hy: alternative hypothesis (P # Q)



Statistical test using MMD (1)

e Two hypotheses:

— Hy: null hypothesis (P = Q)

— Hy: alternative hypothesis (P # Q)
e Observe samples  := {x1,...,z,} from P and y from Q
e If empirical MMD(x, y; F) is

—  “far from zero”: reject Hy

—  “close to zero”: accept Hy



Statistical test using MMD (2)

e “far from zero” vs “close to zero” - threshold?

——2
e Omne answer: asymptotic distribution of MMD



Statistical test using MMD (2)

e “far from zero” vs “close to zero” - threshold?
2

e Omne answer: asymptotic distribution of MMD

e An unbiased empirical estimate (quadratic cost):

—2
MMD' = oobgs > k(s a7) — k(i y5) — k(yi, 25) + k(yi, )

] h((:ci,y;)r,(l’j Yi))




Statistical test using MMD (2)

“far from zero” vs “close to zero” - threshold?
/\2
One answer: asymptotic distribution of MMD

An unbiased empirical estimate (quadratic cost):

/\2
MMD = ﬁ Zfi(mi,xj) — k(zi,y5) — k(yi, ;) + k(yi, v

)

] h((azi,y;)r,(l’j Yi))

When P # Q, asymptotically normal
——2
(\/7) (MMD _ MMD2> ~ N(0,02)

IL e J1.2 = N W | Ve E W aWaWal
[Hoeffding, 1948, Serfling, 1980

Expression for the variance: z; := (x;, y;)

52 = 4 (B, [(Bsh(z.2)] - [Euur(hiz,2)]?)



Statistical test using MMD (3)

e Example: laplace distributions with different variance

MMD dIStrIbUtlon and GaUSSIan flt under H1 Two Laplace dlstrlbutlons with dlfferent variances
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Statistical test using MMD (4)

e When P = Q, U-statistic degenerate: E,/[h(z,Z)] = 0 pndersoncrat, oo
e Distribution is

nMMD(x, y; F Z)\l — 2]

e where
ZZNN(02>iid
— [ k(2,3 (2)dP(z) = My (2)

centred



Statistical test using MMD (4)

e When P = Q, U-statistic degenerate: E,/[h(z,Z)] = 0 pndersoncrat, oo

e Distribution is

nMMD(x, y; F Z)\l — 2]
e where MMD density under H,
-z~ N(0,2) i.id N ;Ejnspuifilcal PDF | |
— [y Bz, 2 )pi(2)dP () = Aigpi(z') |
;\,_/

centred

Prob. of n x MM D




Statistical test using MMD (5)

e Given P = Q, want threshold 7" such that P(MMD > T") < 0.05
—_— 2
MMD = Kp,p + KQ,Q — 2[(P,Q

MMD density under HO and H1

s U |

— alternative

©
n
T

‘(// 1-a null quantile

Prob. density
E

Type Il error




Statistical test using MMD (5)

e Given P = Q, want threshold 7" such that P(MMD > T") < 0.05



Statistical test using MMD (5)

Given P = Q, want threshold 7" such that P(MMD > T') < 0.05
Permutation for empirical CDF parconesand-cGing, 1o92]

Pearson curves by matching first four moments gotmsoretat, to94
Large deviation bounds oeftding, 1963, ivicbiarmid, tes9]

Consistent test using kernel eigenspectrum nipsoob]



Statistical test using MMD (5)

Given P = Q, want threshold 7" such that P(MMD > T') < 0.05
Permutation for empirical CDF parconesand-cGing, 1o92]

Pearson curves by matching first four moments gotmsoretat, to94
Large deviation bounds oeftding, 1963, ivicbiarmid, tes9]

Consistent test using kernel eigenspectrum nipsoob]

CDF of the MMD and Pearson fit
1 T T T T T

P(MMD < mmd)

= Pearson

0 1 1 1 1 1 1
~0.02 0 0.02 004 0.06 0.08 0.1
mmd




Approximate null distribution of MMD via permutation

Original empirical MMD for dogs and fish:




Approximate null distribution of MMD via permutation

Permuted dog and fish samples (merdogs):

III-II I'II h B

Lr. .I_....1 - I — l
Permutation simulates il

P:Q u II_II _I-I




2
Approximate null distribution of MM D via permutation

e Null distribution estimated from 500 permutations

e P=0Q=N(0,1)
MMD density under HO
0.7 T T T T
me N ull PDF
B \uil PDF from permutation
>
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Consistent test w/o bootstrap (not examinable)

e Maximum mean discrepancy (MMD): distance between P and Q

MMD(P, Q; F) := [|up — pall+

o Is MMD significantly > 07

e P = Q, null distrib. of MMD:

L ——

MMD N(z2 — 2
T g; l(zl )7

— )\ is [th eigenvalue of

kernel k(z;, ;)

P # Q (neuro)

— Spectral
0.4} = = = Permutation

Type Il error

0 L L L
100 150 200 250 300
Sample size m

Use Gram matrix spectrum for A

consistent test without bootstrap




Kernel dependence measures



Reminder: MMD can be used as a dependence measure

o Dependence measure: [ALT05, NIPS07a, ALT07, ALT08, JMLR10]
E E ° = 2
(Supf [ nyf o PXpyf]) — HSl‘Tp <f7:uPXY o MPXpy>f’Xg
fl<1

— HMPXY _:LLPXPYH_27-“><Q = MMD(PXYapXPY)

Dependence withess and sample
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Kernels on image-caption pairs

Kernel k£ on images with feature space F,

k(% %)

Kernel [ on captions with feature space G,

A large animal A responsive,
who slings interactive pet
slobber, ... 7




Kernels on image-caption pairs

Kernel k£ on images with feature space F,

k(% %)

Kernel [ on captions with feature space G,

A large animal A responsive,
who slings interactive pet
slobber, ... 7

Kernel £ on image-text pairs: are images and captions similar?

Alarge A responsive,
animal ok 3 interactive
) who slings 7 ) pet,

slobber, ...

— . A large animal Aresponsive,
who slings interactive pet,
“ 7 slobber, ...




HSIC: empirical estimate and intuition

A large animal who slings L
slobber, exudes a distinctive

houndy odor, ...

Their noses guide them through i
and they're never happier than wt
following an interesting scent.

A responsive, interactive pet, one
that will blow in your ear and
follow you everywhere.

Text from dogtime.com and petfinder.com

Empirical HSIO(PXy, PXPy):

1

n2

5 (HKH o HLH),



MMD as a dependence measure

Two questions:

e Why the product kernel? Many ways to combine kernels - why not eg a

sum?’

e Is there a more interpretable way of defining this dependence measure?



Covariance to reveal dependence

A more intuitive idea: maximize covariance of smooth mappings:

COCO(P; F,G) == sup  (Exy[f(x)g(y)] — Ex[f(x)|Ey[g(y)])

1fll7=1,llgllg=1
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Covariance to reveal dependence

A more intuitive idea: maximize covariance of smooth mappings:

COCO(P; F,G) == sup  (Exy[f(x)g(y)] — Ex[f(x)|Ey[g(y)])

1fll7=1,llgllg=1

Dependence witness, X
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Covariance to reveal dependence

A more intuitive idea: maximize covariance of smooth mappings:

COCO(P; F,G) == sup  (Exy[f(x)g(y)] — Ex[f(x)|Ey[g(y)])

1fll7=1,llgllg=1

Dependence witness, X
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: 0 1 . .
. =
1 ... .-” .:. ~05
o . 0.5f
0.5 ) - ' 1 £
: : 2 0 2~
> of . R X < 0 e
. Dependence witness, Y = .
0.5 Ld
—05 s ]
s 4 -0.5 t
—1 sotem s = 0 -2
D 1 , .
~1.5 - 05 1 -05 0 0.5
X 1
-2 0 2



Covariance to reveal dependence

A more intuitive idea: maximize covariance of smooth mappings:

COCO(P; F,G) == sup  (Exy[f(x)g(y)] — Ex[f(x)|Ey[g(y)])

1fll7=1,llgllg=1

Dependence witness, X

0.5
15 Correlatlgn. -0.00 Correlation: -0.90  COCO: 0.14
) 0 ] | |
. x
1 ... .—” .-“ 05
o . 0.5f
051 - B _ 1 £
: : -2 0 2~
> of . R X < 0 .
. Dependence witness, Y o . . .
0.5 L
—05 s ]
K -0.5 ‘
-1 » ..: = 0 K
E 1 | |
1.5, 0 5 08 1 -05 0 0.5
X 1 i(X)
2 0 2

y

How do we define covariance in infinite feature space?



Covariance to reveal dependence

How do we do this in RKHS? Let’s first look at finite linear case.
We have two random vectors x € R?, y € R . Are they linearly dependent?



Covariance to reveal dependence

How do we do this in RKHS? Let’s first look at finite linear case.
We have two random vectors x € R?, y € R . Are they linearly dependent?

Compute their covariance matrix: (ignore centering)
. T
Cpy = E (xy )

...but this is a d x d’ matrix! How to get a single “summary” number?



Covariance to reveal dependence

How do we do this in RKHS? Let’s first look at finite linear case.
We have two random vectors x € R?, y € R . Are they linearly dependent?

Compute their covariance matrix: (ignore centering)
_ T
Cpy =E (xy )

...but this is a d x d’ matrix! How to get a single “summary” number?

Solve for vectors f € R%, g € R

argmax fTC’xyg = argmax Ey, [(fTX) (QTY)}

1f1I=1,llg]=1 1 £1l=1,]lg]|=1
= argmax Ey,[f(x)g(y)] = argmax cov (f(x)g(y))
| £lI=1,]lgll=1 1£11=1,|lg||=1

(maximum singular value) of C5,.



Challenges in defining feature space covariance

Given features ¢(z) € F and ¢(y) € G:

Challenge 1: Can we define a feature space analog to zy'?
YES:

o Given f e R% g e RY heRY, define matrix f ¢' such that
(fg")h=f(g"h).

e Given f € F, g € G, h € G, define tensor product operator f ® g such
that (f ® g)h = f{g,h)g.

o Now just set f:= ¢(z), g = ¥(y), to get zy' — o(z) @ ¥(y)



Challenges in defining feature space covariance

Given features ¢(z) € F and ¢(y) € G:

Challenge 2: Does a covariance “matrix” (operator) in feature space exist?

I.e. is there some C'xy : G — F such that

(s Cxyg)r = Exy[f(X)g(y)] = cov (f(x), g(y))

Does “something” exist — Riesz theorem. Can we write (finite dimensional)

covariance as a dot product?

Reminder: Riesz representation theorem
In a Hilbert space #, all bounded linear operators A can be written (-,g4),,, for some g4 € H,

Af = (f(),9a())



Challenges in defining feature space covariance

Given features ¢(z) € F and ¢(y) € G:

Challenge 2: Does a covariance “matrix” (operator) in feature space exist?

I.e. is there some C'xy : G — F such that

(s Cxyg)r = Exy[f(X)g(y)] = cov (f(x), g(y))

Hints:

e In the finite dimensional case, and given basis vectors g; € RY

I .. . .
Cxy € R¥*% ig in a vector space, with inner product

(Cxy, Ayng = trace(Cxy ' A) = Z(CXng)T(Agj)a
jed

e In particular

(Cxv, fg s =trace(Cxy ' (fg)") = f' Cxyvg = Eu [f(X)g(y)]



Challenges in defining feature space covariance

Given features ¢(z) € F and ¢(y) € G:

Challenge 2 (reformulated via the hints): does there exist Cxy : G — F in a
Hilbert space HS(G, F) such that:

(Cxvy, A)pg = Exy (0(x) @ ¥(y), A)yg

and in particular,
<CXY7 f ® g>HS — Exy [f(X)g(y)]



The Hilbert space HS(G, F)

e J and G separable Hilbert spaces.
® (gj);es orthonormal basis for G.

e Index set J either finite or countably infinite.




The Hilbert space HS(G, F)

F and G separable Hilbert spaces.
(gj)jes orthonormal basis for G.
Index set J either finite or countably infinite.
Linear operators L : G - Fand M : G — F.
Hilbert space HS(G, F) , with inner product
(L, M)yg = > (Lgj, Mg;),
JjeJ

(independent of orthonormal basis)



The Hilbert space HS(G, F)

F and G separable Hilbert spaces.

(gj)jes orthonormal basis for G.

Index set J either finite or countably infinite.

Linear operators L : G - Fand M : G — F.

Hilbert space HS(G, F) , with inner product

(L, M)yg = > (Lgj, Mg;),
JjeJ

(independent of orthonormal basis)

Hilbert-Schmidt norm of the operators L:
ILllfs = D ILgjll>

jeJ

L is Hilbert-Schmidt when this norm is finite.



The tensor product a ® b is in HS(G, F)

Given a € F and b € G, we earlier defined the tensor product a ® b as a

rank-one operator from G to F (generalize finite case ab')
(a®@b)g — (g,b)ga.

Is a ® b € HS(G, F)?



The tensor product a ® b is in HS(G, F)

Given a € F and b € G, we earlier defined the tensor product a ® b as a

rank-one operator from G to F (generalize finite case ab')
(a®@b)g — (g,b)ga.

Is a ® b € HS(G, F)?

la®blls = D Ila®b)g;l%
jeJ

= > latb, g6l x
jeJ
= Jallz > [(b.g)g°
jeJ
—  |lal|Z|Ib]13, (5)

where we use Parseval’s identity. Thus, the operator is Hilbert-Schmidt.



Inner product of a ® b with L € HS(G, F)

Given a Hilbert-Schmidt operator L : G — F,
<L7 a b>HS — <CL, Lb>]—'
Special case:
(U ®v,a @ b)yg = (u,a)r (b,v)g .

Proof: Use expansion

b="> (b,95)g9

jeJ



Inner product of a ® b with L € HS(G, F)

Given a Hilbert-Schmidt operator L : G — F,
<L7 a b>HS — <CL, Lb>]—'
Special case:
(U ®v,a @ b)yg = (u,a)r (b,v)g .

Proof: Use expansion
b="> (b,95)g9
JeJ
Then



Inner product of a ® b with L € HS(G, F)

Proof (continued)

(a®b, L)yg = Z (Lgj, (a ®b)g;) -

= (b,g5)g (Lgj,a) £ -

J



Covariance operator in RKHS

Given RKHS F with feature map ¢(x) and kernel k(z,z’), RKHS G with

feature map ¢ (x) and kernel I(y,1').
Challenge 2 (reminder): does there exist C'xy : G — F in some Hilbert
space HS(G, F) such that:

(Cxy, A)pg = Exy (0(x) @ 9¥(y), A)pg

and in particular,

(Cxv, [ ® 9 us = Exy [f(X)g(y)] = cov [f(x)g(y)]

(ignoring centering)



Covariance operator in RKHS

Given RKHS F with feature map ¢(x) and kernel k(z,z’), RKHS G with

feature map ¢ (x) and kernel I(y,1').
Challenge 2 (reminder): does there exist C'xy : G — F in some Hilbert
space HS(G, F) such that:

(Cxy, A)pg = Exy (0(x) @ 9¥(y), A)pg

and in particular,

(Cxv, [ ® 9 us = Exy [f(X)g(y)] = cov [f(x)g(y)]

(ignoring centering)

e Define ¢(x) ® ¥(y) a random variable in HS(G, F)

e The covariance operator, written C'xy, is the unique element satisfying

(Cxvy, A>Hs = Exy (0(x) @ ¥(y), A>Hs (9)



Covariance operator in RKHS

Proof: Use Riesz representer theorem. The operator

T : HS(G,F) — R
A = Eyxy (0(x) @ 9¥(y), A)yg

is bounded when Ey y (||¢(x) ® ¥(y)||us) < oo, since

‘Ex,y <¢(X) & w(}’)a A>HS‘ S Ex,y ‘<¢(X) ® ¢(Y)a A>HS‘
< [[AllasExy ([[¢(x) @ 1(y)|[ns) -

(first Jensen, then Cauchy-Schwarz). Thus covariance operator exists by
Riesz.

I.e. there exists C'xy such that

<CXY7 A>HS — EX,y <¢<X) & ¢(Y), A>HS



Covariance operator in RKHS

Proof: Use Riesz representer theorem. The operator

T : HS(G,F) — R
A = Eyxy (0(x) @ 9¥(y), A)yg

is bounded when Ey y (||¢(x) ® ¥(y)||us) < oo, since

‘Ex,y <¢(X) & w(}’)a A>HS‘ S Ex,y ‘<¢(X) ® ¢(Y)a A>HS‘
< [[AllasExy ([[¢(x) @ 1(y)|[ns) -

(first Jensen, then Cauchy-Schwarz). Thus covariance operator exists by
Riesz.

Simpler condition:

E.y ([0(x) @ ¥(y)llus) = Exy ([[¢(X)]Fllv(y)lg)

ey (VE X)) ) < oo

E
E



Covariance operator in RKHS

Now just prove the special case,

(Cxv, f ®g)us = Exy [f(x)g(y)]
Proof:

(f,Cxvg)r = (Cxv,f®gys
= Exy (¢(x) @ ¥(y), [ ® 9)us
= Eq [(f,0(x) £ (9, ¥(y)) ]
= Eyq [f(®)g(y)]
= cov(f,g).

Thus, we proved C'xy exists and behaves as expected.



COCO(P; F,G) :=

1.5

REMINDER: functions revealing dependence

Correlation: -=0.00

s (B [00)] Bl 0T 94

Dependence witness, X

X o

0.5
Correlation: -0.90 COCO: 0.14
0 1 . :
>
-0.5
0.5} ..
-1 i.::..'.'.' el e,
-2 0 2 — o o %4
X . 0f el
Dependence witness, Y (o . .
0.5 !,
-0.5¢ te
0 ':.:
S ° e ®
o 1 .
05 1 -05 0 0.5
f(X)
15 0 2



REMINDER: functions revealing dependence

COCO(P; F,G) := " f}lﬁ) - (Exy[f(x)g(y)] — Ex[f (x)|Ey[g(y)])

Dependence witness, X

0.5
15 Correlatlgn: ~0.00 Correlation: -0.90 COCO: 0.14
. 0 1 : :
x
1 et 0.5
L 0.5
0.5¢ . iy T ] $ .,
: : "o 0 > "._-“.
> o .- R X S 0 .
. Dependence witness, Y O . . .
0.5 Ld
-0.5¢ 3 :
R -0.5 ‘
1 suienl _— :
E 1 | |
-1.5 ' ~0° 4 -05 0 05
— 0 2 )
X 1
2 0 2
y

How do we compute this from finite data?



Empirical covariance operator

The empirical covariance given z := (x;,y;)r_; (now include centring)

. 1 <& . )
Cxy = - Z (i) @ Y(yi) — flz @ oy
=1

where fi, := = > | ¢(z;). More concisely,

1

Cxy = ~XHY"
n

where H = I, —n~'1,,, and 1,, is an n x n matrix of ones, and

XZ[gb(a:l) qs(xn)} YZ[w(yl) oo Y(yn)

Define the kernel matrices

K;; = (XTX) = k(zi, ;) Li; = Uy, yj),

)



Functions revealing dependence

Optimization problem:

COCO(z; F,G) := max <f> 6XY9>]__
subject to ||f||lFr =1 (10)
lgllg =1 (11)

Assume
f=2 aild@) — ] = XHa  g=7 Bi[d(y)— = YHS,
i=1

The associated Lagrangian is

|2

~ A
LS, 9: A7) ={[,.Cxy9)Fr — 3 (ILF1F = 1) - 5 (lgllF - 1),



Functions revealing dependence

We now write this in terms of o and (:

FTCxyyg

1
a HXT (XHYT) Y HS
n

1
= —o' KLB,
n
where we note that H = HH. Similarly
1fl%=a HXX"'Ha = a Ka.
Substituting these into the Lagrangian,
1 A ~ ~
Lie,B A7) = —a KL -3 (aTKa _ 1) _ % (/ﬂm _ 1) |
n
Kernel matrices between centred variables,

K=HKH L=HLH



Functions revealing dependence

Maximize wrt the primal variables o, (3.

Differentiating wrt o and  and setting to zero,

1 ~~ -
—KLB—AKa = 0
n

1 ~ ~ -
—LKa—~LE = 0
n

Multiply the first equation by o', and the second by 3',

1 -
TKLﬁ — ' Ka
n

1 o~ ~
ﬁﬁTLKa = ~8'L3

(12)

(13)



Functions revealing dependence

Subtracting first expression from the second,
Aa'Ka=~8TLS.

Recall the constraints o' Ko = 1 and BTZB = 1. Thus A = ~.

We must maximize the following expression relating «, 5:

0 %IN(E Q K 0 Q
~ ~ =7 ~
1LK 0 A 0 L B

At solution (given eq. (I2) on previous slide, and o' Ko = 1),

1 ~ o~



Covariance to reveal dependence

e Empirical COCO(z; F,G) largest eigenvalue of

0 %f{i Q K 0 Q
_ =y -
LK 0 5 0 L 5

e K and L are matrices of inner products between centred observations in

respective feature spaces:

~

1
K=HKH  where H=7I--11"

n



Covariance to reveal dependence

e Empirical COCO(z; F,G) largest eigenvalue of

0 %f{i Q K 0 Q
_ =y -
LK 0 5 0 L 5

e K and L are matrices of inner products between centred observations in

respective feature spaces:

~

1
K=HKH  where H=7I--11"

e Mapping function for x:

f(x) = Zai k(x;,x) — — Zk(xj,x)



Hard-to-detect dependence

Smooth density

Rough denS|ty

4

Density takes the form:

P,y o< 1+ sin(wx) sin(wy)



Hard-to-detect dependence

frequency

increasing

o\
I
3

ids of

SINuUsoO

I
3

e Example

7

COCO (empirical average, 1500 samples)

3 4 5 6
Frequency of non-constant density component

2

1

0.1
0.09r
0.08|

0000
00000y
0000e
010100

hv -ro

00

0.07r

0000
00000000
00000000

00000000

c(@@@@@mm
00000000 g

00 000000
00000000
00000000

000000
000000
{‘@'{.
000000
@@@@@@
000000

0.03|

0.02r
0.01
0

000000000000
0000000000600
6060000000000
600000000000
600000000000
000000000000
000000000000
0000060000000
000000000000
000000000000
6000000006000
000000000000

0000000000
0000000000
0000000000
00000000060
0000000000
0000000000
0000000000
00000600000
0000000000
0000000000



Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?



Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?

Case of w =1

Dependence witness, X

Correlation: 0.27 oo ‘ Correlation: —0.50  COCO: 0.09
- - - 0.6 -

0 ] Fﬂ‘.‘j:,{‘ﬁ”f,’-’.".‘??’.’ I
[~ ® o0 o - ? 230 eels 0o oo n . .
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H
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.

o ° ']
(X} '. N ... ......’ o® o .. rs ... 04 % e o o o Noo, ¥ «f
IR R et &5 1 e X _ | B
: / ! | 0.5 s

! . s o L IR
i S 'q?‘.ﬁ W 0.2} Bkt el e IR
. R i r{’ ' EXSOTIURRT S
[ ] o % o o e

L]

<
o.. L) ,:. .:'::...*‘!#o'o.s. X —~ 0 I : . :'-:.. . . .-".v'-
%00

2iad J.O: Pa0 Y % . 3 .’:.'.'., .
..'s‘\sn-"‘&&' :4-.,'-. -.{o. oo 3% . Dependence witness, Y -0.2} ;:_,_.- ~ .
¢ -0.4} } coevE

k]
T, . ¢ - e
23 NE 305 o, o o % 0.5 1 N AT .;-.,:.'c.,&
’ P XSl R X 0.6} AL PRI |

Y\y/
o

-0.8 :
-1 -0.5




Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?

Case of w = 2

Dependence witness, X

Correlation: 0.04 0 ‘ Correlation: 0.51  COCO: 0.07
- - - 0.6 : - -

O T AT

4 .

Cea, N XY i 0.4 A U i

wt .# e L ?o;g'{ 0.5 ] i e {;fl,-iiﬁ
MR LR 3 AT Sx':g\ | e oM Y

2 % o o REK . R«
RGO 4 3 Ao SN 02 R TR
%" Yo o & ". 1 < " fx

1t - Ve ..:.. ..‘o. i ‘ ‘ ‘ .!..:-.- .-.. :‘,',.o..-,...
". .. .. ° o°° o : _o 0 o I 0.. '-.'..: . ...‘: -‘. ".-E:.,
..'.EO‘H: .."‘.a;gﬁ.ﬁ.. ® O — 0 o8 ° :.:_'.' o o .-' '.:‘ A

IH ey Dependence witness, Y -0.2f i 03 W e e
>

- ::: .‘#‘&t X B L g i 1 {%."Asﬁ';'.'.-'--?.‘ﬁ.'-:.' Hpe
’00 ° ® oo ...o'o. -, ° ¥ ::_.: .;.:‘.:- . .-:‘}-:.-. o2
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:‘. X % L) : < e ) .‘. .O{. _ L
LR PR sg Ayt 0.6
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o
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Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?

Case of w =3

Correlation: 0.03

. . \.M‘.‘ . ‘0{:"
'2‘ a«! : :

Y\y/

0.5

-0.5

0.5

Dependence witness, X

Dependence witness, Y

Correlatlon —0 45 (COCO:0.03

0.5

-0.5



Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?

Case of w =14

Dependence witness, X

Correlation: 0.03 0 Correlation: 0.21  COCO: 0.02

4 ' ' ' R 0.6
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g‘.:lo: to?fn .\,:. .‘83 %!::,o ? 0.4 ."‘: Y “' ¥ 1 3
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Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?
Case of w =77

Dependence witness, X

1
Correlation: 0.00 05 S :
Correlation: -0.13  COCO: 0.02
[ e TR \ v ———
° % e LY DOWASIIL IR <, 1 FXI e o oer oo LYY
LIS S 2 W ° ORISR £
NP SO ) 04f  BREINILRELIEE
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Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?
Case of uniform noise!

This bias will decrease with increasing sample size.

“4 -2

Correlation: 0.00

S o0 o 00.. a3 ‘..
s LA o
AT N AT R

Xot,
I 4

Dependence witness, X
|

0.5

Correlation: -0.13  COCO: 0.02
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£ 0 ] LI IR PR - AT ks |
’ CEN A T s el s
0.41 B3 LN AT L s
' 4 A A '1:» - .'.: N é,f.."},
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Hard-to-detect dependence

Why does COCO decay when dependence encoded at higher frequencies?

e As dependence is encoded at higher frequencies, the smooth mappings

f, g achieve lower linear dependence.

e Even for independent variables, COCO will not be zero at finite sample

sizes, since some mild linear dependence will be induced by f, g (bias)

e This bias will decrease with increasing sample size.



More functions revealing dependence

e (Can we do better than COCQO?



More tunctions revealing dependence

e (Can we do better than COCQO?

e A second example with zero correlation

Dependence witness, X

0.5
Correlation: 0.00 Correlation: -0.80 COCO: 0.11
. . — 0 1 . .
o‘o.:' 8
0.5 AR 1 -0.5
el 0.5}
O oe _12 5 ) _ ‘::..
.- X > of
-0.5 ¢ L A 1 Dependence witness, Y o ¥,
o, o 0.5 .
1 * -0.5 -,
0 %1% . " a%
1.5 : = 1
1 0.5 ;)( 0.5 1 -05 -1 Y 5 05
f(X)
15 0 2



More tunctions revealing dependence

e Can we do better than COCO?
e A second example with zero correlation

2nd dependence witness, X
1

Correlation: 0.00 0.5
. 0.0 ‘00 8{.\] 0
0.5 vl i
e, 2" . i -0.5
° o .‘.’. * % .o.

O %= Talt ] -

. . ® '. . —2 O 2

° . . X

-0.5 ¢ o s . 2nd dependence witness, Y

. . . 1

-1 S ' 0.5
3
1.5 - - - S0
4 05 0 05 1
0
y



More tunctions revealing dependence

e Can we do better than COCO?
e A second example with zero correlation

2nd dependence witness, X

Correlation: 0.00 0.5 Correlation: -0.37 COCO,: 0.06
T . st . . 1
L :>:<:\l 0
0.5} AR . _
% : 4 :.o.. « ° o. 05 05 I :.:- o . .
O | . o: ..l‘ . . ..... i _12 0 2 :.. . . '.o .
o. ¢ . . ..n ° - X E O - ° ° od -
-05¢ I N 1 2nd dependence witness, Y o . .
. 1 * T eeLe )
- e Y s $
_1 it 0.5 —05 ) Vi
=
-1.5 : o~ 0 4
1 0.5 0 0.5 1 05 1 0 1
X f (X)
-1 2
-2 0 2




Hilbert-Schmidt Independence Criterion

e Given ~; := COCO,(z; F,G), define Hilbert-Schmidt Independence

Criterion (HSIC) [ALTO05, NIPS07a, JMLR10] :

n

HSIC(2; F,G) == ) ~;

1=1



Hilbert-Schmidt Independence Criterion

e Given ~; := COCO,(z; F,G), define Hilbert-Schmidt Independence

Criterion (HSIC) (avTos, N1Pso7a, IMLR10] :

HSIC(=z Z v;

e In limit of infinite samples:
HSIC(P; F,G) = ||Cxy — px ® py || 4s
— <5XY7 5XY>HS + <,uX X Ky s X 020 ,uY>HS

— 2 <5XY7 px & MY>HS
= Ex,yEx’,y’ [k(xv X/)Z(Y> y/)] + Ex,x’ [k(xa X/)]Ey y’ [l(y y/)]
— 2B,y [ [k(x,X)Ey [I(y, y')]

e C vy uncentered covariance, x' indep. copy of x, y' indep. copy of y



Hilbert-Schmidt Independence Criterion

e Given ~; := COCO,(z; F,G), define Hilbert-Schmidt Independence

Criterion (HSIC) (avTos, N1Pso7a, IMLR10] :

HSIC(=z Z v;

e In limit of infinite samples:
HSIC(P; F,G) = ||Cxy — px ® py || 4s
— <5XY7 5XY>HS + <,uX X Ky s X 020 ,uY>HS

— 2 <5XY7 px & MY>HS
= Ex,yEx’,y’ [k(xv X/)Z(Y> y/)] + Ex,x’ [k(xa X/)]Ey y’ [l(y y/)]
— 2B,y [ [k(x,X)Ey [I(y, y')]

e NOTE: HSIC is identical to MM D?*(Pxy,PxPy) (exercise!)



Hilbert-Schmidt Independence Criterion

Proof: Recall:

(La@bys = (a, Lb)z  (Cxv,A) =By (6(x) ® ¥(y), A)ps

and
la ® ble = (b, c)a

Assume uncentred covariance. Applying covariance operator definition twice,
- ) - -
[Cxvlfs = (Cxv.Cxy)

= By (609 ©v(y), Oxv)

= BBy (6(x) @ 9(y), 6(X) @ Y(y) )y
ExyBxy (6(), [$(<) ® p(y)J(y)) -
= E.,E,, _<¢(><), d(X)) 7 (V). w(y»g}
E . E.. [E(x x)i(y,y).]

(%
(




Estimates of HSIC

Unbiased estimate: define A as the empirical estimator of
HCXYH%{S = EyyEy y k(X)) (y, y') ],

A= n<n1_ 0 Z > k@i, )y y)




Estimates of HSIC

Unbiased estimate: define A as the empirical estimator of
HCXYH%{S = EyyEy k(X)) (y, y') ],

A= n<n1_ 0 Z > k@i, )y y)

Alternative: plug in empirical covariance operator (uncentered),
1 n
Cxy = - Z O(xi) @ P (yi),
i=1

Biased estimate:

AN

Ap =

—< Z¢ x;) Q P(y;), Z¢ g ®¢(yz)>

= % sz(%l’j)l(yuw) = %tr(KL)’

HS



How large is the bias?

Difference is:

1
3{\3‘ —_
]

ey

VRN
3{\3‘ —_
|
=
S
| p—t
=
N~
]

&
<O
S

1=1 1#£]
11 1 &

— — | — Z kmlzz Z kzy lzy )
A =1 n<n B 1) 1#£]

where k;; = k(x;,x;).
thus the ezpectation of this difference (i.e., the bias) is of O(n™1).

Remaining terms covered in lecture notes.



Distribution of HSIC at independence

e (Biased) empirical HSIC a v-statistic

1
HSICy, = —trace(KHLH)
n

— Statistical testing: How do we find when this is larger enough that
the null hypothesis P = PPy is unlikely?

— Formally: given P = P,P,, what is the threshold 7" such that
P(HSIC > T') < « for small a?



Distribution of HSIC at independence

e (Biased) empirical HSIC a v-statistic

1
HSICy, = —trace(KHLH)
n

o Associated U-statistic degenerate when P = PPy serfiing, tozo):

nHSIC, & 3 Nz, 2~ N(0,1)iid.
=1

(%,7,9,7)

)\Z¢Z<Zj) — /hijqrwl(zi)dFi,q,ra hijqr — E Z ktultu + ktul’uw — thult’v

. (t,u,v,w)



Distribution of HSIC at independence

e (Biased) empirical HSIC a v-statistic

1
HSICy, = —trace(KHLH)
n

o Associated U-statistic degenerate when P = PPy serfiing, tozo):

nHSIC, & 3 Nz, 2~ N(0,1)iid.

=1
(4,9,9,7)
)\Z¢Z<Zj) — /hijqrwl(zi)dFi,q,ra hijqr — E Z ktultu + ktul’uw — thult’v
C(tu,v,w)

e First two moments nipso7b

E(HSIC,) = %TrCmTrC'yy

2(n — 4)(n — 5)

var(HSICy) = OF

|Casllis Cuyllgs +O(n ™).




Statistical testing with HSIC

e Given P = P,P,, what is the threshold 7" such that P(HSIC > T') < «

for small a?
e Null distribution via permutation Eeuervergen, 993

— Compute HSIC for {x;, yr(; }i=; for random permutation 7 of indices
{1,...,n}. This gives HSIC for independent variables.
— Repeat for many different permutations, get empirical CDF

— Threshold 7" is 1 — « quantile of empirical CDF



Statistical testing with HSIC

e Given P = P,P,, what is the threshold 7" such that P(HSIC > T') < «

for small a?
e Null distribution via permutation Eeuervergen, 993

— Compute HSIC for {x;, yr(; }i=; for random permutation 7 of indices
{1,...,n}. This gives HSIC for independent variables.

— Repeat for many different permutations, get empirical CDF

— Threshold 7" is 1 — « quantile of empirical CDF

e Approximate null distribution via moment matching mamainen, do9s:

xa—le—az/ﬂ
’nHSICb(Z) ~ 5O‘F(Oé)
where
Y (E(HSICy))? 5 — var(HSICy)
- var(HSICy) - nE(HSIC,)



Experiment: dependence testing for translation

... il est évident que les ordres de
gouvernements provinciaux et munici-

paux subissent de fortes pressions en

(Biased) empirical HSIC:

1 child ce unding 1e federal gov-
ernment to the provinces. In fact, we

j i SICb —_— _trace( l g j i L l- i ) have increased federal investments for raire, nous avons a nté le finance-
n2 early childhood development. . . ment fédéral pour le développement des

jeunes enfants. ..

Translation example: [N1Pso7b]
Canadian Hansard

(agriculture)

5-line extracts,

k-spectrum kernel, k = 10,

repetitions=300,

sample size 10

k-spectrum kernel: average Type II error 0 (a = 0.05)



Experiment: dependence testing for translation

(Biased) empirical HSIC:

1
HSICy, = —trace

n2

(KHLH)

... il est évident que les ordres de
gouvernements provinciaux et munici-
paux subissent de fortes pressions en
ce qui concerne les services de garde,
mais le gouvernement n’a pas réduit le
financement qu’il verse aux provinces
pour les services de garde. Au con-
traire, nous avons augmenté le finance-
ment fédéral pour le développement des

jeunes enfants. ..

Translation example: [N1Pso7b] I
Canadian Hansard

(agriculture)

5-line extracts,

k-spectrum kernel, k = 10,

repetitions=300,

sample size 10

k-spectrum kernel: average Type II error 0 (a = 0.05)
Bag of words kernel: average Type II error 0.18



Application of HSIC: Feature Selection



HSIC for Microarray feature selection

e Select genes from microarray data for classification

e Different methods choose features optimising different criteria



HSIC for Microarray feature selection

e Select genes from microarray data for classification
e Different methods choose features optimising different criteria

e Several criteria special cases of HSIC: cymro7a,svBor)
— Pearson’s correlation (normalise by standard deviation) partveeretat,
2002, Eir=Dor-et-ah, 2006]
— Mean difference and variants pedoetat, 2006, Hasticet-ab, 2601
— Shrunken centroid [ribshiranietat, 2002, 2003]

— (Kernel) ridge regression [iand-yans, 2005



HSIC for Microarray feature selection

e Select genes from microarray data for classification
e Different methods choose features optimising different criteria

e Several criteria special cases of HSIC: cymro7a,svBor)
— Pearson’s correlation (normalise by standard deviation) pamrtveererat,
2002, Eir=Dor-et-ah, 2006]
— Mean difference and variants pedoetat, 2oos, FHasticet-ab, 26001
— Shrunken centroid wibstiranictat, o2, 2003

— (Kernel) ridge regression [iand-yans, 2005

e When are nonlinear feature maps justified?



Feature selection: BAHSIC (1)

e DBackwards elimination of irrelevant features to maximise dependence

(HSIC). Why backwards?



Feature selection: BAHSIC (1)

e DBackwards elimination of irrelevant features to maximise dependence

(HSIC). Why backwards?

Input: The full set of features &
Output: An ordered set of features S

1: ST+ @

2: repeat

3:  Adapt kernel parameter oy

4:  Remove individual features to maximize HSIC,
1 <= argmaxy ) ;.7 HSIC(o0,S\{j}), ZCS

D: S+ S \I

6: ST (ST,I)

7 until S = Y

e Application: feature selection in microarrays [cmro7a,isMBo7, JMLR12]



Relation of HSIC to mean difference

e (Biased) empirical HSIC: HSIC(X,Y) := Tr(KHLH)



Relation of HSIC to mean difference

e (Biased) empirical HSIC: HSIC(X,Y) := Tr(KHLH)
e HSIC equivalent to difference in means
— Linear input kernel Ky = z[f] (z[(]) ', K = >0 Ko (single feature,
HSIC is sum of all feature scores)
— Linear output kernel, 1/ny for one class, —1/n_ for the other
— Warning: for nonlinear kernel, features can interact.

n

Tr(K,HLH) = Za: —n— > il

1=n4+1



Relation of HSIC to mean difference

e (Biased) empirical HSIC: HSIC(X,Y) := Tr(KHLH)
e HSIC equivalent to difference in means
— Linear input kernel Ky = z[f] (z[(]) ', K = >0 Ko (single feature,
HSIC is sum of all feature scores)
— Linear output kernel, 1/ny for one class, —1/n_ for the other
— Warning: for nonlinear kernel, features can interact.

n

Tr(K,HLH) = Za: —n— > il

1=n4+1
e HSIC equivalent to shrunken centroid
— Linear kernels, Y = | "+ " "
’ 1n_ 1n_ 1n_
~on n-n nx2

TH(K HLH) = (2410 — 2[0)* + (2_10) — 2[0)?



Relation of HSIC to ridge regression

e Objective: given vy = [y1 ...y, ', minimise
R =y — Vw|® + Aw]?

where

(K1, -) )

V = : and w := Zaik‘(aﬁi, )

k(e )

Rr=y'y—y (K+ ) 'Ky

e Solution is:

e Features that minimise R* < maximise HSIC with kernel
A= (K+M\)'K

(but take care with centering: either » .y, =0or K = HKH)



Linear vs nonlinear kernel: idea

e For microarray data (esp. 2 class), difference in means with linear kernel

usually works best.

10/ _'-$ |
[ |
8_ i
Ty
®




Linear vs nonlinear kernel: idea

e For microarray data (esp. 2 class), difference in means with linear kernel

usually works best.
e [ixceptions:

— Nonlinear dependence between features and labels (e.g class with

multiple subclasses)

— Multiple classes, different features serve different purposes

L=Y'Yy =




Linear vs nonlinear kernel: application 1

e Two classes, nonlinear relation

e Plot of maximum singular function fi(x) on X (as for COCO)

X X X Xgé

X . Bix >as<>< &x

RS ™ X055 ¥xx

% K X X X X
B2 4 £
X
X X
-1.5 - -0.5 0.5 1 1.5 -1 -0.5 0.5

Xor

1.5

0.8
0.6} AR
, A )
’ 1
0.4} ’ '
! J 1
. )
0.2} K \
' 4
0
-0.2
- 3
——— () = 1)( 10_ ~ -
-0.4 — = 1% 107
- - wgo
-0.6 : :
2 1 0

X




Linear vs nonlinear kernel: application 2

e Three cancer subtypes (diffuse large B-cell lymphoma and leukemia,

follicular lymphoma, and chronic lymphocytic leukemia)

Linear Nonlinear

NS
* 2
2 | - .. .
0 - " 0 % : . ?-".-
. Al B T =
S . -y 2! m
2 m ]
. w; _"
4 2 0 2 a4 2 0 2 4



Application 2: Taxonomy Discovery



Overview: HSIC-based taxonomy discovery

e Simultaneous clustering and taxonomy fitting
— Numerical Taxonomy Clustering (nipsoss]

e Maximise dependence (HSIC) between data and clusters

A B C D E

C
AlDO 2 7 4 7 )
B 0 7 4 7 A 3 LE
1
C 0 7 6 2
1
D 0 7 2
B D

E




Dependence Maximization

Idea:
2
1567
"-.t‘ 1

05 ¢

R i
of 'i .
05 @ -~

=




Dependence Maximization

Idea:
L L) F % ] B ] B ] T
| Se -.t‘ "%’ I ) | I
1 «* 3 .11.
. s ~ I ... I
R ! _
e e e .
11 0 1 2 3 4 J_[ ]___[}FHT
Objective:
Tr | MHIYII'H]
max

v, ||HIIYTITH||lgs

e Data kernel matrix: M
o Il is n x k cluster assignment matrix, I11 =1, II, ; € {0, 1}.

e Y > 0 Gram matrix between clusters



Dependence Maximization

Idea:
2
| ‘--.n‘ " ~-a I B ]
1 e ® 3 '::. _
o L4
SPTICIL ad = | ..I
'R R | o
0 -{E . I I ]
05t = ot _ : " | _ N
Y 0 1 2 3 4 M Ty 11T

Y has no prior structure
e Add constraints to Y
— Change Y* — interpretability

— Change II* — improved clustering



Numerical Taxonomy

a b a\__J
e compute distance matrix, D c>_<d f__\

d
© Dij=/Yii+Yj; =2V

> (O

® Dab_|_Dcd S max (Dac_l_DbdaDad"_Dbc) vaaba Cad

b

e Four point condition:



Numerical Taxonomy

e compute distance matrix, D

© Dij=/Yii+Yj; =2V

a> <b a
C d C

Dab+Dcd S max (Dac+DbdaDad+Dbc) vaaba Cad

Four point condition:

Numerical taxonomy objective: minp,. ||[D — Dr||* where Dy is subject
to the four point condition (NP hard, so approximation only) (marb et a1,

2005]

FI‘OHI DT to tree [Waterman et al., 1977]



Numerical Taxonomy Clustering

Require: M > 0
Ensure: (II,Y) =~ (II*, V") that max dependence s.t. 4-point condition
Initialize Y =1
Initialize II using spectral clustering
while Convergence has not been reached do
Solve for Y given II using closed form solution
Construct D such that D;; = \/Y},Z + Y —2Y;
Solve for minp.. ||D — Dr|?
Assign Y = —%H(DT ® D7)H (Hadamard product, next slide)

Update II by changing labels to increase score [omro7n

end while



Numerical Taxonomy Clustering

Given a matrix of pairwise distances, D, we recover a centred kernel matrix,
HKH = H (DroDp)H,

where Dr o Dp denotes the Hadamard (entrywise) product.
Proof:

(i, 25) = ||¢(xs) — o(x5)]”
= ,ZC(ZCZ, ZIJZ) + /C(QZj,CCj) — Qk(aj’i, xj).

Thus
1
/C(J?Z',Jjj) — 5 (k(wz,xz) + k(xj,ajj) — d%(:ﬂz,xj)) :



Numerical Taxonomy Clustering

Writing this in matrix form,

(_ k(xl,xl)

DO | —

\ oo k(Tm, Tm)

Next, we use

k(z1,71)

k(l’m, xm)

k(z1,x1)

k(xlaxl)

k(Zm, Tm)

k(Xm, Tm)

—DTODT




Attractive Scientist Dataset (1)

Face dataset and taxonomy discovered by the algorithm



Attractive Scientist Dataset (2)

Conditional entropy scores for clusterings using romvro7s

flat (0.5180) hierarchy (0.4970) taxonomy (0.2807)



NIPS Articles

[reinforcement learning]

[Bayesian learningj

[discriminative learning]

[neurosciencej

[neural network applicationgﬁ

/ [miscelaneousj

[neural network trainingj

hardware

The taxonomy discovered for the NIPS dataset.



NIPS Articles: Categories

Nneurosci. hardware misc. train-neural app.-neural  reinforcement discriminative Bayesian
neurons chip memory network training state function data

cells circuit dynamics units recognition  learning error model
model analog image learning network policy algorithm models

cell voltage neural hidden speech action functions distribution
visual current hopfield networks set reinforcement learning gaussian
neuron figure control input word optimal theorem likelihood
activity vlsi system training performance control class parameters
synaptic neuron inverse output neural function linear algorithm
response output energy unit networks time examples mixture
firing circuits capacity weights trained states case em

cortex synapse object error classification actions training bayesian
stimulus motion field weight layer agent vector posterior
spike pulse motor neural input algorithm bound probability
cortical neural computational layer system reward generalization  density
frequency  input network recurrent features sutton set variables
orientation digital images net test goal approximation prior
motion gate subjects time classifier dynamic bounds log
direction cmos model back classifiers step loss approach
spatial silicon associative propagation feature programming algorithms matrix
excitatory  implementation attractor number image rl dimension estimation




Application 3: ICA



ICA: setting

Independent component analysis:

iy

S

=@ a@\; (@
o35

= X

. [
e s a vector of [ unknown, independent sources: Ps = [[._; Ps,
e x vector of mixtures

e A is [ x [ mixing matrix (full rank)



ICA: setting

Independent component analysis:

23

\/

>
=@P =@ =@
3

>

e B is estimated A=, we solve for this

e y vector of estimated sources



ICA: setting

Independent component analysis:

23

\/

>
=@P =@ =@
3

>

e B is estimated A=, we solve for this

e y vector of estimated sources

Neglect time dependence: m 1.1.d. mixture observations



ICA: another example

e Mixtures X are
original EEG

PaWaWay

[Humg—et—ah, 2000]

e Estimated sources
Y are ICA

components

e Scalp map from B

Fp
Fp2
F3
F4
C3
G4
A2
P3
P4
1
02
F7
F&
T3
T4
5
16
Fz
Cz
Pz

EOGT
EOG2

0

Original EEG

Time Course of

ICA Components

Y o B

m"ﬂﬁ § \ - quL-
e
A
B i e
e e I
et
w ¥
12
ool -
M g .
pinmpntigpeerd 1
o] 17
m 1t
o 20}
A o [

1 2 3 g 1 2 3

Time{sec)

Scalp Maps of

ICA Components Corrected EEG

Fp
Fp2
F3|




ICA examples

e We’'ve seen:
— Sounds mixed together (“cocktail party” problem) myvirimenctat, 2001

— EEG I‘eCOI‘dingS (bl‘ain, fetal heartbeat) [Hung—et—ah, 2000, Stéghauer—et—ahl, 2004]

Warning: both the above examples violate the assumptions made in ICA
(that the observations at each time are independent and identically
distributed).

e Some further examples:
— Extracting independent activity from fMRI (eathonmetan, 2003
— Financial data pivituotoand 6ja, to9s]

— Linear edge filters for image patch coding? (Possibly not: @etize, 2006))



A toy example

e T'wo distributions: Pg, is uniform, Ps, is bimodal

Source 1, uniform Source 2, bimodal

100 250

807 200}
607 150
40} 100}

207 5071




A toy example

e T'wo distributions: Pg, is uniform, Ps, is bimodal

Source 2, bimodal Input sources

source 2
o

-2 -1 0 1 2
source 1

Source 1, uniform

20




A toy example

Two distributions: Pg, is uniform, Pg, is bimodal

40

Source 1, bimodal (X)

307

20r

107

=]

|}

source 2

Input sources

2
[ T -,
1r M
O_
B P 2
_z . . .
-2 -1 0 1 2

source 1

)

Source 2, uniform (Y)

X A

Observed mixtures

4
'-'
27 14"‘:#"
ol s
s
0 F
£ o
E s
f
ol Pl ,/
.
ra
_4 . . .
20 -0 0 10 20
mixture 1



First indeterminacy: ordering

e Initial unmixed RVs in red

Input sources

Rotation n/6 Rotation m/4

Rotation w/3

Rotation w/2
s 2 R 2 2 ‘ : :
1.5
1
o 0.5f oV} oV} (o] o 05
® [) [) ) (&)
O S S S S
= O 2 2 2 2 0
3 x = = =
D 05} : € € IS E 05
-1
-15
-2 . . . -2 :
-2 -1 0 1 2 -2 -1 0 1
source 1 mixture 1 mixture 1 mixture 1 mixture 1

e Independent at rotation /2



First indeterminacy: ordering

e Initial unmixed RVs in red

Input sources

Rotation n/6 Rotation m/4 Rotation w/3 Rotation w/2
2 2 ‘ — 2 ; e Ta— 2 e 2 ; : :
1.5
1
N oV} oV} oV} Aol 05
® [) [) ) (&)
o 5 5 5 5 o
3 g g g g
) € IS 1S € -05
-1
-15 x
-2 ] : ‘ -2 ‘
-2 -1 0 1 2 -2 -1 0 1
source 1 mixture 1 mixture 1 mixture 1 mixture 1

e Independent at rotation /2

Ignore source order




Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources Mixture
2 : : : 2 :
1.5} 15
1t 1
o 05} o 05
® o
2  of S5 0
=1 <
o —
@ _05} : € -05
1t -1
-1.5} -1.5
) -2
) -1 0 1 2 -2 -1 0 1 2

source 1 mixture 1



Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources Mixture
2 : : : 2 :
1.5} 1.5
1} 1
o 05} o 05
Q o
e  of > 0
=1 =
O —
N _05f : E 05
At -1
-1.5} -1.5
) -2
-2 -1 0 1 2 -2 -1 0 1 2
source 1 mixture 1

Ignore source sign




Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources

mixture 2

-2 -1 0 1
source 1

Mixture

-2 -1 0 1 2
mixture 1

e More generally: S and Sy independent ift

aS7 and Sy independent for a # 0

— Assume sources have unit variance



Third indeterminacy: (Gaussians

Both sources Gaussian

Source distribution P P

S1° 82
0.4 3
2
0.3
o
- n '/— ~\“
- (O]
@ 0.2 O o0 |
>
a 3 /;'
N 1 ~
0.1
2
0 -3
4 -2 0 2 4 2 0 2
Source S1 Source S1
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N
9 0.2
o
0.1
0
4 2 0 2 4

Source S2



Third indeterminacy: (Gaussians

Both sources Gaussian

Source distribution P P

S1° 82
0.4 3
2
0.3
o
. n
- (O]
» o2 © 0
>
Q (@]
N 1
0.1
2
0 -3
4 -2 0 2 4 2 0 2
Source S1 Source S1
0.4
0.3
N
9 0.2
o
0.1
0
4 -2 0 2 4

Source S2

Meaningless to “unmix” Gaussians




Things that are impossible for ICA

Using independence alone, we cannot . ..

e recover signal order,
e recover signal sign (or amplitude) ,

e separate multiple Gaussians.



Things that are impossible for ICA

Using independence alone, we cannot . ..

e recover signal order,
e recover signal sign (or amplitude) ,

e separate multiple Gaussians.

We can recover
B*=PDA™!
e [ is a permutation matrix
e D diagonal, d;; € {—1,1}

(as long as no more than one Gaussian source)



First step in ICA: decorrelate

e Idea: remove all dependencies of order 2 between mixtures x



First step in ICA: decorrelate

Idea: remove all dependencies of order 2 between mixtures x

Uncorrelated Correlated
1.5 6
1 4+
o5} - 2
>—
> o - ©°
—0.5¢f _2 z
-1 -4t
-1.5 -6 -
2 -1 1 2 -10 -5 o 5 10
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First step in ICA: decorrelate

Idea: remove all dependencies of order 2 between mixtures x

New signals have unit covariance:
t=B,x C; =1
We thus break up B as follows:
B =B,B,

— B, is a whitening matrix
— B, is remaining demixing operation

Use the SVD of mixture covariance C, = UAU':

B, = A"Y?U"



First step in ICA: decorrelate

Write C), (size [ x [) as the covariance of t.
C,=m 'TT"  where T =B,X
We want to ensure
I =C;
=m 'B,XX B,
=B,C,B, '



First step in ICA: decorrelate

Write C), (size [ x [) as the covariance of t.
C,=m 'TT"  where T =B,X
We want to ensure
I =C;
=m 'B,XX B,
=B,C,B, '

Write the SVD of C, = UAUT. Write B,, = A~Y2U". Then

C,=A12UuTo, UAY?
— A V2uTuAUTUAY?
— ]



What does decorrelation achieve?

e T'wo distributions: Pg, is uniform, Ps, is bimodal

source 2

Input sources

-1 0 1
source 1

2

mixture 2

Observed mixtures

-10 0 10
mixture 1

20

mixture 2

After decorrelation

.
.
g

) —1 0 1
mixture 1



Problem remaining: rotation

e Assume correlation has already been removed

e To recover original signal, need to rotate

Input sources After decorrelation

2 2
1.5f 1.5
1F 7L = - T L, ;'- 1
o 05} o 0.5}
@ o
% of =  Of..
>
O —
» 0.5} £ -05 .
y . .' ‘ g
-1 . : .3 -1
-1.5 -1.5 *
_2 ‘ : ‘ _2 ‘ : o
2 -1 0 1 2 2 -1 0 1
source 1 mixture 1

e In remainder: unmixing matrix B is rotation,

B'B=1I



[CA: maximum likelihood

° chCA7’ using model parametrised by (B7 ISS)

e Interpretation: assume we are given the source densities Py, so we only

need to find B.



[CA: maximum likelihood

P CCICA??

using model parametrised by (B, I55)

Source distribution PS1 PS2
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[CA: maximum likelihood

A

chCA7’ U_sing model parametrised by (B, PS)

Source distribution PS1 PS2
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= True solution
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Unmixing angle for B: 0



[CA: maximum likelihood

A

chCA7’ U_sing model parametrised by (B, PS)

Source distribution PS1 PS2

0.4 T T T T

= | 0g likelihood
=== True solution
= = =Current guess ||

Source S2
Log likelihood

0 0.2 04 06 0.8
Source St Angle (x w/2)

Unmixing angle for B: 7/12



[CA: maximum likelihood

A

chCA7’ U_sing model parametrised by (B, PS)

Source distribution PS1 PS2

2 T T T 04 T T T T
= | 0g likelihood
= True solution
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[CA: maximum likelihood

A

e We have a model for the observations, parametrised by (B, Ps)
— Model must have Py = H§:1 P,



[CA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B, Ps)
— Model must have Py = H,lizl P,

e We use the relation:

X = As
Pi(x) = det(A HPs(A %)

e Thus our estimated density of observations is

P, = det(B) Ps(Bx)

(14)



[CA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B, Ps)
— Model must have Py = H,lizl P,

e We use the relation:
X = As
P.(x) = det(A HPs(A %)

e Thus, our estimated density of observations is

A

P, = det{B7 P,(Bx)



[CA: maximum likelihood

We have a model for the observations, parametrised by (B, ISS)

A

— Model must have Py = H,lizl P..

Our estimated density of observations is

A

P, = P.(Bx)

Maximise the expected log likelihood, (B is ith row)

l
L:=E, [log ISX} = Z E, log Issz.(Bi,:x)

=1
Finite sample version: Z
1 m
j=1 1=

Notation: X. ; is jth column.



Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this wrong?

Input sources

Max. likelihood solution
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Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this wrong?

Source distribution Ps1 PS2

5 - ‘ -1.55
4 L
-1.6¢
|
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al -1.9) = | 0g likelihood [
B = Trye solution
. = = = Current guess
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Source St Angle (x n/2)



Another failure mode: Gaussians revisited

Setting:
e s are two independent, unit variance (Gaussians.
e Unmixing matrix B is orthogonal

The density of the mixture x is proportional to

A

Px = Ps(Bx) x exp (—XTBTC’S_le) .

o (C, is diagonal with equal entries, hence B commutes with C; 1.

e B'B=1

e Hence: Py constant wrt B

We cannot recover independent Gaussians when they are mixed with a

rotation matrix.



Back to original setting: independence

e A model-free approach to ICA: use an objective function (contrast

function) ¢(y) which measures “closeness to independence”.



Back to original setting: independence

e A model-free approach to ICA: use an objective function (contrast

function) ¢(y) which measures “closeness to independence”.

e Ideally: contrast ¢(y) = 0 if and only if all components of y mutually

independent:
[

P, = HPW.

i=1
— Under our mixing assumptions: y are original sources s besides

permutations, sign swaps



Back to original setting: independence

e A model-free approach to ICA: use an objective function (contrast

function) ¢(y) which measures “closeness to independence”.

e Ideally: contrast ¢(y) = 0 if and only if all components of y mutually

independent:
[

P, = HPW.

i=1
— Under our mixing assumptions: y are original sources s besides

permutations, sign swaps

e How it’s really used: contrast should be “smallest” when random

variables are “most independent”



Mutual information

e A widely used contrast function: The mutual information,

l P
pri>:/10g( z : )dpy
1=1 Hizl Pyz'

o D1, > 0 with equality iff Py = Hﬁ;:l P,.

I(y) = Dxr. (Py



Mutual information

e A widely used contrast function: The mutual information,

[

P
P, pri>:/10g( — )dPy
=1 Hz’zlp)/z'

I(y) = DkL (

o D1, > 0 with equality iff Py = Hizl P,.

e Simplification: when B is a rotation,

Dx1, <Py

where h(y) = —E, log(Py(y))
Proof: Given y = Bx

[

H P,. > Z h (y;) — log det B.

PY(Y) = det(B_l)Px(B_ y) = det(B™ )Px(x)

and det(B™!) = (det(B)) ™!



Mutual information

e A widely used contrast function: The mutual information,

l P
PYz' = /lOg ( y ) dPy
7;1;{ ) Hizl Pyz'

o D1, > 0 with equality iff Py = Hﬁ;:l P,.

I(y) = Dxr. (Py

e Simplification: when B is a rotation,

l
DkL <Py H%) =
1=1 1

where h(y) = —E, log(Py(y))

[

h(y;) — h (x) — log det B.
1 con;gant



Mutual information

e A widely used contrast function: The mutual information,

l P
PYz' = /lOg ( y ) dPy
7;1;{ ) Hizl Pyz'

o D1, > 0 with equality iff Py = Hﬁ;:l P,.

I(y) = Dxr. (Py

e Simplification: when B is a rotation,

l
DkL <Py H%) =
1=1 1

where h(y) = —E, log(Py(y))

[

h(y;) — h (x) — log det B.
1 con;gant

Contrast: ¢gr(y) := 22:1 h(y;)



Maximum likelihood revisited

e Mutual information contrast: minimize

[

drr(y) ==Y —By, log(Py,(y))
i=1
e Maximum likelihood: maximize

[

L = ) EylogP (B;.x)
1=1
[

— Z Eyq; 1Og(Pyi (yZ))

i=1
e Same thing! The difference is in approach:
— For max. likelihood we assumed a model ISs

— Now we (ideally...) assume no model for Py



Contrast functions with fixed nonlinearities

e Entropies hard to compute/optimize: replace with

[

or(y) =Y Ey,(f(y))

1=1

for some other nonlinear f(y)



Contrast functions with fixed nonlinearities

e Entropies hard to compute/optimize: replace with

[

or(y) =Y Ey,(f(y))

i—1
for some other nonlinear f(y)

Fast ICA

Jade Infomax
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1
fly) =y f(y) = a—exp(—y?/2)sech®(y)  f(y) = —log cosh(ay),




Our example again

Recall: minimize contrast.

Jade
4.8 ‘ : ‘
m— Contrast
4.6+ = True solution
= = = Current guess
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Input sources

After decorrelation

2 2
1.5t 1.5
1 LT 1
o 05f N 05
] o
g 0 3 of.
X
3 05 o € 05
R s
_1 Wt t I - ) _1
15l -15
-2 ‘ -2
-2 -1 0 1 2 -2
source 1
Imax
9.4 : ‘
m— Contrast
9.35( == True solution
= = = Current guess
9.3
9.25
5 9.2k 3
© ©
= 9.15 €
[e) [e)
O o1§ ©
9.05
%
i
8.95§
n
8.9 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Angle (x /2)

1

1.8

1.75¢

1.7

1.65

1.6

1.55

1.5

0
mixture 1

1 2

Fica

m— Contrast
== True solution
= = = Current guess |

0.2

0.4 0.6 0.8 1

Angle (x /2)



Our example again

Input sources

After decorrelation

2 2
15} 15
1} 1
o 05| 05
Recall: minimize contrast. g ol S o
» _0.5¢ : € _05
-1 s -1
15} 15

2 1 0 1 2 2 1 0 :'i

source 1 mixture 1

What went wrong?




Kurtosis: an important concept

e Kurtosis definition: when mean is zero,
ke =E(x*) —3(E ()",

e Source densities can be super-Gaussian (positive kurtosis) or

sub-Gaussian (negative kurtosis)

e Zero kurtosis does not mean Gaussian!

Sub-Gaussian (uniform)

Super-Gaussian (Laplace)

0.25

0.2r

0.051

Nor



Demo: contrasts with fixed nonlinearities

e Super-Gaussian (Laplace) sources
e Unmixed sources in red

e Mixture (angle 7/6) in black

Super-Gaussian (Laplace) Super-Gaussian sources
0-5 T 10 T T T

0.45 n : 8l

0.4 ] ol
0.35} al
0.3} ol
D .25}
o of
0.2
2t
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5 0 o
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Demo: contrasts with fixed nonlinearities

e Super-Gaussian results for Jade, Infomax, and Fast ICA

Jade
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Demo: contrasts with fixed nonlinearities

e Sub-Gaussian (Uniform) sources

e Unmixed sources in red

e Mixture (angle 7/6) in black

P(S)

0.25

Sub-Gaussian (uniform)

0.21

0.15f

0.1y

0.05f

Wor

Sub-Gaussian sources




Demo: contrasts with fixed nonlinearities

e Sub-Gaussian results for Jade, Infomax, and Fast ICA

4.5¢

3.5
0

Jade
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05 1
Angle (x m/2)

Infomax
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05
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1.521
1.5F

1.48
0

Fast ICA

— Contrast
= True solution
= = = Best guess

05
Angle (x /2)

Care needed when using fixed contrasts!




Contrast functions using entropy estimates

e Simplest option: convolve with spline kernel, then compute discrete

entropy via space partition pham, 2604

MICA contrast

3 T T T T Input sources After decorrelation
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e More sophisticated option: spacings estimate of entropy

RADICAL contrast

Contrast functions using spacings entropy estimate

x 10

4

TIT OO,

0.2

04 06
Angle (x t/2)

0.8

source 2

Input sources

source 1
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Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy

TIT OO,

Sort sample Y7, ..., Yy, in increasing order: Y(;) < Y(;11)
Prob. density estimate based on spacings

Idea: prob. mass between adjacent samples Y@i) Y(i+1) 18 = (m + 1)_1

. Ym—-1) Y(m)



Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy

Sort sample Yi,...

TIT

OO,

, Y, In increasing order: Y(; < Y1)

Prob. density estimate based on spacings

A

P(y;Yl,...,Ym) =

1

(m+ 1) (Y1) — Yi))

Yoy <y < Yig

Entropy estimate based on spacings

h

(Y)

B 1
 om—1

m—1

Z log(m + 1)(Yiq1) — Yi)
i—1



Contrast functions using spacings entropy estimate

Proof: >
ook ) =~ [ s ogplu)dy

y(z—l—l)

Z / y) log p(y)dy
Y(i)

m y('L—i—l) 1 —1

:_Z/ (m + 1 log (m + 1) dy

Y(i) Yi+1) — Y@) Yi+1) — Y@)

m

—1
— Z(m + 1) log (m +1)
: Yiu+1) — YY)

_ Z “1log (m+1)~!

Yi+1) — YY)

Q

m—1

— ~Llog [(m + 1) (y(i+1) — y(i))]
z:l



Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy
Sort sample Y7, ..., Yy, in increasing order: Y(;) < Y(;11)
Prob. density estimate based on spacings

) 1
P(y; Y1,...,Yn) (D Yorn) — V) @) <Y<Yy

Entropy estimate based on spacings

1 m—1

MY)=—— > log(m+1)(¥41) — V)
1=1

Smoothing: add “extra” mixture points (noisy copies of original

mixtures)

Hard to optimize



Other independence measures as contrasts

e Why mutual information?
— Same as maximum likelihood (good if model is correct)

— Contrast function is sum of entropies: fast

e Other independence measures?



Other independence measures as contrasts

e Why mutual information?

— Same as maximum likelihood (good if model is correct)

— Contrast function is sum of entropies: fast

e Other independence measures?

e Most common: kernel/characteristic function-based

— Characteristic function-based ICA (Erikssonand Koivumen, 2008, e and Bickel,

2605]
— Kernel ICA (covariance): COCO, KMI, HSIC (erettonetat, o5, Sheretat,

2007, 2009]

— Kernel ICA (correlation): KCCA, KGV Bactand-gordan, 2002

e HSIC same as characteristic function-based (for the purposes of ICA) [Shemetatb,

2009



Kernel contrast function: HSIC

e Dependence measure:

2
HSIC(PUv, F) = <SUP [EUVf — EUEVf])
feF

Dependence withess and sample

15
0.05
r 0.04
0.03
0.5f
0.02
Q 0.01
> o0
0
-0.5 -0.01
~0.02
-1r ~0.03
~0.04
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HSIC: empirical expression

e Empirical HSIC:

1
HSIC := —tr(KHLH)
m
— K Gram matrix for (uy,...,uy,)
— L Gram matrix for (vi,...,vy)

— Centering H = I — %17”1;



Contrast functions: a small selection

Contrast function summary

e Sum of expectations of a fixed nonlinearity

— Fast ICA, Infomax, Jade

e Sum of entropies/mutual information. ..
— ... using fast, smoothed entropy estimates

— ... using spacings/k-nn entropy estimates

e Kernel/characteristic function dependence measures



Contrast functions: a small selection

Contrast function summary

e Sum of expectations of a fixed nonlinearity

— Fast ICA, Infomax, Jade

e Sum of entropies/mutual information. ..
— ... using fast, smoothed entropy estimates

— ... using spacings/k-nn entropy estimates

e Kernel/characteristic function dependence measures

How do we optimize?



Optimization (Jacobi)

e For two signals, the rotation is expressed

B =

cos(6)
sin(@)

e Higher dimensions, eg for [ = 3,

_008(92)
sin(6,)
0

—sin(6y)
cos(6)
0

-
0| x
1—

_cos(Hy)
0

| sin(0y)

[

— sin(0)
cos(6)

— sin(6y)

0
cos(6y)

e Coordinate descent, exhaustive search, etc...

0

0

cos(6z)
sin(60;)

— sin(6y)
cos(0z)




Optimization (Newton)

e Unmixing matrix B satisfies B' B = I

e [ocal parameterisation () about B: at iteration k,
Bji1 = Brexp(Q) Q=-Q'

e How to choose direction and size of €27



Optimization (Newton)

Unmixing matrix B satisfies B' B = I

Local parameterisation {2 about B: at iteration k,
Bji1 = Brexp() Q=-Q'

How to choose direction and size of €27

Write Q € RU(U-1)/2 the unique entries of €2

Newton-like method: solve the linear system for () € RI-1)/2

~

Hp,(0)1 = =Vp,(¢)

— Vg, (¢) is gradient of ¢ wrt 0
~ Hp, (¢) is Hessian of ¢ wrt Q

Approximate Hessian as diagonal: FastICA (shenand Hiiper, 2006)



Gradient descent vs Newton

m— N ewton
- (Gradient descent

100x Amari error
)

-0.4| & I
5 10 15 20 25 30
lteration




What if we have time dependence?

e We can get extra information from sources not being i.i.d.
e Mixture x(¢) now stationary random process, depends on x(t — 7)

e Define mixture covariances
Co = E(x(t)x(1)), C,=Ex@@)x(t—1)),

— C; independent of ¢ (stationarity)



What if we have time dependence?

e We can get extra information from sources not being i.i.d.
e Mixture x(¢) now stationary random process, depends on x(t — 7)

e Define mixture covariances
Co = E(x(t)x(1)), C,=Ex@@)x(t—1)),

— C; independent of ¢ (stationarity)

e Decorrelate:

—~

BC,B' =A BC,B' =A
— A and A diagonal

e Combining both requirements:
BC,C ! = (AK—l) B

e Greater number of delays: joint diagonalisation



What’s the best method?



A basic benchmark

[ = 8 sources
m = 40,000 samples

Benchmark data from

[Bach—and—Jordan, 2002)|

Average over 24 repetitions

JAAY

AN

(a) k= Inf (b) k=3.00 (c) k=-1.20

/\

(d) k=6.00 (e) k=6.00 (f) k=1.11

/\ K

(@) k=-168 (h) k=-074 (i) k=—0.50
MU LA

() k=-0.53 (k) k=—-067 () k=-0.47
il

(m) k=-0.82 (n) k=-062 (0) k=-0.80

(p) k=-0.77 (q) k=-029 () k=-0.67

A\




A basic benchmark: results




A basic benchmark: results

Adaptive contrasts outperform fixed nonlinearities

Demixing quality
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Adaptive contrasts
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100x Amari error
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A basic benchmark: computational cost
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100x Amari error
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A basic benchmark: computational cost

Best runtime (adaptive): fast entropy estimates
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A basic benchmark: computational cost

Kernel methods: Newton outperforms Gradient Descent

1.4¢

1.2¢

100x Amari error
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0.21

Demixing quality
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100x Amari error
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A basic benchmark: computational cost

Spacings/k-nn entropy contrasts slowest

Demixing quality
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High frequency perturbations

e Two sources, sinusoidal perturbations to Gaussian

e Random mixing angle.

e Results averaged over 25 datasets, m = 1000

Source density
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Source spectrum
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High frequency perturbations
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High frequency perturbations

Spacings/k-nn methods perform best

(but slow)
50
45! FKICA
MICA
40 KDICA
= = = MILCA
35 m— RAD

100 x Amari error
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High frequency perturbations

Fast entropy estimates: narrowest range
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High frequency perturbations

Fast Kernel ICA: peforms in between

(good performance/runtime tradeoff)
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Outlier resistance

Two sources, outliers added to both mixtures
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Outlier resistance

Kernel ICA performs best
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Outlier resistance

Fast entropy estimates: less good

KDICA initialized with kernel ICA solution!
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ICA algorithm choice

e Choosing kernel ICA approach
— Fastest (by far): Fast ICA pyvirmenerat, 2001], Jade eardoso, r99s]
— Good tradeoff between speed and performance: MICA @piam, 2oos)
— Tricky cases (outliers, non-smooth sources): Fast KICA shenreran, 2001,
2009]

— Small sample size: KGV very good sachand-ordan, 2002]
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— Use multiple restarts (non-convex)

— Independence test to check answer



ICA algorithm choice

e Choosing kernel ICA approach
— Fastest (by far): Fast ICA pryvirmenerat, 2001], Jade eardoso, 199s]
— Good tradeoff between speed and performance: MICA piam, 2004
— Tricky cases (outliers, non-smooth sources): Fast KICA shemreran, 2001,
2609
— Small sample size: KGV very good mactamd-iordan, 2e62]
e Some further hints:
— Use multiple restarts (non-convex)

— Independence test to check answer

e Comparing (usually fixed contrast) algorithms:
— One approach “better” than another?

— Example: sources [ very large, samples m small (wrt [), e.g.

microarray data [ecand Batzoglon, 2003]



Selected ICA references

Start with Cardoso’s excellent introduction (cardoso, 199s), and the book by

Hyvarninen et al. pmyvirmenretan, 2001

Fast kernel ICA is described in jsheretat, zoom, 2oae). Characteristic
function-based ICA is described in (Erikssomand &orvmmen, 2003, Chenrand Bickel, 2005].

For earlier kernel ICA methods, see mactand fordan, 2002, Grettonretat, 2oos)

Mutual information/entropy based: (piam, 2004, iearned=sitterand Fisher 11,

2003,
Stégbauer—et—ah, 2004, Chen, 2006
Classic algorithms for tzme series separation with second order methods

(not covered much in this talk): poteedeyand Schmsten, 994, Betonchrani-etat, t997]

An important paper for optimising over orthogonal matrices: Edetmamnetat,

to9s). 1L he Newton-like method: #iperand Fromps, o).
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e With RKHS distribution embeddings, compare distributions in high

dimensions and on structured objects

— Easier than density estimation



Conclusion

e With RKHS distribution embeddings, compare distributions in high

dimensions and on structured objects

— Easier than density estimation

e It is casy to check whether distribution embeddings are unique
— Characteristic kernel: check Fourier transtorm

— Any difference in distributions detectable



Conclusion

With RKHS distribution embeddings, compare distributions in high

dimensions and on structured objects

— Easier than density estimation

It is easy to check whether distribution embeddings are unique
— Characteristic kernel: check Fourier transtorm

— Any difference in distributions detectable

Can use HSIC dependence measure for feature relevance
— Feature selection
— Taxonomy fitting

More: conditional dependence tests, independent component

analysis, covariate shift correction,. ..



References from my publications

MMD a distance between distributions svsos, N1PS06a, IMLR10, IMLR 124
— high dimensionality
— non-euclidean data (strings, graphs)

— Nonparametric hypothesis tests
Measure and test independence [avLTos, NIPS07a, NIPSO7b, ALTO08, JMLR10, JMLR12a]

Characteristic RKHS: MMD a metric ntpso7b, conTos, NIPSo0ga)

— Easy to check: does spectrum cover R?

Applications:
— Feature selection isvBo7, icMLo7a, IMLR12b)
— Clustering and taxonomy discovery [cmLo7b, NiPsogb)

— Covariate shift correction Nipsoeb, Book cn. 0s] , testing conditional
dependence nipso7) , iIndependent component analysis [(JMLRos, Book Ch.

07, AISTATS07, IEEE TSP 09] , . . .
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