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Comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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A real-life example: two-sample tests

m The problem:Do local field potential (LFP) signals change when
measured near a spike burst?

LFP amplitude
| 1

LFP near spike burst

LFP amplitude

LFP without spike burst
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A real-life example: two-sample tests

m The problem:Do local field potential (LFP) signals change when
measured near a spike burst?

Neural data, n=50
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A real-life example: two-sample tests

m The problem:Do local field potential (LFP) signals change when

measured near a spike burst?
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A real-life example: two-sample tests

m Goal: do P and @ differ?

PR P W 4
- - pees )
h’"ﬁ‘f-._‘m.-.f [

[0 Sl

CIFAR 10 samples Cifar 10.1 samples

Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests,
ICML 2020

Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017. 4/80



A real-life example: discrete domains

How do you compare distributions in a discrete domain?

X]_: Now disturbing reports out of New-
foundland show that the fragile snow crab
industry is in serious decline. First the
west coast salmon, the east coast salmon
and the cod, and now the snow crabs off
Newfoundland.

.Xz: To my pleasant surprise he re-
sponded that he had personally visited
those wharves and that he had already
announced money to fix them. What
wharves did the minister visit in my riding
and how much additional funding is he go-
ing to provide for Delaps Cove, Hampton,
Port Lorne,

?
Px = Qy

Y]_: Honourable senators, I have a ques-
tion for the Leader of the Government
in the Senate with regard to the sup-
port funding to farmers that has been an-
nounced. Most farmers have not received
any money yet.

YZ:On the grain transportation system
we have had the Estey report and the
Kroeger report. We could go on and on.
Recently programs have been announced
over and over by the government such as
money for the disaster in agriculture on
the prairies and across Canada.

Are the gray extracts from the same distribution as the pink ones?
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Outline

Two sample testing

m Test statistic: Maximum Mean Discrepancy (MMD)...

...as a difference in feature means
...as an integral probability metric (not just a technicality!)

m Statistical testing with the MMD
m “How to choose the best kernel”

when are feature means unique?
what kernel gives the most powerful test?
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Maximum Mean Discrepancy
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Feature mean difference

m Simple example: 2 Gaussians with different means

m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

Idea: look at difference in means of features of the RVs

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

Idea: look at difference in means of features of the RVs

2

Prob. density
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Feature mean difference

m Gaussian and Laplace distributions
®m Same mean and same variance

m Difference in means using higher order features.. RKHS

Gaussian and Laplace densities

0.7

Prob. density
o o o o
L £ 9 9

o
)

0.1F
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2") = (p(z), o(z'))

Infinitely many features
@(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = (p(z), o(z'))

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—v ||z — 2'||%)

_901(517) /\
RN RGAVAN
pa(z) |~
—

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 11/80




Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
Up = [EP [(pl(X)] ]
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Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
Up = [EP [(pl(X)] ]

For positive definite k(z, z'),

(kp,po)r = Epok(z,y)

forz ~ Pand y ~ Q.
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Expectations of RKHS functions

Function evaluation in an RKHS:

flz) = {fipa)F

Expectation evaulation in an RKHS:

Ep(f(X)) = {fiupr)z

wp gives you expectations of all RKHS functions

Empirical mean embedding:

m
~ —1 iid.
Hp=m § Pz, T ~ P
i=1
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Expectations of RKHS functions

Function evaluation in an RKHS:

flz) = {fipa)F

Expectation evaulation in an RKHS:

Ep(f(X)) = {fiupr)z

wp gives you expectations of all RKHS functions

Empirical mean embedding:

m
~ —1 iid.
Hp=m § Pz, T ~ P
i=1

... does this reasoning work in infinite dimensions?
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Does the feature space mean exist?

Does there exist an element yup € F such that

Epf(z) = (f,up)r VfEF
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Does the feature space mean exist?

Does there exist an element yup € F such that

Epf(z) = (f,up)r VfEF

We recall the concept of a bounded operator: a linear operator
A : F — R is bounded when

|Af| < Aallfllz VfeF.
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Does the feature space mean exist?

Does there exist an element yup € F such that

Epf(z) = (f,up)r VfEF

We recall the concept of a bounded operator: a linear operator
A : F — R is bounded when

|Af| < Aallfllz VfeF.

Riesz representation theorem: In a Hilbert space F, all bounded linear
operators A can be written (-, g4) , for some g4 € F,

Af ={f(-), 9a()) 7
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
the assumption, since
| Trf| = |Epf(z)|.
<Ep|f(z)|
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
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Does the feature space mean exist?

Existence of mean embedding: If Ep\/k(z,z) = Ep [[¢(z)]| < o0
then dup € F.

Proof:
The linear operator Tpf := Epf(z) for all f € F is bounded under
the assumption, since
| Trf| = |Epf(z)|.
<Ep|f(z)|
=Ep [(f, p(z)) #|

< Br (1/k(2,2) 715

Hence by Riesz (with Ap, = Ep+/k(z,z)), 3up € F such that
TPf = (f:#P)]—"

15/80



up as a function in the RKHS

Embedding of P to feature
space

m Mean embedding up € F,

{bp,f)r = Epf(z).
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up as a function in the RKHS

Embedding of P to feature
space

m Mean embedding up € F,

{bp,f)r = Epf(z).

m What does prob. feature map
look like?

pp(t) = (up, (1) £
= (:U'Pr k(': t)>]—"
= EmNpk(fB, t)

Expectation of kernel!
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up as a function in the RKHS
Embedding of P to feature

space
m Mean embedding pup € F, 0.03} I Histogram
= Embedding
(up, f)r = Epf(z). 0.02
0.01
m What does prob. feature map
look like? 0
-2 0 2
X
up(t) = (up, p(t)) £
= <Iu’P1 k(: t)>]—‘
= Ea;Npk(:L’, t)

Expectation of kernel!
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||up — poll>
=Epk(z,z') + Egk(y,v') — 2Ep,ok(z, )
(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||up — poll>
=Epk(z,z') + Egk(y,v') — 2Ep,0k(z, )
(a) (a) (b)

Proof:

lup — poll%s = (up — Lo, P — BQ) 5
= (up, up) + (LQ, Q) — 2{p, 1Q)
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = ||pp — poll>
= Epk(fE, ml) + EQk(y) yl) - 2EP,Qk($1 y)
(a) (a) (b)

Proof:

lup — poll% = (up — po, bp — Q) 5
= (up, up) + (LQ, kQ) — 2{pP, 4Q)
— Bplup(e)] + ...
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||lpp — poll>
= Epk(il), xl) + EQk(yx yl) - 2EP,Qk($1 y)
(a) (a) (b)

Proof :

lup — poll% = (up — ko, kP — Q) 5
= (up,pp) + (Lo, 1q) — 2{up, LQ)
=Ep[up(z)] +
= Ep (up, k(z, ))
= Epk(z,z') + EQk(y y') — 2Ep,gk(z, y)
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)

VR
P -~

>

»?

-
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[Mustration of MMD

The maximum mean discrepancy:

—2
MMD =n(n—_ > k(dog,, dog;) + n(n— > k(fish,, fish, )
z;éj 1#]
- E > k(dog;, fish;)
LR

*

g

dog;, dog;; )

k(fish;, dog;) ‘ fish;, fish; )

)

k(dog;, fish

.:
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MMD as an integral probability metric

Are P and @ different?

051

-0.5 1

Samples from P and Q

e

60 ¢

0.2

0.4

0.6

0.8 1
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

BRAR

Samples from P and Q

00 ¢ 00000 © 06 -

0.2

0.4

0.6

0.8
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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MMD as an integral probability metric
Integral probability metric:

Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function

0.5

-0.5 ¢

M 23/80



MMD as an integral probability metric

What if the function is not smooth?

Epf(X) - Eqf(Y)

Bounded continuous function

f(x)
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MMD as an integral probability metric

What if the function is not smooth?

Epf(X) - Eqf(Y)

Bounded continuous function

0.5

f(x)
o

-0.5r

0o 02 0.4 06 08
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

Witness f for Gauss and Laplace densities
08 : : : ; :

e
0.6r = Gauss |
m— |_aplace

Prob. density and f

Xot
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

For characteristic RKHS 7, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiier, 1997)
m Bounded Lipschitz (Wasserstein distances) (pudtey, 2002
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F') := sup [Epf(X) - Eqf(Y)]
Ifll<2

(F = unit ball in RKHS F)

A reminder for the proof on the next slide:

Ep(f(X)) = (/,Epp(X))r = (fi uP) 5

(always true if kernel is bounded)
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Integral prob. metric vs feature difference

The MMD:
Witness f for Gauss and Laplace densities
0.8
MMD(P, Q; F) : |
= |_aplace
= sup [Epf(X) - Eqf(Y)]
lIFllz<1

Prob. density and f
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Integral prob. metric vs feature difference

The MMD:
use

MMD(P, Q; F)

= sup [Epf(X)—-Eqf(Y)]
[Ifll=<1

= sup (f,up —pQ)F
71l <1

Epf(X) = (upr, /)5
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Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—-Eqf(Y)]
[Ifll7<1

= sup (f,up—LQ)r
IfllF<1
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Integral prob. metric vs feature difference

The MMD:

Q
\ y ;
2\ !
MMD(P, Q; F) :};\‘b :
= sup [Epf(X)—-Eqf(Y)] f
[Ifll7<1

= sup (f,up—LQ)r
IfllF<1
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Integral prob. metric vs feature difference

The MMD:
Q
\ g )
i ‘03\ Q
MMD(P, Q; F) Do\‘ )
= sup [Epf(X)—-Eqf(Y)]
IfllF<1 i
= sup (f,pup —LQ)r
(eSSt
* Hp — hQ

=]

up—pgll e



Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—-Eqf(Y)]
[Ifll=<1

= sup (f,up —po)F
171l <1

= |lup — pall

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

S Ynt~ Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — VvV
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
~———
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\I—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\l—‘

The empirical witness function at v

FH(v) = e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘

Z (zi,v nzk Vis V)

Don’t need explicit feature coeflicients f* := { T } 29/80



Interlude: divergence measures
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Divergences
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Divergences

tesr! prob. Metrig,,

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

tesr! prob. Metrig,,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

sesr prob. Metrig,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (EJS, 2012, Theorem A.1)
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Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— Zk (z:, 7;)
z;ﬁj

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

———— 2
Want Threshold ¢, for MMD to get false positive rate o

37/80



—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
Laplace with different y-variance.

/\2
nx MMD =1.2

—— 9
Vn x MMD™ =1.2

10

38,/80



. —— s 2
Behaviour of MMD when P # @
Draw n = 200 i.i.d samples from P and @

L

aplace with different y-variance.

— 2
= /nx MMD =12

~
T

2
(=2}
T

Prob. of \/n x MMD
N

o
T

w
T

n
T

Number of MMDs: 1

0 05 1 15 2 25
— 2
Vi x MMD

/i x MMD® =1.2

10
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—_— 2
Behaviour of MMD when P # @

Draw n = 200 new samples from P and @

m Laplace with different y-variance.

— 2
m/nx MMD =15 10
Number of MMDs: 2 ol
4 : ‘ : : : )
R A
35¢ , :.....}; ‘:::;.:
<. redee
W 3 0 .(:,3_‘%’&5,:
TR S
= IR LN
(i 25| 2r "'.-‘:-:«f;'. *
== Lo e
x s A
S 2 sl ’
8
. 1.5¢ 8
S
= -10
oty 2 0 2
05
0

0 0.5 1 1.5 2 25

— 2 40/80
Vi x MMD /



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 41/80



—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 41/80



—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 41/80



— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD~ — MMD?(P, Q) »p

— N(0,1),
where variance V,(P, Q)= O (n™1) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
I Erpirical PDF —%
e Giaussian fit =
S g
= o
(= .| :
= @ 05
X
% 6 -4 2 0 2 4 6
. 05¢ X
k5
s}
0

0 0.5 1 15 2 2.5 3 3.5
—_— 2
Vi x MMD a2/80



—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?

43/80



— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4r

031

0.2r

0.1r

44/80



—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs:

1000

—

Prob. of n x MM D
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—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
T e | )= [ He @
™ : -Empirical PDF centred

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
o

n x MMD’

45/80



A statistical test

A summary of the asymptotics:

0.7 T

0.6

2
o
o
T

Prob. of n x MMD
a 5

o
o
T

0.1+

46,/80



A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—_—P =
0.6} ' —_—P # Q|
a2l
(E: 0.5 J
= ]
X
<
3 03 8
,g' ¢, = 1 — a quantile when P = @
=02 .
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?

Original empirical MMD for dogs and fish:

X =[P ™ P ... ]

Y =2, M ... |

MMD = ln =) ;k(zﬂzj)
n(nl ) > k()
i
S DIICED




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

X = [ "mat ]
Y

= [Tl ]

48/80



How do we get test threshold c,?
Permuted dog and fish samples (merdogs):

X [\'Q—%\') " W e ]
Y

MMD” —(n_lgk %)

+7n(n_1);k(s7 %)

2 o i .
—ﬁzk(@ﬁj) ! | I!
1,7
rlI_ll

. . 'f'l 1" L=
Permutation simulates Al mmin il

P:Q | II_II _I-l-




—2
Approx. null distribution of MMD via permutation

Null distribution estimated from 500 permutations
Example: P = Q = N(0,1)

MMD density under HO

0.7 . ! . :
——— Null PDF
[l \u!l PDF from permutation

Prob. density
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Consistent test w/o bootstrap (not examinable)

Maximum mean discrepancy (MMD):
MMD?*(P, Q; F) = |lup — pollx

/\2
Is MMD significantly > 07

P = Q (neuro)

P = (@, null distrib. of 0.5

VIVES Spectral
MMD: 04" - - = Permutation
e
— © 5 @ 03
nMMD — " (2 - 2), =
b= 8 o2
>
'_

A; is lth eigenvalue of

centered kernel k(z;, z;) 0
100 150 200 250 300

Sample size m

Use Gram matrix spectrum for );:
consistent test without bootstrap 50/80




How to choose the best kernel (1)
optimising the kernel parameters



The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
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The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
B You can choose a good kernel for a given problem

®m You can’t get one kernel that has good finite-sample power for all
problems

No one test can have all that power

52/80



Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(o, v) = exp (5 lle - o)

m Characteristic: for any o: for any P and @, power — 1 as n — o0
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(o, v) = exp (5 lle - o)

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(o, v) = exp (5 lle - o)

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...

fx)

1

-1 -0.5 0 0.5 1
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(o, v) = exp (5 lle - o)

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...

1

051

L @6 memnm 06 & —

fx)

-0.5r
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(o, v) = exp (5 lle - o)

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...

fx)

1
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(o, v) = exp (5 lle - o)

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...
m ...and some problems (e.g. images) might have no good choice for o

53/80



Graphical illustration

B Maximising test power same as minimizing false negatives

07 :
—_—P =
0.6 - —_—P £ Q|

[a\)

(C: 05 ]
= oal ]
X
IS
5 03F ]
,;C:; ¢o =1 — a quantile when P = @
02t B
R~ false negatives

0.1
0 T
-2 1 0 1 2 3 4 5 6
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Optimizing kernel for test power
The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr; (nMMD > &a)

s <MMD2(P, Q) Ca >
VVn(P,Q) 1y Va(P,Q)

where

m & is the CDF of the standard normal distribution.

m C, 1s an estimate of ¢, test threshold.
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Pry (nl\m2 > &a)

R <M1\/ID2(P, Q) Cor
VVa(P, Q) nyVu(P,Q)
O(nl/z) O(nfl/z)

For large n, second term negligible!
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)

5 <MMD2(P, Q >
VVa(P, Q) 1y Va(P,Q)

To maximize test power, maximize

MMD?(P, Q)
Va(P, Q)

55/80



Data splitting

Choose a kernel k

D"
maximizin
g /713 )
Use chosen k& for MMD test

56/80



Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10.1 (Recht+ ICML 2019)
X~P Y ~Q
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®o(z), Po(v)) + €] 9(z, y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning
[Submitted on 21 Feb 2020]

Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

ICML 2020

57/80



Interpreting the learned kernel

3 [45/0|S > (07|57 4]2
5|8]7|574/¢ M5 (3/0|77|5

S|2¥qus
01y1118 81/

MNIST samples Samples from a GAN

985078
4240095




Interpreting the learned kernel

IIBIIE]I 310175
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Interpreting the learned kernel

1345|105
5197|548

3017|5419
5130|578

SEICICIENE
01y1118.81/

MNIST samples Samples from a GAN

9185078
4240095

m Power for optimized ARD
kernel: 1.00 at o = 0.01

m Power for optimized RBF
kernel: 0.57 at &« = 0.01 58/80
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Troubleshooting generative adversarial networks

108

[ dataset images
770 GAN samples

-
Jw-
| |

more like dataset —
MMD? = 0. 0001 59/80




How to choose the best kernel (2)
characteristic kernels



Characteristic kernels

Characteristic: MMD a metric MMD = 0 iff P = Q)
[NeurIPSO7b, JMLR10]

In the next slides:

m Characteristic property on [—m, 7] with periodic boundary
m Characteristic property on R¢

m Characteristic property via Universality

61,/80



Characteristic kernels on [, 7]

Reminder: Fourier series

Function on [—m, 7] with periodic boundary.

Z frexp(alz) Z fo (cos(£z) + 1sin(£z)) .

= l=—o0
Top hat Fourier series coefficients
05
1.4
12 0.4f
1 0.3
0.8
0.2
2 os =
=
0.1
0.4 1 T T

-0.2

-4 -2

no
~
IS
Ik
5
&
~o
e
3
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Characteristic kernels on [, 7]

Jacobi theta kernel (close to exponentiated quadratic):

1 T —vy 10° - 1 —o24?
k(zr —y)=—72 — ke = — .
(e-v)=o ( or 27r> o T o P ( 2

¥ is the Jacobi theta function, close to Gaussian when 2 small

Kernel Fourier series coefficients

0.16
06 ] 014
05 012
04 01
£ o3 «30.08
=
0.2 0.06
0.1 0.04
0 002
041 o T T P
4 2 0 2 4 10 5 [) 5 70
T {
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

,U'P(m) = </‘LP1 k('x :I:)>]_—
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:
m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)
pp(z) = (pp, k(5 2)) £
= EtN pk(t — .’I))
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

,U'P(m) = </‘LP1 k('x :I:)>]_—
= Ethk(t — .’I))

_ /7r k(t — 2)dP(t)
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The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

,U'P(m) = </‘LP1 k('x :IJ)>]_—
= Ethk(t — .’I))

= / k(t—2)dP(t)  ppe=Fk X @py

64,/80



The MMD in a Fourier representation

Maximum mean embedding via Fourier series:

m Fourier series for P is characteristic function ¢p
m Fourier series for mean embedding is product of fourier series!
(convolution theorem)

,U'P(m) = </‘LP1 k('x m))]—"
= Etwpk(t — .’I))

= / k(t—2)dP(t)  ppe=Fk X @py

MMD can be written in terms of Fourier series:

MMD(P, Q;F) = [[up — 1ol £

> [(@P,z Za¥) Ez] exp(1fz)

{=—oc0

f
64,/80



A simpler Fourier representation for MMD

From previous slide,

o0

> [(¢P,Z - $0,.) 751] exp(x£z)

{=—0c0

MMD(P, Q;F) =

F

Reminder: the squared norm of a function f in F is:

o (32
=y B

l=—oc0 k'l
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A simpler Fourier representation for MMD

From previous slide,

o0

> [(¢P,Z - $0,.) 7%] exp(x£z)

{=—0c0

MMD(P, Q;F) =

F

Reminder: the squared norm of a function f in F is:

o (32
=y B

l=—oc0 k'l

Simple, interpretable expression for squared MMD:

(o0}

27.2 (o]
Pe—Youl‘k -
MMD*(P,Q;F)= S 12 g"@ 5 S o — woulhe
7

{——o0 {—— o0

65,80



Characteristic kernels on [—, 7]

Example: P differs from @ at one frequency:

0.2
0.15
Z o
A
0.05
0
0.2
0.15
S
— 0.1
<&
0.05
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Characteristic kernels on [—, 7]

Example: P differs from @ at one frequency:

0.2 ’ o
0.15
8 ~
T O Sos
0.05
0 (ERRRRAARRIARRRAEEED)
2 0 2 -10 0 10
0.2 1 ©
E o 05
o <
0.05
=% > -10 0 10
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Characteristic kernels on [—, 7]

Example: P differs from @ at one frequency:

0.2

0.15

—

8
— 0.1

A
0.05

0.2

0.15

0.05

Characteristic  function
difference

66,80



Characteristic kernels on [, 7]

Is the Gaussian spectrum kernel characteristic?

Kernel Fourier series coefficients
0.16
0.6 0.14
0.5 0.12
0.4 0.1
E o3 «Z0.08
~e
0.2 0.06
0.1 0.04
0 0.02
~04 . P T T Po
4 -2 0 2 4 -10 5 [ 5 10
T l
(o]

MMD*(P,Q;F) = > |ope— 00’k

{=—00 67/80



Characteristic kernels on [, 7]

Is the Gaussian spectrum kernel characteristic? Y ES

Kernel Fourier series coefficients
0.16
0.6 0.14
0.5 0.12
0.4 0.1
E o3 «Z0.08
~e
0.2 0.06
0.1 0.04
0 0.02
~04 . P T T Po
4 -2 0 2 4 -10 5 [ 5 10
T l
(o]

MMD*(P,Q;F) = > |ope— 00’k

{=—00 67/80



Characteristic kernels on [, 7]

Is the triangle kernel characteristic?

Triangle Fourier series coefficients
0. 0.07
025 0.06
02
0.05
0.15
. 0.04
2 oaf =
=
003
0.051
0.02
of
_0.05 0.01
01 L L L - 0?? T T ??0 Q
-4 -2 0 2 4 -10 -5 0 5 10
x L
(o]
2 . _ 27,
MMD*(P,Q;F)= > |ppse— 0o’k
l=—00
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Characteristic kernels on [, 7]

Is the triangle kernel characteristic? NO

Triangle Fourier series coefficients
03 0.07
0.25F 0.08
0.2
0.05
0.15
. 0.04
2 oaf =
=
003
0.05F
0.02
of
_0.05 0.01
01 L L L - 0?? T T ??0 Q
-4 -2 0 2 4 -10 -5 0 5 10
x L
o0
2 . _ 27,
MMD*(P,Q;F)= > |ppse— 0o’k
l=—00

68,/80



Characteristic kernels on R?

Can we prove characteristic on R%?

Characteristic function of P via Fourier transform

pp(w) = /Rd e= w4 P(z)
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Characteristic kernels on R?

Can we prove characteristic on R%?

Characteristic function of P via Fourier transform

pp(w) = /Rd e= w4 P(z)

For translation invariant kernels: k(z,y) = k(z — y), Bochner’s
theorem:

k(z —y) = /Rd e Uz )T dA(w)

A(w) finite non-negative Borel measure.
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Characteristic kernels on R¢
Fourier representation of MMD on R¢%:
MMD*(P, @; F) = [ lpp(w) - po)l® dA(w)
Proof:
MMD?*(P, Q; F)
:= Epk(z — z') + Egk(y — y') — 2Ep,ok(z, y)
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Characteristic kernels on R¢
Fourier representation of MMD on R¢%:
MMD*(P, @; F) = [ lpp(w) - po)l® dA(w)
Proof:
MMD?*(P, Q; F)
:= Epk(z — z') + Egk(y — y') — 2Ep,ok(z, y)

://p@_@ap—@uﬂap—@u>
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Characteristic kernels on R¢
Fourier representation of MMD on R¢%:
MMD*(P, @; F) = [ lpp(w) - po)l® dA(w)
Proof:
MMD?*(P, Q; F)
:= Epk(z — z') + Egk(y — y') — 2Ep,ok(z, y)

://ks—th—QWﬂﬂp_QW)
I L anw) ap - 9 4P - @)

(a) Using Bochner’s theorem...
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Characteristic kernels on R¢
Fourier representation of MMD on R¢%:
MMD*(P, @; F) = [ lpp(w) - po)l® dA(w)
Proof:
MMD?*(P, Q; F)
:= Epk(z — z') + Egk(y — y') — 2Ep,ok(z, y)

:// [5(s — 1) d(P — Q)(s)] d(P — Q)(2)
D[] et anw) d(p - Q)s) d(P - Q)(#)
0 //Rd e=isTw g(p — Q)(s)/Rd et 4(P — Q)(¢t) dA(w)

(a) Using Bochner’s theorem......(b) and using Fubini’s theorem. 7o/s0



Characteristic kernels on R¢
Fourier representation of MMD on R¢%:
MMD*(P, @; F) = [ lpp(w) - po)l® dA(w)
Proof:
MMD?*(P, Q; F)
:= Epk(z — z') + Egk(y — y') — 2Ep,ok(z, y)

://ks_th—QmﬂaP—QW)
///P " GAw) d(P - Q)(s) d(P — Q)(¢)
G [ emap-oxs) [, e dP - Q)t) drw)

= [, 165(0) - bow) dhw)

(a) Using Bochner’s theorem......(b) and using Fubini’s theorem. 7o/s0



Characteristic kernels on R?

Example: P differs from @ at roughly one frequency:

035
03
0.25
= 02
3
Q 0.15
0.1
0.05
-10 -5 0 5 10
X
05
0.4
_03
X
O o2
0.1
0
-10 -5 0 5 10
X
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Characteristic kernels on R?

Example: P differs from @ at roughly one frequency:

0.35 0.4
03
025 03
= 02 —
= & 02
Q 0.15 =
0.1 o1
0.05
0
-10 -5 0 5 10 20  -10 0 10 20
X ®
05 04
0.4
03
=03 _
X
5 Soz2
0.2
0.1
0.1
-10 -5 5 10 20  -10 0 10 20

xo
e
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Characteristic kernels on R?

Example: P differs from @ at roughly one frequency:

0.35 0.4
0.3
0.25 03
o 02 —
X & 02
Qo015 = Lo .
o Characteristic  function
: 0.1 .
difference
0.05 o
0
-10 -5 0 5 10 -20 -10 0 10 20
X [0 0.15
el
&
05 04 Lo
=
0.4
03 0.05
=03 _
X T 0.2 30 20 10 [) 10 20 30
o 0.2 - [0)
0.1
0.1
jO -5 5 10 -20 -10 0 10 20

xo
e
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
Exponentiated quadraric kernel spectrum A(w)

Difference |pp — @]

0.2
0.18

0.16

0.14
0.12 /\
0.1
0.04
0.02 J \
0 . .

30  -20 -10 0 10 20 30
Frequency ®
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

Characteristic

0.2

0.18
0.16

0.14

0.12 /\
0.1

0.08

0.06

0.04

0.02 J k

0 . .

30 20 -10 0 10 20 30
Frequency ®
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
Sinc kernel spectrum A(w)

Difference |pp — @]

0.2

0.18

0.16

0.14
0.12

0.1
0.08
0.06
0.04
0.02

30  -20 -10 0 10 20 30
Frequency ®
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

Not characteristic

0.2

0.18
0.16

0.14
0.12

0.1
0.08
0.06
0.04
0.02

30 20 -10 0 10 20 30
Frequency ®
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:
Triangle (B-spline) kernel spectrum A(w)

Difference |¢pp — ¢g|

0.2

0.18
0.16
0.14

0.12

0.04

0 . .

30  -20 -10 0 10 20 30
Frequency ®
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

777

0.2

0.18
0.16
0.14
0.12

0.1
0.08
0.06
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Characteristic kernels on R?

Example: P differs from @ at (roughly) one frequency:

Characteristic

0.2

0.18
0.16
0.14
0.12

0.1
0.08
0.06

0.04
0.02 v/f\\//ﬂ n\/\v
0 . .
30 20 -10 0 10 20 30
Frequency ®
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Choosing the best kernel (Fourier)

Exponentiated quadratic kernel:

0.4 0.4 .
0s o MMD vs frequency of perturbation
=3 - to P
6 0.2 20 0.2
0.1 0.1
0.16
-6 -4 -2 0 2 4 6 -20 -10 0 10 20
X ®
0.4 04
03 03 © 012
< _
& 02 20 02 S:
0.1 0.1 a
2
-6 -4 -2 0 2 4 6 — =
M 20 10 :) 10 20 0.08
04 0.4
0.3 03
= _O 0.2
0.2 o 0.04
c o 5 0 5
0.1 Perturbing frequency
-6 -4 -2 0 2 4 6 -20 -10 0 10 20
X ®
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Choosing the best kernel (Fourier)

B-Spline kernel:

0.4 04
0.3 03
;'<‘ —
=02
a° £02
0.1 0.1
6 -4 -2 20 10 0 10
(0]
04 04
03 03
< _
= o
& 02 & 02
0.1 0.1
6 -4 -2 20 -10 0 10
®
04 04
03 03
Soz 202
01 0.1
6 -4 -2 20 10 0 10
(0]

20

MMD vs frequency of perturbation
to P

1

10

0 5
Perturbing frequency
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MMD decay with increasing perturbation freq.

Recall simple MMD, Fourier series on [—, 7|:

MMD?*(P, Q; F) Z lop e — 00,k

{=—o00

where &, decays as £ grows.

Fourier series representation for more general case on R¢:
MMD?(P, Q; F) = /Rd 6p(w) — o(w)* dh(w)

has similar behaviour.
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Summary: characteristic kernels on R¢

Characteristic kernel: MMD = 0 iff P = Q rukumizu et al. [NIPS07b],

Sriperumbudur et al.[COLTO08]
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Summary: characteristic kernels on R¢

Characteristic kernel: MMD = 0 iff P = Q rukumizu et al. [NIPS07b],

Sriperumbudur et al.[COLTO08]

Main theorem: A translation invariant k is characteristic for prob.
measures on R? if and only if

supp(A) = R*

(i.e. support zero on at most a countable set) sriperumbudur et a1 [covTos,

JMLR10]
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Summary: characteristic kernels on R¢

Characteristic kernel: MMD = 0 iff P = Q rukumizu et al. [NIPS07b],

Sriperumbudur et al.[COLTO08]
Main theorem: A translation invariant k is characteristic for prob.
measures on R? if and only if
_ mod
supp(A) = R
(i.e. support zero on at most a countable set) sriperumbudur et a1 [covTos,

JMLR10]

Corollary: any continuous, compactly supported k characteristic
(since Fourier spectrum A(w) cannot be zero on an interval).

1-D proof sketch from [Mallat, 99, Theorem 2.6], proof on R? via distribution theory in Sriperumbudur
et al. [JMLR10, Corollary 10 p. 1535]
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Characteristic kernels (via Universality)

Characteristic kernels: MMD =0iff P = Q
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Characteristic kernels (via Universality)

Characteristic kernels: MMD =0iff P = Q

Classical result:
P = Q if and only if Ep(f(z)) = Eo(f(y)) for all f € C(X), the
space of bounded continuous functions on X bpudiey (2002)
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Characteristic kernels (via Universality)

Characteristic kernels: MMD =0iff P = Q

Classical result:
P = Q if and only if Ep(f(z)) = Eo(f(y)) for all f € C(X), the
space of bounded continuous functions on X bpudiey (2002)

Universal RKHS:
k(z,z') continuous, X compact, and F dense in C(X) with respect to

oo Steinwart (2001)
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Characteristic kernels (via Universality)

Characteristic kernels: MMD =0iff P = Q

Classical result:
P = Q if and only if Ep(f(z)) = Eo(f(y)) for all f € C(X), the
space of bounded continuous functions on X bpudiey (2002)

Universal RKHS:
k(z,z') continuous, X compact, and F dense in C(X) with respect to

oo Steinwart (2001)

If F universal, then MMD(P, Q; F) =0iff P = Q
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Characteristic kernels (via Universality)

Proof:
First, it is clear that P = @ implies MMD(P, Q; F) is zero.
Converse: by the universality of F, for any given € > 0 and [/ € C(X),
JdgeF

I/ = gl <€
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Characteristic kernels (via Universality)

Proof:
First, it is clear that P = @ implies MMD(P, Q; F) is zero.
Converse: by the universality of F, for any given € > 0 and [/ € C(X),
JdgeF

17 = 9l <€

We next make the expansion

|Epf(z) — Eq/ ()|
< |Epf(z) — Epg(z)| + [Erpg(z) — Eqa(v)| + [Eqg(y) — Eq/(y)].
The first and third terms satisfy

Epf(z) - Brg(a)] < B |f(z) - o(z)| <.
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Characteristic kernels (via Universality)

Proof (continued):

Epg(z) —Eqg(y) = (9(), kp — 1)z =0,
since MMD(P, Q; ) = 0 implies up = . Hence

[Epf(z) - Eof(y)| < 2€

for all f € C(X) and € > 0, which implies P = Q.
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