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Dependence testing
Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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Dependence detection, discrete domain
How do you detect dependence: : :
: : : in a discrete domain?
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Dependence detection, discrete domain

How do you detect dependence: : :

: : : in a discrete domain?

X1: Honourable senators, I have a ques-
tion for the Leader of the Government in the
Senate with regard to the support funding
to farmers that has been announced. Most
farmers have not received any money yet.

Y1: Honorables sénateurs, ma question
s’adresse au leader du gouvernement au Sé-
nat et concerne l’aide financiére qu’on a an-
noncée pour les agriculteurs. La plupart des
agriculteurs n’ont encore rien reçu de cet ar-
gent.

X2: No doubt there is great pressure on
provincial and municipal governments in re-
lation to the issue of child care, but the re-
ality is that there have been no cuts to child
care funding from the federal government to
the provinces. In fact, we have increased
federal investments for early childhood de-
velopment.

� � �

?()

Y2:Il est évident que les ordres de
gouvernements provinciaux et municipaux
subissent de fortes pressions en ce qui con-
cerne les services de garde, mais le gouverne-
ment n’a pas réduit le financement qu’il
verse aux provinces pour les services de
garde. Au contraire, nous avons augmenté le
financement fédéral pour le développement
des jeunes enfants.

� � �
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Dependence detection, continuous domain
How do you detect dependence: : :
: : : in a continuous domain?
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MMD as a dependence measure?

Could we use MMD?

MMD(PXY| {z }
P

;PXPY| {z }
Q

;H�)

We don’t have samples from Q := PXPY , only pairs
f(xi ; yig

n
i=1

i:i:d:
� PXY

� Solution: simulate Q with pairs (xi ; yj ) for j 6= i .

What kernel � to use for the RKHS H�?
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MMD as a dependence measure
Kernel k on images with feature space F ,

Kernel l on captions with feature space G,
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MMD as a dependence measure
Kernel k on images with feature space F ,

Kernel l on captions with feature space G,

Kernel � on image-text pairs: are images and captions similar?
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MMD as a dependence measure
Given: Samples from a distribution PXY

Goal: Are X and Y independent?

MMD2( bPXY ; bPX bPY ;H�) :=
1
n2 trace(KHLH )

( H = In � 1
n 1n1>n )
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MMD as a dependence measure

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

MMD2( bPXY ; bPX bPY ;H�) :=
1
n2 trace(KHLH )
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MMD as a dependence measure
MMD witness, product kernel: argmax

kf k�1
EPXY f � EPX PY f

X

Y

Dependence witness and sample
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Two questions:

Why the product kernel? Why not eg a sum?
Is there a more interpretable definition of the dependence measure?
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Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?
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Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?
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Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?
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Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.
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Define two spaces, one for each witness

Function in F

f (x ) =
1X

j=1

fj'j (x )

Feature map

Kernel for RKHS F on X :

k(x ; x 0) = h'(x ); '(x 0)iF

Function in G

g(y) =
1X

j=1

gj�j (y)

Feature map

Kernel for RKHS G on Y:

l(y ; y 0) = h�(y); �(y 0)iG
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup

kf kF � 1
kgkG � 1

cov[f (x )g(y)]
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup

kf kF � 1
kgkG � 1

cov

240@ 1X
j=1

fj'j (x )

1A0@ 1X
j=1

gj�j (y)

1A35
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup

kf kF � 1
kgkG � 1

Exy

240@ 1X
j=1

fj ~'j (x )

1A0@ 1X
j=1

gj ~�j (y)

1A35

Feature centering: ~'(x ) = '(x )� Ex'(x ) and ~�(y) = �(y)� Ey�(y).
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup

kf kF � 1
kgkG � 1

Exy

240@ 1X
j=1

fj ~'j (x )

1A0@ 1X
j=1

gj ~�j (y)

1A35

Feature centering: ~'(x ) = '(x )� Ex'(x ) and ~�(y) = �(y)� Ey�(y).

Rewriting:

Exy [f (x )g(y)]� Ex [f (x )]Ey [g(y)]

=

2664
f1
f2
...

3775
>

Exy

0BB@
2664

~'1(x )
~'2(x )
...

3775 h ~�1(y) ~�2(y) : : :
i1CCA

| {z }
C ~'(x)~�(y)

2664
g1
g2
...

3775
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=
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...
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>

Exy

0BB@
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~'2(x )
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3775 h ~�1(y) ~�2(y) : : :
i1CCA

| {z }
C ~'(x)~�(y)

2664
g1
g2
...

3775

COCO: max singular value of feature covariance C'(x )�(y)
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Does feature space covariance exist?
How do we prove existence of feature covariance C'(x )�(y)?
What is COCO in the finite linear case? Two zero mean random
vectors x 2 <d , y 2 <d 0 .
Compute their covariance matrix:

Cxy = Exy

�
xy>

�
...which is a d � d 0 matrix! How to get a single “summary” number?
Solve for vectors f 2 <d , g 2 <d 0

argmax
kf k=1;kgk=1

f >Cxyg = argmax
kf k=1;kgk=1

Exy

h�
f >x

� �
y>g

�i
= argmax

kf k=1;kgk=1
Exy [f (x )g(y)]

Maximum singular value of Cxy .
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Does feature space covariance exist?
Given features '(x ) 2 F , �(y) 2 G

Challenge 1: Can we define a feature space analog to x y>?
YES:

Given f 2 <d , g 2 <d 0 , h 2 <d 0 , define matrix f g> such that�
f g>

�
h = f

�
g>h

�
.

Given f 2 F ,g 2 G, h 2 G, define tensor product operator f 
 g such
that [f 
 g ] h = f hg ; hiG .
Now just set f := '(x ), g = �(y), to get x y> ! '(x )
 �(y)
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Does feature space covariance exist?
Given features '(x ) 2 F , �(y) 2 G

Challenge 2: Does an uncentered covariance “matrix” (operator) in
feature space exist? I.e. is there some Cxy : G ! F such that

hf ;CxygiF = Exy [f (x )g(y)]

Does “something” exist ! Riesz theorem.
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Does feature space covariance exist?
Given features '(x ) 2 F , �(y) 2 G

Challenge 2: Does an uncentered covariance “matrix” (operator) in
feature space exist? I.e. is there some Cxy : G ! F such that

hf ;CxygiF = Exy [f (x )g(y)]

Does “something” exist ! Riesz theorem.
Reminder: Riesz representation theorem
In a Hilbert space H, all bounded linear operators A (meaning
jAh j � �AkhkH) can be written

Ah = hh(�); gA(�)iH
for some gA 2 H.
We used this theorem to show the mean embedding �P exists.
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Does feature space covariance exist?
Hints:

In the finite dimensional case, and given basis vectors gj 2 <
d 0

Cxy 2 <
d�d 0 is in a vector space, with inner product

hCxy ;AiHS = trace(Cxy
>A) =

X
j2J

(Cxygj )
>(Agj );

In particular,

hCxy ; f g>iHS = trace(C>
xy(f g>))

= trace(g>C>
xy f ) = f >Cxyg = Exy [f (x )g(y)]

Challenge 2 (reformulated via the hints): does there exist
Cxy : G ! F in a Hilbert space HS(G;F) such that:

hCxy ;AiHS = Exy h'(x )
 �(y);AiHS
and in particular,

hCxy ; f 
 giHS = Exy [f (x )g(y)]

17/62



Does feature space covariance exist?
Hints:

In the finite dimensional case, and given basis vectors gj 2 <
d 0

Cxy 2 <
d�d 0 is in a vector space, with inner product

hCxy ;AiHS = trace(Cxy
>A) =

X
j2J

(Cxygj )
>(Agj );

In particular,

hCxy ; f g>iHS = trace(C>
xy(f g>))

= trace(g>C>
xy f ) = f >Cxyg = Exy [f (x )g(y)]

Challenge 2 (reformulated via the hints): does there exist
Cxy : G ! F in a Hilbert space HS(G;F) such that:

hCxy ;AiHS = Exy h'(x )
 �(y);AiHS
and in particular,

hCxy ; f 
 giHS = Exy [f (x )g(y)]

17/62



The Hilbert Space HS(G;F)

F and G separable Hilbert spaces.
(gj )j2J orthonormal basis for G.
Index set J either finite or countably infinite.

hgi ; gj iG :=

8<:1 i = j ;

0 i 6= j

Linear operators L : G ! F and M : G ! F

Hilbert space HS(G;F)

hL;M iHS =
X
j2J

hLgj ;Mgj iF

(independent of orthonormal basis)
Hilbert-Schmidt norm of the operators L:

kLk2HS =
X
j2J

kLgj k
2
F

L is Hilbert-Schmidt when this norm is finite. 18/62
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The tensor product a 
 b is in HS(G;F)

Given a 2 F and b 2 G, we earlier defined the tensor product a 
 b
as a rank-one operator from G to F (generalize finite case a b>)

(a 
 b)g 7! hg ; biG a

Is a 
 b 2 HS(G;F)?

ka 
 bk2HS =
X
j2J

k(a 
 b)gj k
2
F

=
X
j2J

a hb; gj iG
2F

= kak2F
X
j2J

���hb; gj iG
���2

= kak2Fkbk
2
G

where we use Parseval’s identity. Thus, the operator is
Hilbert-Schmidt. 19/62
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Inner product of a 
 b with L 2 HS(G;F)

Given a Hilbert-Schmidt operator L : G ! F ,

hL; a 
 biHS = ha ;LbiF
Special case:

hu 
 v ; a 
 biHS = hu ; aiF hb; viG :

Proof: Use expansion
b =

X
j2J

hb; gj iG gj

Then

RHS = ha ;Lbi =

*
a ;L

0@X
j

hb; gj iGgj

1A+
F

=
X
j

hb; gj iG ha ;Lgj iF
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Inner product of a 
 b with L 2 HS(G;F)

Proof (continued):

LHS = ha 
 b;LiHS :=
X
j

hLgj ; (a 
 b)gj iF

=
X
j

hb; gj iG hLgj ; aiF :

Proof of special case:

u 
 v| {z }

L

; a 
 b
�
HS = ha ; (u 
 v)biF

=
D
a ;u hv ; biG

E
F

= hu ; aiF hb; viG
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Covariance operator in RKHS
Challenge 2 (reminder): does there exist Cxy : G ! F in some
Hilbert space HS(G;F) such that

hCxy ;AiHS = Exy h'(x )
 �(y);AiHS

and in particular,

hCxy ; f 
 giHS = Exy [f (x )g(y)]

Proof: Use Riesz representer theorem. The operator

Cxy : HS(G;F) ! <

A 7! Exy h�(x )
  (y);AiHS

is bounded when Exy (k'(x )
 �(y)kHS) <1.
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Covariance operator in RKHS

Proof (continued): Condition comes from

jExy h'(x )
 �(y);AiHSj � Exy jh'(x )
 �(y);AiHSj

� kAkHSExy (k'(x )
 �(y)kHS)

(first Jensen, then Cauchy-Schwarz). Thus covariance operator exists
by Riesz.
Simpler condition:

Exy (k'(x )
 �(y)kHS) = Exy (k'(x )kFk�(y)kG)

= Exy

�q
k(x ; x )l(y ; y)

�
<1:
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Covariance operator in RKHS

Does the covariance do what we want? Namely,

hCxy ; f 
 giHS = Exy [f (x )g(y)]

Proof:

hf ;CxygiF = hCxy ; f 
 giHS
(a)
= Exy h'(x )
 �(y); f 
 giHS
= Exy [hf ; '(x )iF hg ; �(y)iF ]

= Exy [f (x )g(y)]
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Back to the constrained covariance
The constrained covariance is

COCO(PXY ) = sup

kf kF � 1
kgkG � 1

cov[f (x )g(y)]

-2 -1 0 1 2
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Correlation: 0.00
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Correlation: 0.90 
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Computing COCO from finite data
Given sample f(xi ; yi )g

n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Computing COCO from finite data

Given sample f(xi ; yi )g
n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

\COCO is largest eigenvalue max of"
0 1

n
fK eL

1
n
eLfK 0

# "
�

�

#
= 

" fK 0
0 eL

# "
�

�

#
:

fKij = h'(xi )� �̂x ; '(xj )� �̂x iF =: h ~'(xi ); ~'(xj )iF
and eLij =

D
~�(yi ); ~�(yj )

E
G .

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Computing COCO from finite data
Given sample f(xi ; yi )g

n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

\COCO is largest eigenvalue max of"
0 1

n
fK eL

1
n
eLfK 0

# "
�

�

#
= 

" fK 0
0 eL

# "
�

�

#
:

fKij = h'(xi )� �̂x ; '(xj )� �̂x iF =: h ~'(xi ); ~'(xj )iF
and eLij =

D
~�(yi ); ~�(yj )

E
G .

Witness functions:

f (x ) /
nX

i=1

�i

24k(xi ; x )�
1
n

nX
j=1

k(xj ; x )

35

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Empirical COCO: proof
The Lagrangian is

L(f ; g ; �; ) = �
1
n

nX
i=1

240@f (xi )�
1
n

nX
j=1

f (xj )

1A0@g(yi )�
1
n

nX
j=1

g(yj )

1A35
| {z }

covariance

+
�

2

�
kf k2F � 1

�
+


2

�
kgk2G � 1

�
| {z }

smoothness constraints

with Lagrange multipliers � � 0 and  � 0:
(Negative sign on covariance to make it a minimization problem, for consistency with later lectures).
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The Lagrangian is

L(f ; g ; �; ) = �
1
n

nX
i=1

240@f (xi )�
1
n

nX
j=1

f (xj )

1A0@g(yi )�
1
n

nX
j=1

g(yj )

1A35
| {z }

covariance

+
�

2

�
kf k2F � 1

�
+


2

�
kgk2G � 1

�
| {z }

smoothness constraints

with Lagrange multipliers � � 0 and  � 0:
(Negative sign on covariance to make it a minimization problem, for consistency with later lectures).

Assume:

f =
nX

i=1

�i ~'(xi ) g =
nX

i=1

�i ~ (yi )

for centered ~'(xi ); ~�(yi ).
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Proof (continued)

First step is smoothness constraint:

kf k2F � 1 = hf ; f iF � 1

=

* nX
i=1

�i ~'(xi );
nX

i=1

�i ~'(xi )

+
F
� 1

= �>fK�� 1
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Proof (continued)
Second step is covariance:

1
n

nX
i=1

240@f (xi )�
1
n

nX
j=1

f (xj )

1A0@g(yi )�
1
n

nX
j=1

g(yj )

1A35
=

1
n

nX
i=1

hf ; ~'(xi )iF
D
g ; ~�(yi )

E
G

=
1
n

nX
i=1

D nX
`=1

�` ~'(x`)| {z }
f

; ~'(xi )
E
F

D
g ; ~�(yi )

E
G

=
1
n
�>fK eL�
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Proof (continued)
Second step is covariance:

1
n

nX
i=1

240@f (xi )�
1
n

nX
j=1

f (xj )

1A0@g(yi )�
1
n

nX
j=1

g(yj )

1A35
=

1
n

nX
i=1

hf ; ~'(xi )iF
D
g ; ~�(yi )

E
G

=
1
n

nX
i=1

D nX
`=1

�` ~'(x`)| {z }
f

; ~'(xi )
E
F

D
g ; ~�(yi )

E
G

=
1
n
�>fK eL�

Kernel matrices between centered variables:fK = HKH H = In �
1
n
1n1>n :
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Proof (continued)
Minimize Lagrangian wrt the primal variables �; �:

L(f ; g ; �; ) = �
1
n
�>fK eL� +

�

2

�
�>fK�� 1

�
+


2

�
�>eL� � 1

�

Differentiating wrt � and � and setting to zero,

0 = �
1
n
fK eL� + �fK�

0 = �
1
n
eLfK�+ eL�

Multiply the first equation by �>, and the second by �>,

0 = �
1
n
�>fK eL� + ��>fK�

0 = �
1
n
�>eLfK�+ �>eL�
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Proof (continued)

Subtract second equation from first, get

��>fK� = �>eL�
When � 6= 0 and  6= 0, then �>fK� = �>eL� = 1; hence � = .
(Comlpementary slackness, assuming strong duality.

More later in the course!)

Thus \COCO is largest eigenvalue max of"
0 1

n
fK eL

1
n
eLfK 0

# "
�

�

#
= 

" fK 0
0 eL

# "
�

�

#
:

(Solution by maximization wrt dual variable ).

Note: for strong duality in this case, see Appendix B.1 Boyd and Vandenberghe (2004), which is outside
the scope of this lecture.
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What is a large dependence with COCO?

−2 0 2
−3

−2

−1

0

1

2

3

X

Y

Smooth density

−4 −2 0 2 4
−4

−2

0

2

4
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Y

500 Samples, smooth density

−2 0 2
−3

−2

−1

0

1

2

3

X

Y

Rough density

−4 −2 0 2 4
−4

−2

0

2

4

X

Y

500 samples, rough density

Density takes the form:

PXY / 1+sin(!x ) sin(!y)

Which of these is the more “dependent”?
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Finding covariance with smooth transformations

Case of ! = 1:

-4 -2 0 2 4
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4
Correlation: 0.31
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Correlation: 0.50      COCO: 0.09
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Finding covariance with smooth transformations

Case of ! = 2:
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4
Correlation: 0.02
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Correlation: 0.54      COCO: 0.07
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Finding covariance with smooth transformations

Case of ! = 3:
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Finding covariance with smooth transformations

Case of ! = 4:
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Finding covariance with smooth transformations

Case of ! =??:
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Finding covariance with smooth transformations

Case of ! = 0: uniform noise! (shows bias)
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Back to the constrained covariance
Summary: sinusoidal density PXY / 1+ sin(!x ) sin(!y)

ω=1 ω=2

ω=3 ω=4

ω=5 ω=6

0 1 2 3 4 5 6 7
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frequency of non−constant density component

C
O

C
O

COCO (empirical average, 1500 samples)
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Dependence largest when at “low” frequencies

As dependence is encoded at higher frequencies, the smooth
mappings f ; g achieve lower linear dependence.

Even for independent variables, COCO will not be zero at finite
sample sizes, since some mild linear dependence will be found by f,g
(bias)

This bias will decrease with increasing sample size.
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Can we do better than COCO?
A second example with zero correlation.
First singular value of feature covariance C'(x )�(y):
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: 0.11
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Can we do better than COCO?
A second example with zero correlation.
Second singular value of feature covariance C'(x )�(y):
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Can we do better than COCO?
A second example with zero correlation.
Second singular value of feature covariance C'(x )�(y):
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The Hilbert-Schmidt Independence Criterion

Writing the ith singular value of the feature covariance C'(x )�(y) as

i := COCOi (PXY ;F ;G);

define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC 2(PXY ;F ;G) =
1X
i=1

2i :

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.
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The Hilbert-Schmidt Independence Criterion
Writing the ith singular value of the feature covariance C'(x )�(y) as

i := COCOi (PXY ;F ;G);

define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC 2(PXY ;F ;G) =
1X
i=1

2i :

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.

HSIC is MMD with product kernel!

HSIC (PXY ;F ;G) = MMD(PXY ;PXPY ;H�)

where �((x ; y); (x 0; y 0)) = k(x ; x 0)l(y ; y 0).
Proof: exercise!
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The Hilbert-Schmidt Independence Criterion

Hilbert-Schmidt Independence Criterion (HSIC) in terms of HS norm:

HSIC 2(Pr;F ;G) := kCxy � �X 
 �Y k
2
HS

= hCxy ;CxyiHS + h�X 
 �Y ; �X 
 �Y iHS

� 2 hCxy ; �X 
 �Y iHS
= Ex ;yEx 0;y 0 [k(x ; x 0)l(y ; y 0)]

+ Ex ;x 0 [k(x ; x 0)]Ey ;y 0 [l(y ; y 0)]

� 2Ex ;y
�
Ex 0 [k(x ; x 0)]Ey 0 [l(y ; y 0)]

�
Cxy is uncentered covariance, x ; x 0 � Px independent, y ; y 0 � Py .
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The Hilbert-Schmidt Independence Criterion
Proof: Recall

hL; a 
 biHS = ha ;LbiF hCxy ;AiHS = Ex ;y h�(x )
  (y);AiHS

and
[a 
 b]c = hb; cia

Applying the (uncentered) covariance operator definition twice,

kCxyk
2
HS = hCxy ;CxyiHS

= Exy h'(x )
 �(y);CxyiHS
= ExyEx 0y 0



'(x )
 �(y); '(x 0)
 �(y 0)

�
HS

= ExyEx 0y 0


'(x ); ['(x 0)
 �(y 0)]�(y)

�
F

= ExyEx 0y 0
h

'(x ); '(x 0)

�
F


�(y 0); �(y)

�
G
i

= ExyEx 0y 0
�
k(x ; x 0)l(y ; y 0)

�
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Proof: Recall

hL; a 
 biHS = ha ;LbiF hCxy ;AiHS = Ex ;y h�(x )
  (y);AiHS

and
[a 
 b]c = hb; cia

Applying the (uncentered) covariance operator definition twice,

kCxyk
2
HS = hCxy ;CxyiHS

= Exy h'(x )
 �(y);CxyiHS
= ExyEx 0y 0



'(x )
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�
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Empirical estimates of HSIC
Unbiased estimate: define bA as the empirical estimator of
kCxyk

2
HS = ExyEx 0y 0 [k(x ; x 0)l(y ; y 0)] ,

bA :=
1

n(n � 1)

nX
i=1

nX
j 6=i

k(xi ; xj )l(yi ; yj )

Alternative: plug in empirical covariance operator (uncentered),

�Cxy =
1
n

nX
i=1

'(xi )
  (yi );

Biased estimate:

bAb =
 �Cxy

2
HS

=

*
1
n

nX
i=1

'(xi )
 �(yi );
1
n

nX
i=1

'(xi )
 �(yi )

+
HS

=
1
n2

nX
i=1

nX
j=1

k(xi ; xj )l(yi ; yj ) =
1
n2 tr(KL);
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How large is the bias?

Difference is:

bAb � bA =
1
n2

nX
i ;j=1

kij lij �
1

n(n � 1)

nX
i 6=j

kij lij

=
1
n2

nX
i=1

kii lii +
�

1
n2 �

1
n(n � 1)

�0@ nX
i 6=j

kij lij

1A
=

1
n

0@ 1
n

nX
i=1

kii lii �
1

n(n � 1)

nX
i 6=j

kij lij

1A ;
where kij = k(xi ; xj ).
The expectation of this difference (i.e., the bias) is of O(n�1).

Remaining terms covered in lecture notes.
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Asymptotics of HSIC under independence

Given sample f(xi ; yig
n
i=1

i:i:d:
� PXY , what is empirical\HSIC

2
?

Empirical HSIC (biased)

\HSIC
2
=

1
n2 trace(KHLH )

Kij = k(xi ; xj ) and Lij = l(yiyj ) (H = In � 1
n 1n1>n )

Statistical testing: given PXY = PXPY , what is the threshold c�
such that P(\HSIC

2
> c�) < � for small �?

Asymptotics of\HSIC when PXY = PXPY :

n\HSIC
2 D
!

1X
l=1

�lz 2
l ; zl � N (0; 1)i:i:d:

where �l l (zj ) =
R

hijqr l (zi )dFi;q;r ; hijqr =
1
4!

P(i;j ;q;r)
(t;u;v ;w)

ktu ltu + ktu lvw � 2ktu ltv
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A statistical test
Given PXY = PXPY , what is the threshold c� such that
P(\HSIC

2
> c�) < � for small � (prob. of false positive)?

Original sample:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Permutation:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y7 Y3 Y9 Y2 Y4 Y8 Y5 Y1 Y6 Y10

Null distribution via permutation
� Compute HSIC for fxi ; y�(i)gn

i=1 for random permutation � of indices
f1; : : : ;ng. This gives HSIC for independent variables.

� Repeat for many different permutations, get empirical CDF
� Threshold c� is 1� � quantile of empirical CDF
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A statistical test

Given PXY = PXPY , what is the threshold c� such that
P(\HSIC

2
> c�) < � for small � (prob. of false positive)?

Null distribution via moment matching

nHSIC2
b(Z ) �

x��1e�x=�

���(�)

where

� =
(E(HSIC2

b))
2

var(HSIC2
b)
; � =

var(HSIC2
b)

nE(HSIC2
b)
:

Purely a heuristic, no guarantees
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Application: dependence detection across languages
Testing task: detect dependence between English and French text

Les	ordres	de	gouvernements	
provinciaux	et	municipaux	
subissent	de	fortes	pressions

Honourable	senators,	I	have	a	
question	for	the	Leader	of	the	
Government	in	the	Senate

Text	from	the	aligned	hansards of	the	36th parliament	of	canada,
https://www.isi.edu/natural-language/download/hansard/

YX
Honorables	sénateurs,	ma	question	
s’adresse	au	leader	du	
gouvernement	au	Sénat

Au	contraire,	nous	avons	augmenté	
le	financement	fédéral	pour	le	
développement	des	jeunes	

No	doubt	there	is	great	pressure	
on	provincial	and	municipal	
governments	

In	fact,	we	have	increased	
federal	investments	for	early	
childhood	development.	

...
...
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Application: dependence detection across languages
Testing task: detect dependence between English and French text
k -spectrum kernel, k = 10, sample size n = 10

\HSIC
2
=

1
n2 trace(KHLH )

H = In � 1
n 1n1>n 51/62



Application:Dependence detection across languages

Results (for � = 0:05)

k-spectrum kernel: average Type II error 0

Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for
“Agriculture” transcripts. Similar results for Fisheries and
Immigration transcripts.
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Testing higher order interactions
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Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

X Y

Z
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Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

X ?? Y ;Y ?? Z ;X ?? Z
X1 vs Y1 Y1 vs Z1

X1 vs Z1 X1*Y1 vs Z1

X Y

Z

X ;Y i:i:d:
� N (0; 1)

Z j X ;Y � sign(XY )Exp( 1p
2
)

Fine print: Faithfulness violated here!
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V-structure discovery

X Y

Z

Assume X ?? Y has been established.
V-structure can then be detected by:

Consistent CI test: H0 : X ?? Y jZ [Fukumizu et al. 2008, Zhang et al. 2011]

Factorisation test: H0 : (X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X
(multiple standard two-variable tests)

How well do these work?
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Detecting higher order interaction

Generalise earlier example to p dimensions

X ?? Y ;Y ?? Z ;X ?? Z
X1 vs Y1 Y1 vs Z1

X1 vs Z1 X1*Y1 vs Z1

X Y

Z

X ;Y i:i:d:
� N (0; 1)

Z j X ;Y � sign(XY )Exp( 1p
2
)

X2:p ;Y2:p ;Z2:p
i :i :d :
� N (0; Ip�1)

Fine print: Faithfulness violated here!
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V-structure discovery

CI test for X ?? Y jZ from Zhang et al. (2011), and a factorisation test,
n = 500 57/62



Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY
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Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

X Y

Z

X Y

Z

X Y

Z

X Y

Z

PXY Z −PXPY Z −PY PXZ −PZPXY +2PXPY PZ

∆LP =
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

X Y

Z

X Y

Z

X Y

Z

X Y

Z

PXY Z −PXPY Z −PXZPY −PXYPZ +2PXPY PZ

∆LP = 0

Case of PX ?? PYZ
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Lancaster interaction measure

Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

(X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X ) �LP = 0:

...so what might be missed?
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Lancaster interaction measure

Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

�LP = 0; (X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X

Example:

P(0; 0; 0) = 0:2 P(0; 0; 1) = 0:1 P(1; 0; 0) = 0:1 P(1; 0; 1) = 0:1
P(0; 1; 0) = 0:1 P(0; 1; 1) = 0:1 P(1; 1; 0) = 0:1 P(1; 1; 1) = 0:2
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A kernel test statistic using Lancaster Measure

Construct a test by estimating k�� (�LP)k2H�
; where � = k 
 l 
m :

k��(PXYZ � PXY PZ � � � � )k
2
H�

=

h��PXYZ ; ��PXYZ iH�
� 2 h��PXYZ ; ��PXY PZ iH�

� � �
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A kernel test statistic using Lancaster Measure

Table: V -statistic estimators of h���; ��� 0iH�

(without terms PXPY PZ ). H
is centering matrix I � n�1

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

k�� (�LP)k2H�
=

1
n2 (HKH �HLH �HMH )++ :

Empirical joint central moment in the feature space
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V-structure discovery

Lancaster test, CI test for X ?? Y jZ from Zhang et al. (2011), and a
factorisation test, n = 500
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Interaction for D � 4

Interaction measure valid for all D :
(Streitberg, 1990)

�SP =
X
�

(�1)j�j�1 (j�j � 1)!J�P

� For a partition �, J� associates to the
joint the corresponding factorisation,
e.g., J13j2j4P = PX1X3PX2PX4 :
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