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Comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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A real-life example: two-sample tests

The problem:Do local field potential (LFP) signals change when
measured near a spike burst?
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A real-life example: two-sample tests

The problem:Do local field potential (LFP) signals change when
measured near a spike burst?
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MNIST samples
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A real-life example: two-sample tests

Goal: do P and Q differ?

CIFAR 10 samples Cifar 10.1 samples

Significant difference?
Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests,
ICML 2020
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017. 4/80



A real-life example: discrete domains

How do you compare distributions in a discrete domain?

X1: Now disturbing reports out of New-
foundland show that the fragile snow crab
industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

Y1: Honourable senators, I have a ques-
tion for the Leader of the Government
in the Senate with regard to the sup-
port funding to farmers that has been an-
nounced. Most farmers have not received
any money yet.

X2: To my pleasant surprise he re-
sponded that he had personally visited
those wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he go-
ing to provide for Delaps Cove, Hampton,
Port Lorne,

� � �

?
PX = QY

Y2:On the grain transportation system
we have had the Estey report and the
Kroeger report. We could go on and on.
Recently programs have been announced
over and over by the government such as
money for the disaster in agriculture on
the prairies and across Canada.

� � �

Are the gray extracts from the same distribution as the pink ones?
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Outline

Two sample testing

Test statistic: Maximum Mean Discrepancy (MMD)...
� ...as a difference in feature means
� ...as an integral probability metric (not just a technicality!)

Statistical testing with the MMD
“How to choose the best kernel”

� when are feature means unique?
� what kernel gives the most powerful test?
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Maximum Mean Discrepancy
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Feature mean difference

Simple example: 2 Gaussians with different means

Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Gaussian and Laplace distributions
Same mean and same variance
Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
�
� kx � x 0k2

�

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 11/80



Infinitely many features of distributions

Given P a Borel probability measure on X , define feature map of
probability P ,

�P = [: : :EP ['i (X )] : : :]

For positive definite k(x ; x 0),

h�P ; �QiF = EP ;Qk(x ; y)

for x � P and y � Q .
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Expectations of RKHS functions
Function evaluation in an RKHS:

f (x ) = hf ; 'x iF

Expectation evaulation in an RKHS:

EP (f (X )) = hf ; �P iF
�P gives you expectations of all RKHS functions

Empirical mean embedding:

b�P = m�1
mX

i=1

'xi xi
i:i:d:� P

... does this reasoning work in infinite dimensions? 13/80
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Does the feature space mean exist?
Does there exist an element �P 2 F such that

EP f (x ) = hf ; �P iF 8f 2 F

We recall the concept of a bounded operator: a linear operator
A : F ! R is bounded when

jAf j � �Akf kF 8f 2 F :

Riesz representation theorem: In a Hilbert space F , all bounded linear
operators A can be written h�; gAiF , for some gA 2 F ,

Af = hf (�); gA(�)iF
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Does the feature space mean exist?
Existence of mean embedding: If EP

p
k(x ; x ) = EP k'(x )kF <1

then 9�P 2 F .

Proof:
The linear operator TP f := EP f (x ) for all f 2 F is bounded under
the assumption, since

jTP f j = jEP f (x )j :
� EP jf (x )j
= EP jhf ; '(x )iF j
� EP

�q
k(x ; x ) kf kF

�
Hence by Riesz (with �TP = EP

p
k(x ; x )), 9�P 2 F such that

TP f = hf ; �P iF :
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�P as a function in the RKHS
Embedding of P to feature
space

Mean embedding �P 2 F ,

h�P ; f iF = EP f (x ):

What does prob. feature map
look like?

�P (t) = h�P ; '(t)iF
= h�P ; k(�; t)iF
= Ex�Pk(x ; t)

Expectation of kernel!
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= EPk(x ; x 0)| {z }

(a)

+ EQk(y ; y 0)| {z }
(a)

� 2EP ;Qk(x ; y)| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )

18/80



Illustration of MMD
The maximum mean discrepancy:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(dogi ;dogj ) +
1

n(n � 1)

X
i 6=j

k(fishi ;fishj )

�

2
n2

X
i ;j

k(dogi ;fishj )
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
What if the function is not smooth?

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
What if the function is not smooth?

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

26/80



MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

A reminder for the proof on the next slide:

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF

27/80



Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF
f

27/80



Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF

f

27/80



Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF
= k�P � �Qk

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = fx1; : : : ; xng � P

Observe Y = fy1; : : : ; yng � Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness(v)| {z }
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ hb�P � b�Q ; '(v)iF
=

1
n

nX
i=1

k(xi ; v)� 1
n

nX
i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
h

f �1 f �2 : : :
i
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Interlude: divergence measures
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Divergences
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Divergences
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)
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Two-Sample Testing with MMD
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A statistical test using MMD
The empirical MMD:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj ) +
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

How does this help decide whether P = Q?

Perspective from statistical hypothesis testing:

Null hypothesis H0 when P = Q
� should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
� should see\MMD

2
“far from zero”

Want Threshold c� for \MMD
2
to get false positive rate �
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Null hypothesis H0 when P = Q
� should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
� should see\MMD

2
“far from zero”

Want Threshold c� for \MMD
2
to get false positive rate �
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Behaviour of \MMD
2
when P 6= Q

Draw n = 200 i.i.d samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:2
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p

n �\MMD
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Behaviour of \MMD
2
when P 6= Q

Draw n = 200 new samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:5
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Behaviour of \MMD
2
when P 6= Q

Repeat this 150 times : : :
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Behaviour of \MMD
2
when P 6= Q

Repeat this 3000 times : : :
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Asymptotics of \MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

\MMD
2 �MMD2(P ;Q)p

Vn(P ;Q)

D�! N (0; 1);

where variance Vn(P ;Q) = O
�
n�1

�
.
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Behaviour of \MMD
2
when P = Q

What happens when P and Q are the same?
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Behaviour of \MMD
2
when P = Q

Case of P = Q = N (0; 1)
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Asymptotics of \MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1X
l=1

�l

h
z 2
l � 2

i

-2 0 2 4 6

0

0.2

0.4

0.6

where

�i i (x 0) =
Z
X

~k(x ; x 0)| {z }
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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A statistical test

A summary of the asymptotics:
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A statistical test
Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)
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How do we get test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj )

+
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c�?

Permuted dog and fish samples (merdogs):
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

X
i 6=j

k(~yi ;~yj )

�

2
n2

X
i ;j

k(~xi ;~yj )

Permutation simulates
P = Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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Approx. null distribution of \MMD
2
via permutation

Null distribution estimated from 500 permutations
Example: P = Q = N (0; 1)
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Consistent test w/o bootstrap (not examinable)
Maximum mean discrepancy (MMD):

MMD2(P ;Q ;F) = k�P � �Qk2F
Is\MMD

2
significantly > 0?

P = Q , null distrib. of
\MMD:

n\MMD!
D

1X
l=1

�l(z 2
l � 2);

�l is lth eigenvalue of
centered kernel ~k(xi ; xj )
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0

0.1

0.2

0.3

0.4

0.5
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Sample size m
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Spectral 

Permutation

Use Gram matrix spectrum for �̂l :
consistent test without bootstrap 50/80



How to choose the best kernel (1)
optimising the kernel parameters
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The best test for the job

A test’s power depends on k(x ; x 0); P ; and Q (and n)
With characteristic kernel, MMD test has power ! 1 as n !1 for
any (fixed) problem

� But, for many P and Q , will have terrible power with reasonable n !

You can choose a good kernel for a given problem
You can’t get one kernel that has good finite-sample power for all
problems

� No one test can have all that power
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Choosing a kernel for the test

Simple choice: exponentiated quadratic

k(x ; y) = exp
�
� 1
2�2

kx � yk2
�

Characteristic: for any �: for any P and Q , power ! 1 as n !1

But choice of � is very important for finite n . . .
. . . and some problems (e.g. images) might have no good choice for �
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Graphical illustration

Maximising test power same as minimizing false negatives
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
! �

 
MMD2(P ;Q)p

Vn(P ;Q)
� c�

n
p

Vn(P ;Q)

!

where

� is the CDF of the standard normal distribution.

ĉ� is an estimate of c� test threshold.
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

! �

 
MMD2(P ;Q)p

Vn(P ;Q)| {z }
O(n1=2)

� c�
n
p

Vn(P ;Q)| {z }
O(n�1=2)

!

For large n , second term negligible!
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
! �

 
MMD2(P ;Q)p

Vn(P ;Q)
� c�

n
p

Vn(P ;Q)

!

To maximize test power, maximize

MMD2(P ;Q)p
Vn(P ;Q)
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Data splitting

X � P Y � Q

Choose a kernel k

maximizing \MMD
2p

V̂n (P ;Q)

Use chosen k for MMD test
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Learning a kernel helps a lot
Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time
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Learning a kernel helps a lot
Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

X � P
CIFAR-10.1 (Recht+ ICML 2019)

Y � Q
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Learning a kernel helps a lot

Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

ICML 2020
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Interpreting the learned kernel

MNIST samples Samples from a GAN
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Interpreting the learned kernel

MNIST samples Samples from a GAN

ARD map

Power for optimized ARD
kernel: 1.00 at � = 0:01

Power for optimized RBF
kernel: 0.57 at � = 0:01 58/80



Troubleshooting generative adversarial networks
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How to choose the best kernel (2)
characteristic kernels
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Characteristic kernels

Characteristic: MMD a metric MMD = 0 iff P = Q)
[NeurIPS07b, JMLR10]

In the next slides:

Characteristic property on [��; �] with periodic boundary

Characteristic property on Rd

Characteristic property via Universality
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Characteristic kernels on [��; �]

Reminder: Fourier series
Function on [��; �] with periodic boundary.

f (x ) =
1X

`=�1

f̂` exp({`x ) =
1X

l=�1

f̂` (cos(`x ) + { sin(`x )) :
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Characteristic kernels on [��; �]

Jacobi theta kernel (close to exponentiated quadratic):

k(x � y) =
1
2�

#

 
x � y
2�

;
{�2

2�

!
; k̂` =

1
2�

exp

 
��2`2

2

!
:

# is the Jacobi theta function, close to Gaussian when �2 small
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The MMD in a Fourier representation
Maximum mean embedding via Fourier series:

Fourier series for P is characteristic function 'P ;`

Fourier series for mean embedding is product of fourier series!
(convolution theorem)

�P (x ) = h�P ; k(�; x )iF
= Et�Pk(t � x )

=

Z �

��
k(t � x )dP(t) �̂P ;` = k̂` � �'P ;`
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The MMD in a Fourier representation
Maximum mean embedding via Fourier series:

Fourier series for P is characteristic function 'P ;`

Fourier series for mean embedding is product of fourier series!
(convolution theorem)

�P (x ) = h�P ; k(�; x )iF
= Et�Pk(t � x )

=

Z �

��
k(t � x )dP(t) �̂P ;` = k̂` � �'P ;`

MMD can be written in terms of Fourier series:

MMD(P ;Q ;F) = k�P � �QkF

=


1X

`=�1

h
( �'P ;` � �'Q ;`) k̂`

i
exp({`x )


F
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A simpler Fourier representation for MMD
From previous slide,

MMD(P ;Q ;F) =


1X

`=�1

h
( �'P ;` � �'Q ;`) k̂`

i
exp({`x )


F

Reminder: the squared norm of a function f in F is:

kf k2F =
1X

l=�1

jf̂`j2
k̂`

:

Simple, interpretable expression for squared MMD:

MMD2(P ;Q ;F) =
1X

`=�1

j'P ;` � 'Q ;`j2k̂2
`

k̂`
=

1X
`=�1

j'P ;` � 'Q ;`j2k̂`
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Characteristic kernels on [��; �]

Example: P differs from Q at one frequency:
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Characteristic kernels on [��; �]

Is the Gaussian spectrum kernel characteristic?
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Characteristic kernels on [��; �]

Is the Gaussian spectrum kernel characteristic? YES
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Characteristic kernels on [��; �]

Is the triangle kernel characteristic?
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Characteristic kernels on [��; �]

Is the triangle kernel characteristic? NO

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

f
(x

)

Triangle

−10 −5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ℓ
f̂

ℓ

Fourier series coefficients

MMD2(P ;Q ;F ) =
1X

l=�1

j'P ;` � 'Q ;`j2k̂`
68/80



Characteristic kernels on Rd

Can we prove characteristic on Rd?
Characteristic function of P via Fourier transform

'P (!) =

Z
Rd

e ix>!dP(x )

For translation invariant kernels: k(x ; y) = k(x � y), Bochner’s
theorem:

k(x � y) =
Z
Rd

e�i(x�y)>!d�(!)

�(!) finite non-negative Borel measure.
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Characteristic kernels on Rd

Fourier representation of MMD on Rd :

MMD2(P ;Q ;F ) =

Z
j'P (!)� 'Q(!)j2 d�(!)

Proof:

MMD2(P ;Q ;F )

:= EPk(x � x 0) + EQk(y � y 0)� 2EP ;Qk(x ; y)

=

Z Z h
k(s � t) d(P �Q)(s)

i
d(P �Q)(t)

(a)
=

Z Z Z
Rd

e�i(s�t)T! d�(!) d(P �Q)(s) d(P �Q)(t)

(b)
=

Z Z
Rd

e�isT! d(P �Q)(s)
Z
Rd

e itT! d(P �Q)(t) d�(!)

=

Z
Rd
j�P (!)� �Q(!)j2 d�(!)

70/80



Characteristic kernels on Rd

Fourier representation of MMD on Rd :

MMD2(P ;Q ;F ) =

Z
j'P (!)� 'Q(!)j2 d�(!)

Proof:

MMD2(P ;Q ;F )

:= EPk(x � x 0) + EQk(y � y 0)� 2EP ;Qk(x ; y)

=

Z Z h
k(s � t) d(P �Q)(s)

i
d(P �Q)(t)

(a)
=

Z Z Z
Rd

e�i(s�t)T! d�(!) d(P �Q)(s) d(P �Q)(t)

(b)
=

Z Z
Rd

e�isT! d(P �Q)(s)
Z
Rd

e itT! d(P �Q)(t) d�(!)

=

Z
Rd
j�P (!)� �Q(!)j2 d�(!)

70/80



Characteristic kernels on Rd

Fourier representation of MMD on Rd :

MMD2(P ;Q ;F ) =

Z
j'P (!)� 'Q(!)j2 d�(!)

Proof:

MMD2(P ;Q ;F )

:= EPk(x � x 0) + EQk(y � y 0)� 2EP ;Qk(x ; y)

=

Z Z h
k(s � t) d(P �Q)(s)

i
d(P �Q)(t)

(a)
=

Z Z Z
Rd

e�i(s�t)T! d�(!) d(P �Q)(s) d(P �Q)(t)

(b)
=

Z Z
Rd

e�isT! d(P �Q)(s)
Z
Rd

e itT! d(P �Q)(t) d�(!)

=

Z
Rd
j�P (!)� �Q(!)j2 d�(!)

(a) Using Bochner’s theorem... 70/80



Characteristic kernels on Rd

Fourier representation of MMD on Rd :

MMD2(P ;Q ;F ) =

Z
j'P (!)� 'Q(!)j2 d�(!)

Proof:

MMD2(P ;Q ;F )

:= EPk(x � x 0) + EQk(y � y 0)� 2EP ;Qk(x ; y)

=

Z Z h
k(s � t) d(P �Q)(s)

i
d(P �Q)(t)

(a)
=

Z Z Z
Rd

e�i(s�t)T! d�(!) d(P �Q)(s) d(P �Q)(t)

(b)
=

Z Z
Rd

e�isT! d(P �Q)(s)
Z
Rd

e itT! d(P �Q)(t) d�(!)

=

Z
Rd
j�P (!)� �Q(!)j2 d�(!)

(a) Using Bochner’s theorem......(b) and using Fubini’s theorem. 70/80



Characteristic kernels on Rd

Fourier representation of MMD on Rd :

MMD2(P ;Q ;F ) =

Z
j'P (!)� 'Q(!)j2 d�(!)

Proof:

MMD2(P ;Q ;F )

:= EPk(x � x 0) + EQk(y � y 0)� 2EP ;Qk(x ; y)

=

Z Z h
k(s � t) d(P �Q)(s)

i
d(P �Q)(t)

(a)
=

Z Z Z
Rd

e�i(s�t)T! d�(!) d(P �Q)(s) d(P �Q)(t)

(b)
=

Z Z
Rd

e�isT! d(P �Q)(s)
Z
Rd

e itT! d(P �Q)(t) d�(!)

=

Z
Rd
j�P (!)� �Q(!)j2 d�(!)

(a) Using Bochner’s theorem......(b) and using Fubini’s theorem. 70/80



Characteristic kernels on Rd

Example: P differs from Q at roughly one frequency:
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Characteristic kernels on Rd

Example: P differs from Q at (roughly) one frequency:

Exponentiated quadraric kernel spectrum �(!)

Difference j'P � 'Q j
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Characteristic kernels on Rd

Example: P differs from Q at (roughly) one frequency:

Sinc kernel spectrum �(!)

Difference j'P � 'Q j

−30 −20 −10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frequency ω

73/80



Characteristic kernels on Rd

Example: P differs from Q at (roughly) one frequency:

Not characteristic
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Characteristic kernels on Rd

Example: P differs from Q at (roughly) one frequency:

Triangle (B-spline) kernel spectrum �(!)

Difference j�P � �Q j
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Characteristic kernels on Rd

Example: P differs from Q at (roughly) one frequency:
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Characteristic kernels on Rd

Example: P differs from Q at (roughly) one frequency:

Characteristic

−30 −20 −10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frequency ω

74/80



Choosing the best kernel (Fourier)
Exponentiated quadratic kernel:
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Choosing the best kernel (Fourier)
B-Spline kernel:
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MMD decay with increasing perturbation freq.

Recall simple MMD, Fourier series on [��; �]:

MMD2(P ;Q ;F) =
1X

`=�1

j'P ;` � 'Q ;`j2k̂`

where k̂` decays as ` grows.
Fourier series representation for more general case on Rd :

MMD2(P ;Q ;F) =

Z
Rd
j�P (!)� �Q(!)j2 d�(!)

has similar behaviour.
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Summary: characteristic kernels on Rd

Characteristic kernel: MMD = 0 iff P = Q Fukumizu et al. [NIPS07b],
Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob.
measures on Rd if and only if

supp(�) = Rd

(i.e. support zero on at most a countable set) Sriperumbudur et al. [COLT08,

JMLR10]

Corollary: any continuous, compactly supported k characteristic
(since Fourier spectrum �(!) cannot be zero on an interval).
1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on R

d via distribution theory in Sriperumbudur
et al. [JMLR10, Corollary 10 p. 1535]
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Characteristic kernels (via Universality)

Characteristic kernels: MMD = 0 iff P = Q

Classical result:
P = Q if and only if EP (f (x )) = EQ(f (y)) for all f 2 C (X ), the
space of bounded continuous functions on X Dudley (2002)

Universal RKHS:
k(x ; x 0) continuous, X compact, and F dense in C (X ) with respect to
L1 Steinwart (2001)

If F universal, then MMD(P ;Q ;F) = 0 iff P = Q
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Characteristic kernels (via Universality)
Proof:
First, it is clear that P = Q implies MMD(P ;Q ;F) is zero.
Converse: by the universality of F , for any given � > 0 and f 2 C (X );

9g 2 F
kf � gk1 � �:

We next make the expansion

jEP f (x )�EQ f (y)j
� jEP f (x )�EPg(x )j+ jEPg(x )�EQg(y)j+ jEQg(y)�EQ f (y)j :

The first and third terms satisfy

jEP f (x )�EPg(x )j � EP jf (x )� g(x )j � �:
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Characteristic kernels (via Universality)

Proof (continued):

EPg(x )�EQg(y) = hg(�); �P � �QiF = 0;

since MMD(P ;Q ;F) = 0 implies �P = �Q . Hence

jEP f (x )�EQ f (y)j � 2�

for all f 2 C (X ) and � > 0, which implies P = Q .
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