RKHS in ML:
 Comparing Two Samples

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

November 21, 2020

Comparing two samples

■ Given: Samples from unknown distributions P and Q.
\square Goal: do P and Q differ?

A real-life example: two-sample tests

- The problem:Do local field potential (LFP) signals change when measured near a spike burst?

LFP near spike burst

LFP without spike burst

A real-life example: two-sample tests

- The problem:Do local field potential (LFP) signals change when measured near a spike burst?

A real-life example: two-sample tests

- The problem:Do local field potential (LFP) signals change when measured near a spike burst?

A real-life example: two-sample tests

$■$ Goal: do P and Q differ?

CIFAR 10 samples

Cifar 10.1 samples

Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests, ICML 2020
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

A real-life example: discrete domains

How do you compare distributions in a discrete domain?

X_{1} : Now disturbing reports out of Newfoundland show that the fragile snow crab industry is in serious decline. First the west coast salmon, the east coast salmon and the cod, and now the snow crabs off Newfoundland.
X_{2} : To my pleasant surprise he responded that he had personally visited those wharves and that he had already announced money to fix them. What wharves did the minister visit in my riding and how much additional funding is he going to provide for Delaps Cove, Hampton, Port Lorne,
Y_{1} : Honourable senators, I have a question for the Leader of the Government in the Senate with regard to the support funding to farmers that has been announced. Most farmers have not received any money yet.
Y_{2} :on the grain transportation system we have had the Estey report and the Kroeger report. We could go on and on.
$P_{X} \stackrel{?}{=} Q_{Y}$ Recently programs have been announced over and over by the government such as money for the disaster in agriculture on the prairies and across Canada.

Are the gray extracts from the same distribution as the pink ones?

Outline

Two sample testing

- Test statistic: Maximum Mean Discrepancy (MMD)...
- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

■ Statistical testing with the MMD
■ "How to choose the best kernel"

- when are feature means unique?
- what kernel gives the most powerful test?

Maximum Mean Discrepancy

Feature mean difference

■ Simple example: 2 Gaussians with different means

- Answer: t-test

Feature mean difference

■ Two Gaussians with same means, different variance
■ Idea: look at difference in means of features of the RVs

- In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

■ Two Gaussians with same means, different variance
■ Idea: look at difference in means of features of the RVs
■ In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

- Gaussian and Laplace distributions
- Same mean and same variance
- Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products
of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,
$\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features
$\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathbf{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathbf{E}_{P, Q} k(x, y)
$$

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathbf{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathbf{E}_{P, Q} k(x, y)
$$

for $x \sim P$ and $y \sim Q$.

Expectations of RKHS functions

Function evaluation in an RKHS:

$$
f(x)=\left\langle f, \varphi_{x}\right\rangle_{\mathcal{F}}
$$

Expectation evaulation in an RKHS:

$$
\mathbf{E}_{P}(f(X))=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

μ_{P} gives you expectations of all RKHS functions

Empirical mean embedding:

$$
\widehat{\mu}_{P}=m^{-1} \sum_{i=1}^{m} \varphi_{x_{i}} \quad x_{i} \stackrel{\text { i.i.d. }}{\sim} P
$$

Expectations of RKHS functions

Function evaluation in an RKHS:

$$
f(x)=\left\langle f, \varphi_{x}\right\rangle_{\mathcal{F}}
$$

Expectation evaulation in an RKHS:

$$
\mathbf{E}_{P}(f(X))=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

μ_{P} gives you expectations of all RKHS functions

Empirical mean embedding:

$$
\widehat{\mu}_{P}=m^{-1} \sum_{i=1}^{m} \varphi_{x_{i}} \quad x_{i} \stackrel{\text { i.i.d. }}{\sim} P
$$

... does this reasoning work in infinite dimensions?

Does the feature space mean exist?

Does there exist an element $\mu_{P} \in \mathcal{F}$ such that

$$
\mathbf{E}_{P} f(x)=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}} \quad \forall f \in \mathcal{F}
$$

We recall the concept of a bounded operator: a linear operator $A: \mathcal{F} \rightarrow \mathbb{R}$ is bounded when

$$
|A f| \leq \lambda_{A}\|f\|_{\mathcal{F}} \quad \forall f \in \mathcal{F} .
$$

Riesz representation theorem: In a Hilbert space \mathcal{F}, all bounded linear operators A can be written $\left\langle\cdot, g_{A}\right\rangle_{\mathcal{F}}$, for some $g_{A} \in \mathcal{F}$,

$$
A f=\left\langle f(\cdot), g_{A}(\cdot)\right\rangle_{\mathcal{F}}
$$

Does the feature space mean exist?

Does there exist an element $\mu_{P} \in \mathcal{F}$ such that

$$
\mathbf{E}_{P} f(x)=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}} \quad \forall f \in \mathcal{F}
$$

We recall the concept of a bounded operator: a linear operator $A: \mathcal{F} \rightarrow \mathbb{R}$ is bounded when

$$
|A f| \leq \lambda_{A}\|f\|_{\mathcal{F}} \quad \forall f \in \mathcal{F} .
$$

Riesz representation theorem: In a Hilbert space \mathcal{F}, all bounded linear operators A can be written $\left\langle\cdot, g_{A}\right\rangle_{\mathcal{F}}$, for some $g_{A} \in \mathcal{F}$,

$$
A f=\left\langle f(\cdot), g_{A}(\cdot)\right\rangle_{\mathcal{F}}
$$

Does the feature space mean exist?

Does there exist an element $\mu_{P} \in \mathcal{F}$ such that

$$
\mathbf{E}_{P} f(x)=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}} \quad \forall f \in \mathcal{F}
$$

We recall the concept of a bounded operator: a linear operator $A: \mathcal{F} \rightarrow \mathbb{R}$ is bounded when

$$
|A f| \leq \lambda_{A}\|f\|_{\mathcal{F}} \quad \forall f \in \mathcal{F} .
$$

Riesz representation theorem: In a Hilbert space \mathcal{F}, all bounded linear operators A can be written $\left\langle\cdot, g_{A}\right\rangle_{\mathcal{F}}$, for some $g_{A} \in \mathcal{F}$,

$$
A f=\left\langle f(\cdot), g_{A}(\cdot)\right\rangle_{\mathcal{F}}
$$

Does the feature space mean exist?

Existence of mean embedding: If $\mathbf{E}_{P} \sqrt{k(x, x)}=\mathbf{E}_{P}\|\varphi(x)\|_{\mathcal{F}}<\infty$ then $\exists \mu_{P} \in \mathcal{F}$.

Proof:

The linear operator $T_{p} f:=\operatorname{E}_{p} f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$
\begin{aligned}
\left|T_{P} f\right| & =\left|E_{P} f(x)\right| \\
& \leq \mathbb{E}_{P}|f(x)| \\
& =E_{P}\left|\langle f, \varphi(x)\rangle_{\mathcal{F}}\right| \\
& \leq \mathbb{E}_{P}\left(\sqrt{k(x, x)}\|f\|_{\mathcal{F}}\right)
\end{aligned}
$$

Hence by Riesz (with $\lambda_{T_{P}}=\mathbf{E}_{P} \sqrt{k(x, x)}$), $\exists \mu_{P} \in \mathcal{F}$ such that

Does the feature space mean exist?

Existence of mean embedding: If $\mathbf{E}_{P} \sqrt{k(x, x)}=\mathbf{E}_{P}\|\varphi(x)\|_{\mathcal{F}}<\infty$ then $\exists \mu_{P} \in \mathcal{F}$.

Proof:
The linear operator $T_{P} f:=\mathbf{E}_{P} f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$
\begin{aligned}
\left|T_{P} f\right| & =\left|\mathbf{E}_{P} f(x)\right| . \\
& \leq \mathbf{E}_{P}|f(x)|
\end{aligned}
$$

Does the feature space mean exist?

Existence of mean embedding: If $\mathbf{E}_{P} \sqrt{k(x, x)}=\mathbf{E}_{P}\|\varphi(x)\|_{\mathcal{F}}<\infty$ then $\exists \mu_{P} \in \mathcal{F}$.

Proof:
The linear operator $T_{P} f:=\mathbf{E}_{P} f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$
\begin{aligned}
\left|T_{P} f\right| & =\left|\mathbf{E}_{P} f(x)\right| \\
& \leq \mathbf{E}_{P}|f(x)| \\
& =\mathbf{E}_{P}\left|\langle f, \varphi(x)\rangle_{\mathcal{F}}\right|
\end{aligned}
$$

Does the feature space mean exist?

Existence of mean embedding: If $\mathbf{E}_{P} \sqrt{k(x, x)}=\mathbf{E}_{P}\|\varphi(x)\|_{\mathcal{F}}<\infty$ then $\exists \mu_{P} \in \mathcal{F}$.

Proof:
The linear operator $T_{P} f:=\mathbf{E}_{P} f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$
\begin{aligned}
\left|T_{P} f\right| & =\left|\mathbf{E}_{P} f(x)\right| \\
& \leq \mathbf{E}_{P}|f(x)| \\
& =\mathbf{E}_{P}\left|\langle f, \varphi(x)\rangle_{\mathcal{F}}\right| \\
& \leq \mathbf{E}_{P}\left(\sqrt{k(x, x)}\|f\|_{\mathcal{F}}\right)
\end{aligned}
$$

Hence by Riesz (with $\left.\lambda_{T_{P}}=\mathrm{E}_{P} \sqrt{k(x, x)}\right), \exists \mu_{P} \in \mathcal{F}$ such that

Does the feature space mean exist?

Existence of mean embedding: If $\mathbf{E}_{P} \sqrt{k(x, x)}=\mathbf{E}_{P}\|\varphi(x)\|_{\mathcal{F}}<\infty$ then $\exists \mu_{P} \in \mathcal{F}$.

Proof:
The linear operator $T_{P} f:=\mathbf{E}_{P} f(x)$ for all $f \in \mathcal{F}$ is bounded under the assumption, since

$$
\begin{aligned}
\left|T_{P} f\right| & =\left|\mathbf{E}_{P} f(x)\right| \\
& \leq \mathbf{E}_{P}|f(x)| \\
& =\mathbf{E}_{P}\left|\langle f, \varphi(x)\rangle_{\mathcal{F}}\right| \\
& \leq \mathbf{E}_{P}\left(\sqrt{k(x, x)}\|f\|_{\mathcal{F}}\right)
\end{aligned}
$$

Hence by Riesz (with $\lambda_{T_{P}}=\mathbf{E}_{P} \sqrt{k(x, x)}$), $\exists \mu_{P} \in \mathcal{F}$ such that

$$
T_{P} f=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

μ_{P} as a function in the RKHS

Embedding of P to feature space
■ Mean embedding $\mu_{P} \in \mathcal{F}$,

$$
\left\langle\mu_{P}, f\right\rangle_{\mathcal{F}}=E_{P} f(x)
$$

$$
\begin{aligned}
\mu_{P}(t) & =\left\langle\mu_{P}, \varphi(t)\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, k(\cdot, t)\right\rangle_{\mathcal{F}} \\
& =\mathbf{E}_{x \sim P} k(x, t)
\end{aligned}
$$

μ_{P} as a function in the RKHS

Embedding of P to feature space

■ Mean embedding $\mu_{P} \in \mathcal{F}$,

$$
\left\langle\mu_{P}, f\right\rangle_{\mathcal{F}}=E_{P} f(x)
$$

■ What does prob. feature map look like?

$$
\begin{aligned}
\mu_{P}(t) & =\left\langle\mu_{P}, \varphi(t)\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, k(\cdot, t)\right\rangle_{\mathcal{F}} \\
& =\mathbf{E}_{x \sim P} k(x, t)
\end{aligned}
$$

Expectation of kernel!

μ_{P} as a function in the RKHS

Embedding of P to feature space
■ Mean embedding $\mu_{P} \in \mathcal{F}$,

$$
\left\langle\mu_{P}, f\right\rangle_{\mathcal{F}}=E_{P} f(x) .
$$

- What does prob. feature map look like?

$$
\begin{aligned}
\mu_{P}(t) & =\left\langle\mu_{P}, \varphi(t)\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, k(\cdot, t)\right\rangle_{\mathcal{F}} \\
& =\mathbf{E}_{x \sim P} k(x, t)
\end{aligned}
$$

Expectation of kernel!

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

$(\mathrm{a})=$ within distrib. similarity, $(\mathrm{b})=$ cross-distrib. similarity.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} & =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} & =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} & =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle \\
& =\mathbf{E}_{P}\left[\mu_{P}(x)\right]+\ldots
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} & =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle \\
& =\mathbf{E}_{P}\left[\mu_{P}(x)\right]+\ldots \\
& =\mathbf{E}_{P}\left\langle\mu_{P}, \varphi(x)\right\rangle+\ldots
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

Proof :

$$
\begin{aligned}
\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} & =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle \\
& =\mathbf{E}_{P}\left[\mu_{P}(x)\right]+\ldots \\
& =\mathbf{E}_{P}\left\langle\mu_{P}, k(x, \cdot)\right\rangle+\ldots
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\underbrace{\mathbf{E}_{P} k\left(x, x^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbf{E}_{Q} k\left(y, y^{\prime}\right)}_{(\mathrm{a})}-2 \underbrace{\mathbf{E}_{P, Q} k(x, y)}_{(\mathrm{b})}
\end{aligned}
$$

Proof :

$$
\begin{aligned}
\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} & =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle \\
& =\mathbf{E}_{P}\left[\mu_{P}(x)\right]+\ldots \\
& =\mathbf{E}_{P}\left\langle\mu_{P}, k(x, \cdot)\right\rangle+\ldots \\
& =\mathbf{E}_{P} k\left(x, x^{\prime}\right)+\mathbf{E}_{Q} k\left(y, y^{\prime}\right)-2 \mathbf{E}_{P, Q} k(x, y)
\end{aligned}
$$

Illustration of MMD

- Dogs $(=P)$ and fish $(=Q)$ example revisited

■ Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}\right.$, fish $\left._{j}\right)$, or $k\left(\right.$ fish $\left._{i}, \mathrm{fish}_{j}\right)$

Illustration of MMD

The maximum mean discrepancy:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right) \\
\\
\\
k\left(\mathrm{fish}_{j}, \operatorname{dog}_{i}\right) \quad k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right)
\end{gathered}
$$

MMD as an integral probability metric

Are P and Q different?
Samples from P and Q

MMD as an integral probability metric

Are P and Q different?
Samples from P and Q

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

 What if the function is not smooth?$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric What if the function is not smooth?

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

For characteristic RKHS $\mathcal{F}, M M D(P, Q ; F)=0$ iff $P=Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

■ Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

MMD as an integral probability metric

 Maximum mean discrepancy: smooth function for P vs $Q$$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

A reminder for the proof on the next slide:

$$
\mathbf{E}_{P}(f(X))=\left\langle f, \mathbf{E}_{P} \varphi(X)\right\rangle_{\mathcal{F}}=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

(always true if kernel is bounded)

Integral prob. metric vs feature difference

The MMD:

$M M D(P, Q ; F)$
$=\sup _{\|f\|_{\mathcal{F} \leq 1}}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right]$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

$$
\mathbf{E}_{P} f(X)=\left\langle\mu_{P}, f\right\rangle_{\mathcal{F}}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$M M D(P, Q ; F)$

$$
\begin{aligned}
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

$$
f^{*}=\frac{\mu_{P}-\mu_{Q}}{\left\|\mu_{P}-\mu_{Q}\right\|}
$$

Integral prob. metric vs feature difference

The MMD:

$M M D(P, Q ; F)$
$=\sup _{\|f\|_{\mathcal{F} \leq 1}}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right]$
$=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}$
$=\left\|\mu_{P}-\mu_{Q}\right\|$

Function view and feature view equivalent

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe $\mathrm{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\} \sim P$

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
f^{*}(v)=\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& =\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, v\right)-\frac{1}{n} \sum_{i=1}^{n} k\left(\mathrm{y}_{i}, v\right)
\end{aligned}
$$

Don't need explicit feature coefficients $f^{*}:=\left[\begin{array}{lll}f_{1}^{*} & f_{2}^{*} & \ldots\end{array}\right]$

Interlude: divergence measures

Divergences

Divergences

Divergences

Divergences

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

How does this help decide whether $P=Q$?

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".

■ Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$

- should see $\widehat{M M D}^{2}$ "far from zero"

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".

■ Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$

- should see $\widehat{M M D}^{2}$ "far from zero"

Want Threshold c_{α} for $\widehat{M M D}^{2}$ to get false positive rate α

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ i.i.d samples from P and Q

- Laplace with different y -variance.
- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ i.i.d samples from P and Q
■ Laplace with different y-variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ new samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.5$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 150 times ...

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 300 times ...
Number of MMDs: 300

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Repeat this 3000 times ...

Asymptotics of $\widehat{M M D}^{2}$ when $P \neq Q$
When $P \neq Q$, statistic is asymptotically normal,

$$
\frac{\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}} \xrightarrow{D} \mathcal{N}(0,1)
$$

where variance $V_{n}(P, Q)=O\left(n^{-1}\right)$.

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

What happens when P and Q are the same?

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 10

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 20

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 50

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 100

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 1000

Asymptotics of $\widehat{M M D}^{2}$ when $P=Q$
Where $P=Q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}}^{2} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

MMD density under \mathcal{H}_{0}

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

A statistical test

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
\operatorname{lon} & \ldots
\end{array}\right] \\
& Y=\left[\begin{array}{ll}
\log
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=\left[\begin{array}{ll}
\operatorname{lom} & \ldots
\end{array}\right] \\
& \tilde{Y}=\left[\begin{array}{ll}
\operatorname{lom}
\end{array}\right]
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
\tilde{X}= & {\left[\begin{array}{c}
\tilde{Y}= \\
\widehat{M M D}^{2}= \\
\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \\
\\
+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{y}_{i}, \tilde{y}_{j}\right) \\
\\
-\frac{2}{n^{2}} \sum_{i, j} k\left(\tilde{x}_{i}, \tilde{y}_{j}\right)
\end{array}\right.}
\end{aligned}
$$

Permutation simulates
$P=Q$

Approx. null distribution of $\widehat{M M D}^{2}$ via permutation

Null distribution estimated from 500 permutations
Example: $P=Q=\mathcal{N}(0,1)$

Consistent test w/o bootstrap (not examinable)

Maximum mean discrepancy (MMD):

$$
M M D^{2}(P, Q ; \mathcal{F})=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2}
$$

Is $\widehat{\mathrm{MMD}}^{2}$ significantly >0 ?
$P=Q$, null distrib. of $\widehat{M M D}$:
$n \widehat{\mathrm{MMD}} \underset{D}{\vec{D}} \sum_{l=1}^{\infty} \lambda_{l}\left(z_{l}^{2}-2\right)$,
λ_{l} is l th eigenvalue of centered kernel $\tilde{k}\left(x_{i}, x_{j}\right)$

Use Gram matrix spectrum for $\hat{\lambda}_{l}$: consistent test without bootstrap

How to choose the best kernel (1) optimising the kernel parameters

The best test for the job

- A test's power depends on $k\left(x, x^{\prime}\right), P$, and $Q($ and $n)$

■ With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem

- But, for many P and Q, will have terrible power with reasonable n !

The best test for the job

- A test's power depends on $k\left(x, x^{\prime}\right), P$, and Q (and n)

■ With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem

- But, for many P and Q, will have terrible power with reasonable n !

■ You can choose a good kernel for a given problem

- You can't get one kernel that has good finite-sample power for all problems
- No one test can have all that power

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
$■$ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

■ Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
$■$ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

■ Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
$■$ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
$■$ But choice of σ is very important for finite $n \ldots$
$\square \ldots$ and some problems (e.g. images) might have no good choice for σ

Graphical illustration

- Maximising test power same as minimizing false negatives

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $P \neq Q$):

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

where
■ Φ is the CDF of the standard normal distribution.
■ \hat{c}_{α} is an estimate of c_{α} test threshold.

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}(n{\left.\widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)}^{\rightarrow \Phi(\underbrace{\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}}_{O\left(n^{1 / 2}\right)}-\underbrace{\left.\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)}_{O\left(n^{-1 / 2}\right)}}=.=\begin{array}{l}
\end{array})
\end{aligned}
$$

For large n, second term negligible!

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

To maximize test power, maximize

$$
\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}
$$

Data splitting

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels
■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

$$
X \sim P
$$

CIFAR-10.1 (Recht+ ICML 2019)

$$
Y \sim Q
$$

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels
■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

```
arXiv.org > stat > arXiv:2002.09116
```


Statistics > Machine Learning

[Submitted on 21 Feb 2020]
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland
ICML 2020

Interpreting the learned kernel

1	8	4	5	0
5				
5	9	7	5	4
9	8	5	0	7
2	2	4	0	7

MNIST samples

| 3 | 0 | 7 | 5 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 0 | 5 | 7 | 5 |
| 5 | 2 | 4 | 9 | 4 | 5 |
| 0 | 4 | 1 | 0 | 8 | 1 |

Samples from a GAN

Interpreting the learned kernel

$$
k(\boldsymbol{4}, \mathbf{2})=\prod_{i=1}^{D} \exp \left(\frac{-(\boldsymbol{4}[i]-\mathbf{2}[i])^{2}}{\sigma_{i}^{2}}\right)
$$

Interpreting the learned kernel

1	8	4	5	0
5				
5	9	7	5	4
8				
9	8	5	0	7
2	2	4	0	7

MNIST samples

ARD man

- Power for optimized ARD kernel: 1.00 at $\alpha=0.01$
- Power for optimized RBF kernel: 0.57 at $\alpha=0.01 \quad 58 / 80$

Troubleshooting generative adversarial networks

How to choose the best kernel (2) characteristic kernels

Characteristic kernels

```
Characteristic: MMD a metric MMD = 0 iff P = Q)
[NeurIPSO7b, JMLR10]
```

In the next slides:
■ Characteristic property on $[-\pi, \pi]$ with periodic boundary

- Characteristic property on \mathbb{R}^{d}
- Characteristic property via Universality

Characteristic kernels on $[-\pi, \pi]$

Reminder: Fourier series
Function on $[-\pi, \pi]$ with periodic boundary.

$$
f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)=\sum_{l=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x)) .
$$

Top hat

Fourier series coefficients

Characteristic kernels on $[-\pi, \pi]$

Jacobi theta kernel (close to exponentiated quadratic):

$$
k(x-y)=\frac{1}{2 \pi} \vartheta\left(\frac{x-y}{2 \pi}, \frac{\imath \sigma^{2}}{2 \pi}\right), \quad \hat{k}_{\ell}=\frac{1}{2 \pi} \exp \left(\frac{-\sigma^{2} \ell^{2}}{2}\right) .
$$

ϑ is the Jacobi theta function, close to Gaussian when σ^{2} small

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{t \sim P} k(t-x) \\
& =\int_{-\pi}^{\pi} k(t-x) d P(t)
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{t \sim P} k(t-x)
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{t \sim P} k(t-x) \\
& =\int_{-\pi}^{\pi} k(t-x) d P(t)
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{t \sim P} k(t-x) \\
& =\int_{-\pi}^{\pi} k(t-x) d P(t) \quad \hat{\mu}_{P, \ell}=\hat{k}_{\ell} \times \bar{\varphi}_{P, \ell}
\end{aligned}
$$

The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

- Fourier series for P is characteristic function $\varphi_{P, \ell}$
- Fourier series for mean embedding is product of fourier series! (convolution theorem)

$$
\begin{aligned}
\mu_{P}(x) & =\left\langle\mu_{P}, k(\cdot, x)\right\rangle_{\mathcal{F}} \\
& =E_{t \sim P} k(t-x) \\
& =\int_{-\pi}^{\pi} k(t-x) d P(t) \quad \hat{\mu}_{P, \ell}=\hat{k}_{\ell} \times \bar{\varphi}_{P, \ell}
\end{aligned}
$$

MMD can be written in terms of Fourier series:

$$
\begin{aligned}
\operatorname{MMD}(P, Q ; \mathcal{F}) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}} \\
& =\left\|\sum_{\ell=-\infty}^{\infty}\left[\left(\bar{\varphi}_{P, \ell}-\bar{\varphi}_{Q, \ell}\right) \hat{k}_{\ell}\right] \exp (\imath \ell x)\right\|_{\mathcal{F}}
\end{aligned}
$$

A simpler Fourier representation for MMD

From previous slide,

$$
M M D(P, Q ; \mathcal{F})=\left\|\sum_{\ell=-\infty}^{\infty}\left[\left(\bar{\varphi}_{P, \ell}-\bar{\varphi}_{Q, \ell}\right) \hat{k}_{\ell}\right] \exp (\imath \ell x)\right\|_{\mathcal{F}}
$$

Reminder: the squared norm of a function f in \mathcal{F} is:

$$
\|f\|_{\mathcal{F}}^{2}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^{2}}{\hat{k}_{\ell}} .
$$

Simple, interpretable expression for squared MMD:

A simpler Fourier representation for MMD

From previous slide,

$$
M M D(P, Q ; \mathcal{F})=\left\|\sum_{\ell=-\infty}^{\infty}\left[\left(\bar{\varphi}_{P, \ell}-\bar{\varphi}_{Q, \ell}\right) \hat{k}_{\ell}\right] \exp (\imath \ell x)\right\|_{\mathcal{F}}
$$

Reminder: the squared norm of a function f in \mathcal{F} is:

$$
\|f\|_{\mathcal{F}}^{2}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^{2}}{\hat{k}_{\ell}} .
$$

Simple, interpretable expression for squared MMD:

$$
M M D^{2}(P, Q ; \mathcal{F})=\sum_{\ell=-\infty}^{\infty} \frac{\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}^{2}}{\hat{k}_{\ell}}=\sum_{\ell=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Example: P differs from Q at one frequency:

Characteristic kernels on $[-\pi, \pi]$

Example: P differs from Q at one frequency:

Characteristic kernels on $[-\pi, \pi]$

Example: P differs from Q at one frequency:

Characteristic function difference

Characteristic kernels on $[-\pi, \pi]$

Is the Gaussian spectrum kernel characteristic?

$$
M M D^{2}(P, Q ; F)=\sum_{\ell=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Is the Gaussian spectrum kernel characteristic? YES

$$
M M D^{2}(P, Q ; F)=\sum_{\ell=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Is the triangle kernel characteristic?

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on $[-\pi, \pi]$

Is the triangle kernel characteristic? NO

$$
M M D^{2}(P, Q ; F)=\sum_{l=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

Characteristic kernels on \mathbb{R}^{d}

Can we prove characteristic on \mathbb{R}^{d} ?
Characteristic function of P via Fourier transform

$$
\varphi_{P}(\omega)=\int_{\mathbb{R}^{d}} e^{i x^{\top} \omega} d P(x)
$$

For translation invariant kernels: $k(x, y)=k(x-y)$, Bochner's theorem:

$$
k(x-y)=\int e^{-i(x-y)^{\top} \omega} d \Lambda(\omega)
$$

$\Lambda(\omega)$ finite non-negative Borel measure.

Characteristic kernels on \mathbb{R}^{d}

Can we prove characteristic on \mathbb{R}^{d} ?
Characteristic function of P via Fourier transform

$$
\varphi_{P}(\omega)=\int_{\mathbb{R}^{d}} e^{i x^{\top} \omega} d P(x)
$$

For translation invariant kernels: $k(x, y)=k(x-y)$, Bochner's theorem:

$$
k(x-y)=\int_{\mathbb{R}^{d}} e^{-i(x-y)^{\top} \omega} d \Lambda(\omega)
$$

$\Lambda(\omega)$ finite non-negative Borel measure.

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& M M D^{2}(P, Q ; F) \\
& :=E_{P} k\left(x-x^{\prime}\right)+E_{Q} k\left(y-y^{\prime}\right)-2 E_{P, Q} k(x, y)
\end{aligned}
$$

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& M M D^{2}(P, Q ; F) \\
& :=E_{P} k\left(x-x^{\prime}\right)+E_{Q} k\left(y-y^{\prime}\right)-2 E_{P, Q} k(x, y) \\
& =\iint[k(s-t) d(P-Q)(s)] d(P-Q)(t)
\end{aligned}
$$

$$
\stackrel{(a)}{=} \iiint_{\mathbb{R}^{d}} e^{-i(s-t)^{T} \omega} d \Lambda(\omega) d(P-Q)(s) d(P-Q)(t)
$$

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& M M D^{2}(P, Q ; F) \\
& :=E_{P} k\left(x-x^{\prime}\right)+E_{Q} k\left(y-y^{\prime}\right)-2 E_{P, Q} k(x, y) \\
& =\iint[k(s-t) d(P-Q)(s)] d(P-Q)(t) \\
& \stackrel{(a)}{=} \iiint_{\mathbb{R}^{d}} e^{-i(s-t)^{T} \omega} d \Lambda(\omega) d(P-Q)(s) d(P-Q)(t) \\
& =\iint_{\mathbb{R}^{d}} e^{-i s^{T} \omega} d(P-Q)(s) \int_{\mathbb{R}^{d}} e^{2 t^{T} \omega} d(P-Q)(t) d \Lambda\left({ }^{(b)} d(\omega)\right. \\
& =\int \phi_{P}(\omega)-\left.\phi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
\end{aligned}
$$

(a) Using Bochner's theorem...

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& M M D^{2}(P, Q ; F) \\
& :=E_{P} k\left(x-x^{\prime}\right)+E_{Q} k\left(y-y^{\prime}\right)-2 E_{P, Q} k(x, y) \\
& =\iint[k(s-t) d(P-Q)(s)] d(P-Q)(t) \\
& \stackrel{(a)}{=} \iiint_{\mathbb{R}^{d}} e^{-i(s-t)^{T} \omega} d \Lambda(\omega) d(P-Q)(s) d(P-Q)(t) \\
& \stackrel{(b)}{=} \iint_{\mathbb{R}^{d}} e^{-i s^{T} \omega} d(P-Q)(s) \int_{\mathbb{R}^{d}} e^{i t^{T} \omega} d(P-Q)(t) d \Lambda(\omega)
\end{aligned}
$$

(a) Using Bochner's theorem......(b) and using Fubini's theorem. 70/80

Characteristic kernels on \mathbb{R}^{d}

Fourier representation of MMD on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; F)=\int\left|\varphi_{P}(\omega)-\varphi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

Proof:

$$
\begin{aligned}
& M M D^{2}(P, Q ; F) \\
& :=E_{P} k\left(x-x^{\prime}\right)+E_{Q} k\left(y-y^{\prime}\right)-2 E_{P, Q} k(x, y) \\
& =\iint[k(s-t) d(P-Q)(s)] d(P-Q)(t) \\
& \stackrel{(a)}{=} \iiint_{\mathbb{R}^{d}} e^{-i(s-t)^{T} \omega} d \Lambda(\omega) d(P-Q)(s) d(P-Q)(t) \\
& \stackrel{(b)}{=} \iint_{\mathbb{R}^{d}} e^{-i s^{T} \omega} d(P-Q)(s) \int_{\mathbb{R}^{d}} e^{i t^{T} \omega} d(P-Q)(t) d \Lambda(\omega) \\
& =\int_{\mathbb{R}^{d}}\left|\phi_{P}(\omega)-\phi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
\end{aligned}
$$

(a) Using Bochner's theorem......(b) and using Fubini's theorem. 70/80

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at roughly one frequency:

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at roughly one frequency:

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at roughly one frequency:

Characteristic function difference
(

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Exponentiated quadraric kernel spectrum $\Lambda(\omega)$
Difference $\left|\varphi_{P}-\varphi_{Q}\right|$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Characteristic

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Sinc kernel spectrum $\Lambda(\omega)$
Difference $\left|\varphi_{P}-\varphi_{Q}\right|$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:

Not characteristic

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:
Triangle (B-spline) kernel spectrum $\Lambda(\omega)$
Difference $\left|\phi_{P}-\phi_{Q}\right|$

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:

> ???

Characteristic kernels on \mathbb{R}^{d}

Example: P differs from Q at (roughly) one frequency:

Characteristic

Choosing the best kernel (Fourier)

Exponentiated quadratic kernel:

MMD vs frequency of perturbation to P

Choosing the best kernel (Fourier)

B-Spline kernel:

MMD vs frequency of perturbation to P

MMD decay with increasing perturbation freq.

Recall simple MMD, Fourier series on $[-\pi, \pi]$:

$$
M M D^{2}(P, Q ; \mathcal{F})=\sum_{\ell=-\infty}^{\infty}\left|\varphi_{P, \ell}-\varphi_{Q, \ell}\right|^{2} \hat{k}_{\ell}
$$

where \hat{k}_{ℓ} decays as ℓ grows.
Fourier series representation for more general case on \mathbb{R}^{d} :

$$
M M D^{2}(P, Q ; \mathcal{F})=\int_{\mathbb{R}^{d}}\left|\phi_{P}(\omega)-\phi_{Q}(\omega)\right|^{2} d \Lambda(\omega)
$$

has similar behaviour.

Summary: characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $M M D=0$ iff $P=Q_{\text {Fukumizu et al. [NiPSo7b], }}$ Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set)

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

Summary: characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $M M D=0$ iff $P=Q_{\text {Fukumizu et al. [NiPSo7b], }}$
Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [Colto8, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).

Summary: characteristic kernels on \mathbb{R}^{d}

Characteristic kernel: $M M D=0$ iff $P=Q_{\text {Fukumizu et al. [NiPSo7b], }}$ Sriperumbudur et al.[COLT08]

Main theorem: A translation invariant k is characteristic for prob. measures on \mathbb{R}^{d} if and only if

$$
\operatorname{supp}(\Lambda)=\mathbb{R}^{d}
$$

(i.e. support zero on at most a countable set) Sriperumbudur et al. [Coltos, JMLR10]

Corollary: any continuous, compactly supported k characteristic (since Fourier spectrum $\Lambda(\omega)$ cannot be zero on an interval).
1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on \mathbb{R}^{d} via distribution theory in Sriperumbudur et al. [JMLR10, Corollary 10 p. 1535]

Characteristic kernels (via Universality)

Characteristic kernels: $M M D=0$ iff $P=Q$

Classical result:
 $P=Q$ if and only if $E_{P}(f(x))=E_{Q}(f(y))$ for all $f \in C(\chi)$, the space of bounded continuous functions on \mathcal{X} Dudey (2002)

Characteristic kernels (via Universality)

Characteristic kernels: $M M D=0$ iff $P=Q$

Classical result:
$P=Q$ if and only if $E_{P}(f(x))=E_{Q}(f(y))$ for all $f \in C(\mathcal{X})$, the space of bounded continuous functions on \mathcal{X} Dudley (2002)

Universal RKHS: $k\left(x, x^{\prime}\right)$ continuous, χ compact, and F

If \mathcal{F} universal, then $\operatorname{MMD}(P, Q ; \mathcal{F})=0$ iff $P=Q$

Characteristic kernels (via Universality)

Characteristic kernels: $M M D=0$ iff $P=Q$

Classical result:
$P=Q$ if and only if $E_{P}(f(x))=E_{Q}(f(y))$ for all $f \in C(\mathcal{X})$, the space of bounded continuous functions on \mathcal{X} Dudley (2002)

Universal RKHS:
$k\left(x, x^{\prime}\right)$ continuous, \mathcal{X} compact, and \mathcal{F} dense in $C(\mathcal{X})$ with respect to L_{∞} Steinwart (2001)

If \mathcal{F} universal, then $M M D(P, Q ; \mathcal{F})=0$ iff $P=Q$

Characteristic kernels (via Universality)

Characteristic kernels: $M M D=0$ iff $P=Q$

Classical result:
$P=Q$ if and only if $E_{P}(f(x))=E_{Q}(f(y))$ for all $f \in C(\mathcal{X})$, the space of bounded continuous functions on \mathcal{X} Dudley (2002)

Universal RKHS:
$k\left(x, x^{\prime}\right)$ continuous, \mathcal{X} compact, and \mathcal{F} dense in $C(\mathcal{X})$ with respect to L_{∞} Steinwart (2001)

If \mathcal{F} universal, then $\operatorname{MMD}(P, Q ; \mathcal{F})=0$ iff $P=Q$

Characteristic kernels (via Universality)

Proof:
First, it is clear that $P=Q$ implies $M M D(P, Q ; \mathcal{F})$ is zero.
Converse: by the universality of \mathcal{F}, for any given $\epsilon>0$ and $f \in C(\mathcal{X})$, $\exists g \in \mathcal{F}$

$$
\|f-g\|_{\infty} \leq \epsilon
$$

We next make the expansion
$\left|\mathbf{F}_{P} f(x)-\mathbf{E}_{Q} f(y)\right|$
$\leq\left|\mathrm{E}_{P} f(x)-\mathrm{E}_{P g}(x)\right|+\left|\mathrm{E}_{P g}(x)-\mathrm{E}_{Q g}(y)\right|+\left|\mathbf{E}_{Q g}(y)-\mathrm{E}_{Q f}(y)\right|$.
The first and third terms satisfy

$$
\left|\mathbf{E}_{p} f(x)-\mathbf{E}_{p} g(x)\right| \leq \mathbb{E}_{p}|f(x)-g(x)| \leq \epsilon
$$

Characteristic kernels (via Universality)

Proof:
First, it is clear that $P=Q$ implies $M M D(P, Q ; \mathcal{F})$ is zero.
Converse: by the universality of \mathcal{F}, for any given $\epsilon>0$ and $f \in C(\mathcal{X})$, $\exists g \in \mathcal{F}$

$$
\|f-g\|_{\infty} \leq \epsilon
$$

We next make the expansion

$$
\begin{aligned}
& \left|\mathbf{E}_{P} f(x)-\mathbf{E}_{Q} f(y)\right| \\
& \leq\left|\mathbf{E}_{P} f(x)-\mathbf{E}_{P} g(x)\right|+\left|\mathbf{E}_{P} g(x)-\mathbf{E}_{Q} g(y)\right|+\left|\mathbf{E}_{Q} g(y)-\mathbf{E}_{Q} f(y)\right|
\end{aligned}
$$

The first and third terms satisfy

$$
\left|\mathbf{E}_{P} f(x)-\mathbf{E}_{P g} g(x)\right| \leq \mathbf{E}_{P}|f(x)-g(x)| \leq \epsilon
$$

Characteristic kernels (via Universality)

Proof (continued):

$$
\mathbf{E}_{P} g(x)-\mathbf{E}_{Q} g(y)=\left\langle g(\cdot), \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}=0
$$

since $M M D(P, Q ; \mathcal{F})=0$ implies $\mu_{P}=\mu_{Q}$. Hence

$$
\left|\mathbf{E}_{P} f(x)-\mathbf{E}_{Q} f(y)\right| \leq 2 \epsilon
$$

for all $f \in C(\mathcal{X})$ and $\epsilon>0$, which implies $P=Q$.

