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Application of HSIC: Feature Selection



HSIC for Microarray feature selection

e Select genes from microarray data for classification

e Different methods choose features optimising different criteria
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HSIC for Microarray feature selection

e Select genes from microarray data for classification
e Different methods choose features optimising different criteria

e Several criteria special cases of HSIC: cymro7a,svBor)
— Pearson’s correlation (normalise by standard deviation) pamrtveererat,
2002, Eir=Dor-et-ah, 2006]
— Mean difference and variants pedoetat, 2oos, FHasticet-ab, 26001
— Shrunken centroid wibstiranictat, o2, 2003

— (Kernel) ridge regression [iand-yans, 2005

e When are nonlinear feature maps justified?
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Feature selection: BAHSIC (1)

e DBackwards elimination of irrelevant features to maximise dependence

(HSIC). Why backwards?

Input: The full set of features &
Output: An ordered set of features S

1: ST+ @

2: repeat

3:  Adapt kernel parameter oy

4:  Remove individual features to maximize HSIC,
1 <= argmaxy ) ;.7 HSIC(o0,S\{j}), ZCS

D: S+ S \I

6: ST (ST,I)

7 until S = Y

e Application: feature selection in microarrays [cmro7a,isMBo7, JMLR12]
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e HSIC equivalent to difference in means
— Linear input kernel Ky = z[f] (z[(]) ', K = >0 Ko (single feature,
HSIC is sum of all feature scores)
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— Warning: for nonlinear kernel, features can interact.
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Relation of HSIC to mean difference

e (Biased) empirical HSIC: HSIC(X,Y) := Tr(KHLH)
e HSIC equivalent to difference in means
— Linear input kernel Ky = z[f] (z[(]) ', K = >0 Ko (single feature,
HSIC is sum of all feature scores)
— Linear output kernel, 1/ny for one class, —1/n_ for the other
— Warning: for nonlinear kernel, features can interact.

n

Tr(K,HLH) = Za: —n— > il

1=n4+1
e HSIC equivalent to shrunken centroid
— Linear kernels, Y = | "+ " "
’ 1n_ 1n_ 1n_
~on n-n nx2

TH(K HLH) = (2410 — 2[0)* + (2_10) — 2[0)?



Relation of HSIC to ridge regression

e Objective: given vy = [y1 ...y, ', minimise
R =y — Vw|® + Aw]?

where

(K1, -) )

V = : and w := Zaik‘(aﬁi, )

k(e )

Rr=y'y—y (K+ ) 'Ky

e Solution is:

e Features that minimise R* < maximise HSIC with kernel
A= (K+M\)'K

(but take care with centering: either » .y, =0or K = HKH)



Linear vs nonlinear kernel: idea

e For microarray data (esp. 2 class), difference in means with linear kernel

usually works best.
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Linear vs nonlinear kernel: idea

e For microarray data (esp. 2 class), difference in means with linear kernel

usually works best.
e [ixceptions:

— Nonlinear dependence between features and labels (e.g class with

multiple subclasses)

— Multiple classes, different features serve different purposes

L=Y'Yy =




Linear vs nonlinear kernel: application 1

e Two classes, nonlinear relation

e Plot of maximum singular function fi(x) on X (as for COCO)
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Linear vs nonlinear kernel: application 2

e Three cancer subtypes (diffuse large B-cell lymphoma and leukemia,

follicular lymphoma, and chronic lymphocytic leukemia)
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Application 2: Taxonomy Discovery



Overview: HSIC-based taxonomy discovery

e Simultaneous clustering and taxonomy fitting
— Numerical Taxonomy Clustering (nipsoss]

e Maximise dependence (HSIC) between data and clusters
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NIPS Articles

[reinforcement learning]

[Bayesian learningj

[discriminative learning]

[neurosciencej

[neural network applicationgﬁ

/ [miscelaneousj

[neural network trainingj

hardware

The taxonomy discovered for the NIPS dataset.



Dependence Maximization

Idea:
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Dependence Maximization

Idea:
L L) F % ] B ] B ] T
| Se -.t‘ "%’ I ) | I
1 «* 3 .11.
. s ~ I ... I
R ! _
e e e .
11 0 1 2 3 4 J_[ ]___[}FHT
Objective:
Tr | MHIYII'H]
max

v, ||HIIYTITH||lgs

e Data kernel matrix: M
o Il is n x k cluster assignment matrix, I11 =1, II, ; € {0, 1}.

e Y > 0 Gram matrix between clusters



Dependence Maximization

Idea:
2
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Y has no prior structure
e Add constraints to Y
— Change Y* — interpretability

— Change II* — improved clustering



Numerical Taxonomy

a b a\__J
e compute distance matrix, D c>_<d f__\

d
© Dij=/Yii+Yj; =2V

> (O

® Dab_|_Dcd S max (Dac_l_DbdaDad"_Dbc) vaaba Cad

b

e Four point condition:



Numerical Taxonomy

e compute distance matrix, D

© Dij=/Yii+Yj; =2V

a> <b a
C d C

Dab+Dcd S max (Dac+DbdaDad+Dbc) vaaba Cad

Four point condition:

Numerical taxonomy objective: minp,. ||[D — Dr||* where Dy is subject
to the four point condition (NP hard, so approximation only) (marb et a1,

2005]

FI‘OHI DT to tree [Waterman et al., 1977]



Numerical Taxonomy Clustering

Require: M > 0
Ensure: (II,Y) =~ (II*, V") that max dependence s.t. 4-point condition
Initialize Y =1
Initialize II using spectral clustering
while Convergence has not been reached do
Solve for Y given II using closed form solution
Construct D such that D;; = \/Y},Z + Y —2Y;
Solve for minp.. ||D — Dr|?
Assign Y = —%H(DT ® D7)H (Hadamard product, next slide)

Update II by changing labels to increase score [omro7n

end while



Numerical Taxonomy Clustering

Given a matrix of pairwise distances, D, we recover a centred kernel matrix,
HKH = H (DroDp)H,

where Dr o Dp denotes the Hadamard (entrywise) product.
Proof:

(i, 25) = ||¢(xs) — o(x5)]”
= ,ZC(ZCZ, ZIJZ) + /C(QZj,CCj) — Qk(aj’i, xj).

Thus
1
/C(J?Z',Jjj) — 5 (k(wz,xz) + k(xj,ajj) — d%(:ﬂz,xj)) :



Numerical Taxonomy Clustering

Writing this in matrix form,

(_ k(xl,xl)

DO | —

\ oo k(Tm, Tm)

Next, we use

k(z1,71)

k(l’m, xm)

k(z1,x1)

k(xlaxl)

k(Zm, Tm)

k(Xm, Tm)

—DTODT




Attractive Scientist Dataset (1)

Face dataset and taxonomy discovered by the algorithm



Attractive Scientist Dataset (2)

Conditional entropy scores for clusterings using romvro7s

flat (0.5180) hierarchy (0.4970) taxonomy (0.2807)



NIPS Articles

[reinforcement learning]

[Bayesian learningj

[discriminative learning]

[neurosciencej

[neural network applicationgﬁ

/ [miscelaneousj

[neural network trainingj

hardware

The taxonomy discovered for the NIPS dataset.



NIPS Articles: Categories

Nneurosci. hardware misc. train-neural app.-neural  reinforcement discriminative Bayesian
neurons chip memory network training state function data

cells circuit dynamics units recognition  learning error model
model analog image learning network policy algorithm models

cell voltage neural hidden speech action functions distribution
visual current hopfield networks set reinforcement learning gaussian
neuron figure control input word optimal theorem likelihood
activity vlsi system training performance control class parameters
synaptic neuron inverse output neural function linear algorithm
response output energy unit networks time examples mixture
firing circuits capacity weights trained states case em

cortex synapse object error classification actions training bayesian
stimulus motion field weight layer agent vector posterior
spike pulse motor neural input algorithm bound probability
cortical neural computational layer system reward generalization  density
frequency  input network recurrent features sutton set variables
orientation digital images net test goal approximation prior
motion gate subjects time classifier dynamic bounds log
direction cmos model back classifiers step loss approach
spatial silicon associative propagation feature programming algorithms matrix
excitatory  implementation attractor number image rl dimension estimation




Application 3: ICA



ICA: setting

Independent component analysis:

iy

S

=@ a@\; (@
o35

= X

. [
e s a vector of [ unknown, independent sources: Ps = [[._; Ps,
e x vector of mixtures

e A is [ x [ mixing matrix (full rank)



ICA: setting

Independent component analysis:
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e B is estimated A=, we solve for this

e y vector of estimated sources



ICA: setting

Independent component analysis:

23

\/

>
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>

e B is estimated A=, we solve for this

e y vector of estimated sources

Neglect time dependence: m 1.1.d. mixture observations



ICA: another example

e Mixtures X are
original EEG

PaWaWay

[Humg—et—ah, 2000]

e Estimated sources
Y are ICA

components

e Scalp map from B
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ICA examples

e We’'ve seen:
— Sounds mixed together (“cocktail party” problem) myvirimenctat, 2001

— EEG I‘eCOI‘dingS (bl‘ain, fetal heartbeat) [Hung—et—ah, 2000, Stéghauer—et—ahl, 2004]

Warning: both the above examples violate the assumptions made in ICA
(that the observations at each time are independent and identically
distributed).

e Some further examples:
— Extracting independent activity from fMRI (eathonmetan, 2003
— Financial data pivituotoand 6ja, to9s]

— Linear edge filters for image patch coding? (Possibly not: @etize, 2006))



A toy example

e T'wo distributions: Pg, is uniform, Ps, is bimodal

Source 1, uniform Source 2, bimodal
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A toy example

e T'wo distributions: Pg, is uniform, Ps, is bimodal

Source 2, bimodal Input sources

source 2
o

-2 -1 0 1 2
source 1

Source 1, uniform

20




A toy example

Two distributions: Pg, is uniform, Pg, is bimodal

40

Source 1, bimodal (X)
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First indeterminacy: ordering

e Initial unmixed RVs in red

Input sources

Rotation n/6 Rotation m/4

Rotation w/3

Rotation w/2
s 2 R 2 2 ‘ : :
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source 1 mixture 1 mixture 1 mixture 1 mixture 1

e Independent at rotation /2



First indeterminacy: ordering

e Initial unmixed RVs in red

Input sources

Rotation n/6 Rotation m/4 Rotation w/3 Rotation w/2
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e Independent at rotation /2

Ignore source order




Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources Mixture
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Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources Mixture
2 : : : 2 :
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source 1 mixture 1

Ignore source sign




Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources

mixture 2

-2 -1 0 1
source 1

Mixture

-2 -1 0 1 2
mixture 1

e More generally: S and Sy independent ift

aS7 and Sy independent for a # 0

— Assume sources have unit variance



Third indeterminacy: (Gaussians

Both sources Gaussian

Source distribution P P
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Third indeterminacy: (Gaussians

Both sources Gaussian

Source distribution P P
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Meaningless to “unmix” Gaussians




Things that are impossible for ICA

Using independence alone, we cannot . ..

e recover signal order,
e recover signal sign (or amplitude) ,

e separate multiple Gaussians.



Things that are impossible for ICA

Using independence alone, we cannot . ..

e recover signal order,
e recover signal sign (or amplitude) ,

e separate multiple Gaussians.

We can recover
B*=PDA™!
e [ is a permutation matrix
e D diagonal, d;; € {—1,1}

(as long as no more than one Gaussian source)



First step in ICA: decorrelate

e Idea: remove all dependencies of order 2 between mixtures x



First step in ICA: decorrelate

Idea: remove all dependencies of order 2 between mixtures x
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First step in ICA: decorrelate

Idea: remove all dependencies of order 2 between mixtures x

New signals have unit covariance:
t=B,x C; =1
We thus break up B as follows:
B =B,B,

— B, is a whitening matrix
— B, is remaining demixing operation

Use the SVD of mixture covariance C, = UAU':

B, = A"Y?U"



First step in ICA: decorrelate

Write C), (size [ x [) as the covariance of t.
C,=m 'TT"  where T =B,X
We want to ensure
I =C;
=m 'B,XX B,
=B,C,B, '



First step in ICA: decorrelate

Write C), (size [ x [) as the covariance of t.
C,=m 'TT"  where T =B,X
We want to ensure
I =C;
=m 'B,XX B,
=B,C,B, '

Write the SVD of C, = UAUT. Write B,, = A~Y2U". Then

C,=A12UuTo, UAY?
— A V2uTuAUTUAY?
— ]



What does decorrelation achieve?

e T'wo distributions: Pg, is uniform, Ps, is bimodal

source 2

Input sources

-1 0 1
source 1

2

mixture 2

Observed mixtures
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mixture 1

20

mixture 2

After decorrelation
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mixture 1



Problem remaining: rotation

e Assume correlation has already been removed

e To recover original signal, need to rotate

Input sources After decorrelation

2 2
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@ o
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e In remainder: unmixing matrix B is rotation,

B'B=1I



[CA: maximum likelihood

° chCA7’ using model parametrised by (B7 ISS)

e Interpretation: assume we are given the source densities Py, so we only

need to find B.



[CA: maximum likelihood

P CCICA??

using model parametrised by (B, I55)

Source distribution PS1 PS2
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[CA: maximum likelihood

A

chCA7’ U_sing model parametrised by (B, PS)

Source distribution PS1 PS2
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[CA: maximum likelihood

A

chCA7’ U_sing model parametrised by (B, PS)

Source distribution PS1 PS2

0.4 T T T T

= | 0g likelihood
=== True solution
= = =Current guess ||

Source S2
Log likelihood

0 0.2 04 06 0.8
Source St Angle (x w/2)

Unmixing angle for B: 7/12



[CA: maximum likelihood

A

chCA7’ U_sing model parametrised by (B, PS)

Source distribution PS1 PS2
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[CA: maximum likelihood

A

e We have a model for the observations, parametrised by (B, Ps)
— Model must have Py = H§:1 P,



[CA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B, Ps)
— Model must have Py = H,lizl P,

e We use the relation:

X = As
Pi(x) = det(A HPs(A %)

e Thus our estimated density of observations is

P, = det(B) Ps(Bx)



[CA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B, Ps)
— Model must have Py = H,lizl P,

e We use the relation:
X = As
P.(x) = det(A HPs(A %)

e Thus, our estimated density of observations is

A

P, = det{B7 P,(Bx)



[CA: maximum likelihood

We have a model for the observations, parametrised by (B, ISS)

A

— Model must have Py = H,lizl P..

Our estimated density of observations is

A

P, = P.(Bx)

Maximise the expected log likelihood, (B is ith row)

l
L:=E, [log ISX} = Z E, log Issz.(Bi,:x)

=1
Finite sample version: Z
1 m
j=1 1=

Notation: X. ; is jth column.



Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this wrong?

Input sources

Max. likelihood solution

10 8
8t 1 ol
6, .
4,
4t i
2,
ol | Al
N 3
q) —
o i i > L
5 0 8 0
? o
N | wn
-2 O _of
_4t W i
. a4l .
6t ] .
_6}
-8} i
_10 1 1 1 _8 1 1 1 1 1 1
-10 -5 0 5 10 -8 -6 -4 -2 0 2 4

source 1 est. source 1



Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this wrong?

Source distribution Ps1 PS2
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Another failure mode: Gaussians revisited

Setting:
e s are two independent, unit variance (Gaussians.
e Unmixing matrix B is orthogonal

The density of the mixture x is proportional to

A

Px = Ps(Bx) x exp (—XTBTC’S_le) .

o (C, is diagonal with equal entries, hence B commutes with C; 1.

e B'B=1

e Hence: Py constant wrt B

We cannot recover independent Gaussians when they are mixed with a

rotation matrix.



Back to original setting: independence

e A model-free approach to ICA: use an objective function (contrast

function) ¢(y) which measures “closeness to independence”.



Back to original setting: independence

e A model-free approach to ICA: use an objective function (contrast

function) ¢(y) which measures “closeness to independence”.

e Ideally: contrast ¢(y) = 0 if and only if all components of y mutually

independent:
[

P, = HPW.

i=1
— Under our mixing assumptions: y are original sources s besides

permutations, sign swaps



Back to original setting: independence

e A model-free approach to ICA: use an objective function (contrast

function) ¢(y) which measures “closeness to independence”.

e Ideally: contrast ¢(y) = 0 if and only if all components of y mutually

independent:
[

P, = HPW.

i=1
— Under our mixing assumptions: y are original sources s besides

permutations, sign swaps

e How it’s really used: contrast should be “smallest” when random

variables are “most independent”



Mutual information

e A widely used contrast function: The mutual information,

l P
pri>:/10g( z : )dpy
1=1 Hizl Pyz'

o D1, > 0 with equality iff Py = Hﬁ;:l P,.

I(y) = Dxr. (Py



Mutual information

e A widely used contrast function: The mutual information,

[

P
P, pri>:/10g( — )dPy
=1 Hz’zlp)/z'

I(y) = DkL (

o D1, > 0 with equality iff Py = Hizl P,.

e Simplification: when B is a rotation,

Dx1, <Py

where h(y) = —E, log(Py(y))
Proof: Given y = Bx

[

H P,. > Z h (y;) — log det B.

PY(Y) = det(B_l)Px(B_ y) = det(B™ )Px(x)

and det(B™!) = (det(B)) ™!



Mutual information

e A widely used contrast function: The mutual information,

l P
PYz' = /lOg ( y ) dPy
7;1;{ ) Hizl Pyz'

o D1, > 0 with equality iff Py = Hﬁ;:l P,.

I(y) = Dxr. (Py

e Simplification: when B is a rotation,

l
DkL <Py H%) =
1=1 1

where h(y) = —E, log(Py(y))

[

h(y;) — h (x) — log det B.
1 con;gant
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e A widely used contrast function: The mutual information,
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o D1, > 0 with equality iff Py = Hﬁ;:l P,.

I(y) = Dxr. (Py
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1=1 1

where h(y) = —E, log(Py(y))

[

h(y;) — h (x) — log det B.
1 con;gant

Contrast: ¢gr(y) := 22:1 h(y;)



Maximum likelihood revisited

e Mutual information contrast: minimize

[

drr(y) ==Y —By, log(Py,(y))
i=1
e Maximum likelihood: maximize

[

L = ) EylogP (B;.x)
1=1
[

— Z Eyq; 1Og(Pyi (yZ))

i=1
e Same thing! The difference is in approach:
— For max. likelihood we assumed a model ISs

— Now we (ideally...) assume no model for Py



Contrast functions with fixed nonlinearities

e Entropies hard to compute/optimize: replace with

[

or(y) =Y Ey,(f(y))

1=1

for some other nonlinear f(y)



Contrast functions with fixed nonlinearities

e Entropies hard to compute/optimize: replace with

[

or(y) =Y Ey,(f(y))

i—1
for some other nonlinear f(y)

Fast ICA
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Our example again

Recall: minimize contrast.
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Our example again

Input sources

After decorrelation
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What went wrong?




Kurtosis: an important concept

e Kurtosis definition: when mean is zero,
ke =E(x*) —3(E ()",

e Source densities can be super-Gaussian (positive kurtosis) or

sub-Gaussian (negative kurtosis)

e Zero kurtosis does not mean Gaussian!

Sub-Gaussian (uniform)

Super-Gaussian (Laplace)

0.25

0.2r

0.051

Nor



Demo: contrasts with fixed nonlinearities

e Super-Gaussian (Laplace) sources
e Unmixed sources in red

e Mixture (angle 7/6) in black
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0-5 T 10 T T T

0.45 n : 8l

0.4 ] ol
0.35} al
0.3} ol
D .25}
o of
0.2
2t
0.15}
4}
0.1}
-6f
0.05}
-8t
0 ‘ :
5 0 o
S T 210 -5 0 5



Demo: contrasts with fixed nonlinearities

e Super-Gaussian results for Jade, Infomax, and Fast ICA
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Demo: contrasts with fixed nonlinearities

e Sub-Gaussian (Uniform) sources

e Unmixed sources in red

e Mixture (angle 7/6) in black
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Demo: contrasts with fixed nonlinearities

e Sub-Gaussian results for Jade, Infomax, and Fast ICA
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Contrast functions using entropy estimates

e Simplest option: convolve with spline kernel, then compute discrete

entropy via space partition pham, 2604

MICA contrast
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e More sophisticated option: spacings estimate of entropy

RADICAL contrast

Contrast functions using spacings entropy estimate
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Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy

TIT OO,

Sort sample Y7, ..., Yy, in increasing order: Y(;) < Y(;11)
Prob. density estimate based on spacings

Idea: prob. mass between adjacent samples Y@i) Y(i+1) 18 = (m + 1)_1

. Ym—-1) Y(m)



Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy

Sort sample Yi,...

TIT

OO,

, Y, In increasing order: Y(; < Y1)

Prob. density estimate based on spacings

A

P(y;Yl,...,Ym) =

1

(m+ 1) (Y1) — Yi))

Yoy <y < Yig

Entropy estimate based on spacings

h

(Y)

B 1
 om—1

m—1

Z log(m + 1)(Yiq1) — Yi)
i—1



Contrast functions using spacings entropy estimate

POk i) == [ pl)togslu)dy
y(z—l—l)
Z / y) log p(y)dy
Y(i)
m y('L—i—l) 1 —1
:_Z/ (m + 1 log (m + 1) dy
Y(4) Y(i+1) = Y@@ Y(i+1) = Y@@)
m—1
1
— Z(m+ 1)~ 1log (m + )
1 Yiu+1) — YY)
m—1
1 —1
z—Z( — 1) log (m+1)
P Yia+1) — Y@)

= (m—1)""log [((m+1) (yis1) — ¥@))]



Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy
Sort sample Y7, ..., Yy, in increasing order: Y(;) < Y(;11)
Prob. density estimate based on spacings

) 1
P(y; Y1,...,Yn) (D Yorn) — V) @) <Y<Yy

Entropy estimate based on spacings

1 m—1

MY)=—— > log(m+1)(¥41) — V)
1=1

Smoothing: add “extra” mixture points (noisy copies of original

mixtures)

Hard to optimize



Other independence measures as contrasts

e Why mutual information?
— Same as maximum likelihood (good if model is correct)

— Contrast function is sum of entropies: fast

e Other independence measures?



Other independence measures as contrasts

e Why mutual information?

— Same as maximum likelihood (good if model is correct)

— Contrast function is sum of entropies: fast

e Other independence measures?

e Most common: kernel/characteristic function-based

— Characteristic function-based ICA (Erikssonand Koivumen, 2008, e and Bickel,

2605]
— Kernel ICA (covariance): COCO, KMI, HSIC (erettonetat, o5, Sheretat,

2007, 2009]

— Kernel ICA (correlation): KCCA, KGV Bactand-gordan, 2002

e HSIC same as characteristic function-based (for the purposes of ICA) [Shemetatb,

2009



Kernel contrast function: HSIC

e Dependence measure:

2
HSIC(PUv, F) = <SUP [EUVf — EUEVf])
feF

Dependence withess and sample
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HSIC: empirical expression

e Empirical HSIC:

1
HSIC := —tr(KHLH)
m
— K Gram matrix for (uy,...,uy,)
— L Gram matrix for (vi,...,vy)

— Centering H = I — %17”1;



Contrast functions: a small selection

Contrast function summary

e Sum of expectations of a fixed nonlinearity

— Fast ICA, Infomax, Jade

e Sum of entropies/mutual information. ..
— ... using fast, smoothed entropy estimates

— ... using spacings/k-nn entropy estimates

e Kernel/characteristic function dependence measures



Contrast functions: a small selection

Contrast function summary

e Sum of expectations of a fixed nonlinearity

— Fast ICA, Infomax, Jade

e Sum of entropies/mutual information. ..
— ... using fast, smoothed entropy estimates

— ... using spacings/k-nn entropy estimates

e Kernel/characteristic function dependence measures

How do we optimize?



Optimization (Jacobi)

e For two signals, the rotation is expressed

B =

cos(6)
sin(@)

e Higher dimensions, eg for [ = 3,

_008(92)
sin(6,)
0

—sin(6y)
cos(6)
0

-
0| x
1—

_cos(Hy)
0

| sin(0y)

[

— sin(0)
cos(6)

— sin(6y)

0
cos(6y)

e Coordinate descent, exhaustive search, etc...

0

0

cos(6z)
sin(60;)

— sin(6y)
cos(0z)




Optimization (Newton)

e Unmixing matrix B satisfies B' B = I

e [ocal parameterisation () about B: at iteration k,
Bji1 = Brexp(Q) Q=-Q'

e How to choose direction and size of €27



Optimization (Newton)

Unmixing matrix B satisfies B' B = I

Local parameterisation {2 about B: at iteration k,
Bji1 = Brexp() Q=-Q'

How to choose direction and size of €27

Write Q € RU(U-1)/2 the unique entries of €2

Newton-like method: solve the linear system for () € RI-1)/2

~

Hp,(0)1 = =Vp,(¢)

— Vg, (¢) is gradient of ¢ wrt 0
~ Hp, (¢) is Hessian of ¢ wrt Q

Approximate Hessian as diagonal: FastICA (shenand Hiiper, 2006)



Gradient descent vs Newton

m— N ewton
- (Gradient descent

100x Amari error
)

-0.4| & I
5 10 15 20 25 30
lteration




What if we have time dependence?

e We can get extra information from sources not being i.i.d.
e Mixture x(¢) now stationary random process, depends on x(t — 7)

e Define mixture covariances
Co = E(x(t)x(1)), C,=Ex@@)x(t—1)),

— C; independent of ¢ (stationarity)



What if we have time dependence?

e We can get extra information from sources not being i.i.d.
e Mixture x(¢) now stationary random process, depends on x(t — 7)

e Define mixture covariances
Co = E(x(t)x(1)), C,=Ex@@)x(t—1)),

— C; independent of ¢ (stationarity)

e Decorrelate:

—~

BC,B' =A BC,B' =A
— A and A diagonal

e Combining both requirements:
BC,C ! = (AK—l) B

e Greater number of delays: joint diagonalisation



What’s the best method?



A basic benchmark

[ = 8 sources
m = 40,000 samples

Benchmark data from

[Bach—and—Jordan, 2002)|

Average over 24 repetitions

JAAY

AN

(a) k= Inf (b) k=3.00 (c) k=-1.20

/\

(d) k=6.00 (e) k=6.00 (f) k=1.11

/\ K
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MU LA

() k=-0.53 (k) k=—-067 () k=-0.47
il

(m) k=-0.82 (n) k=-062 (0) k=-0.80

(p) k=-0.77 (q) k=-029 () k=-0.67
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A basic benchmark: results




A basic benchmark: results

Adaptive contrasts outperform fixed nonlinearities

Demixing quality
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100x Amari error
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A basic benchmark: computational cost
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100x Amari error
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A basic benchmark: computational cost

Best runtime (adaptive): fast entropy estimates
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A basic benchmark: computational cost

Kernel methods: Newton outperforms Gradient Descent
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A basic benchmark: computational cost

Spacings/k-nn entropy contrasts slowest
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High frequency perturbations

e Two sources, sinusoidal perturbations to Gaussian

e Random mixing angle.

e Results averaged over 25 datasets, m = 1000

Source density
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High frequency perturbations
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High frequency perturbations

Spacings/k-nn methods perform best

(but slow)
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High frequency perturbations

Fast entropy estimates: narrowest range
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High frequency perturbations

Fast Kernel ICA: peforms in between

(good performance/runtime tradeoff)
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Outlier resistance

Two sources, outliers added to both mixtures
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Outlier resistance

Kernel ICA performs best
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Outlier resistance

Fast entropy estimates: less good

KDICA initialized with kernel ICA solution!

FKICA
m \[|CA
= = = KDICA

05| MILCA
RAD

N
(@)
T

100 x Amari error
o

—
o
T

5 10 15 20 25
number of outliers



ICA algorithm choice

e Choosing kernel ICA approach
— Fastest (by far): Fast ICA pyvirmenerat, 2001], Jade eardoso, r99s]
— Good tradeoff between speed and performance: MICA @piam, 2oos)
— Tricky cases (outliers, non-smooth sources): Fast KICA shenreran, 2001,
2009]

— Small sample size: KGV very good sachand-ordan, 2002]
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e Choosing kernel ICA approach
— Fastest (by far): Fast ICA pyvirmenerat, 2001], Jade eardoso, r99s]
— Good tradeoff between speed and performance: MICA (pham, 2004
— Tricky cases (outliers, non-smooth sources): Fast KICA shenreran, 2001,
2609
— Small sample size: KGV very good Bactamd-iordan, 2e62]
e Some further hints:
— Use multiple restarts (non-convex)

— Independence test to check answer



ICA algorithm choice

e Choosing kernel ICA approach
— Fastest (by far): Fast ICA pryvirmenerat, 2001], Jade eardoso, 199s]
— Good tradeoff between speed and performance: MICA piam, 2004
— Tricky cases (outliers, non-smooth sources): Fast KICA shemreran, 2001,
2609
— Small sample size: KGV very good mactamd-iordan, 2e62]
e Some further hints:
— Use multiple restarts (non-convex)

— Independence test to check answer

e Comparing (usually fixed contrast) algorithms:
— One approach “better” than another?

— Example: sources [ very large, samples m small (wrt [), e.g.

microarray data [ecand Batzoglon, 2003]



Selected ICA references

Start with Cardoso’s excellent introduction (cardoso, 199s), and the book by

Hyvarninen et al. pmyvirmenretan, 2001

Fast kernel ICA is described in jsheretat, zoom, 2oae). Characteristic
function-based ICA is described in (Erikssomand &orvmmen, 2003, Chenrand Bickel, 2005].

For earlier kernel ICA methods, see mactand fordan, 2002, Grettonretat, 2oos)

Mutual information/entropy based: (piam, 2004, iearned=sitterand Fisher 11,

2003,
Stégbauer—et—ah, 2004, Chen, 2006
Classic algorithms for tzme series separation with second order methods

(not covered much in this talk): poteedeyand Schmsten, 994, Betonchrani-etat, t997]

An important paper for optimising over orthogonal matrices: Edetmamnetat,

to9s). 1L he Newton-like method: #iperand Fromps, o).



Conclusion

e With RKHS distribution embeddings, compare distributions in high

dimensions and on structured objects

— Easier than density estimation
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e It is casy to check whether distribution embeddings are unique
— Characteristic kernel: check Fourier transtorm

— Any difference in distributions detectable



Conclusion

With RKHS distribution embeddings, compare distributions in high

dimensions and on structured objects

— Easier than density estimation

It is easy to check whether distribution embeddings are unique
— Characteristic kernel: check Fourier transtorm

— Any difference in distributions detectable

Can use HSIC dependence measure for feature relevance
— Feature selection
— Taxonomy fitting

More: conditional dependence tests, independent component

analysis, covariate shift correction,. ..



References from my publications

MMD a distance between distributions svsos, N1PS06a, IMLR10, IMLR 124
— high dimensionality
— non-euclidean data (strings, graphs)

— Nonparametric hypothesis tests
Measure and test independence [avLTos, NIPS07a, NIPSO7b, ALTO08, JMLR10, JMLR12a]

Characteristic RKHS: MMD a metric ntpso7b, conTos, NIPSo0ga)

— Easy to check: does spectrum cover R?

Applications:
— Feature selection isvBo7, icMLo7a, IMLR12b)
— Clustering and taxonomy discovery [cmLo7b, NiPsogb)

— Covariate shift correction Nipsoeb, Book cn. 0s] , testing conditional
dependence nipso7) , iIndependent component analysis [(JMLRos, Book Ch.

07, AISTATS07, IEEE TSP 09] , . . .
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