RKHS in ML: Comparing a Sample and a Model

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

November 27, 2024

Model Criticism

Data = robbery events in Chicago in 2016.

Model Criticism

Is this a good model?

Model Criticism

"All models are wrong."

G. Box (1976)

Model comparison

- Have: two candidate models P and Q, and samples $\{x_i\}_{i=1}^n$ from reference distribution R
- Goal: which of *P* and *Q* is better?

P: two components

Q: ten components

Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested CRP prior, Blei et al. (2003)

Outline

Relative goodness-of-fit tests for Models with Latent Variables

- The Maximum Mean Discrepancy: an integral probability metric
 - maximize difference in expectations using an RKHS witness class
- The kernel Stein discrepancy
 - Comparing a sample and a model: Stein modification of the witness class
- Constructing a relative hypothesis test using the KSD
- Relative hypothesis tests with latent variables

- Model P, data $\{x_i\}_{i=1}^n \sim Q$.
- "All models are wrong" $(P \neq Q)$.

Comparing a sample and model

Can we compute MMD with samples from Q and a model P? Problem: usualy can't compute $\mathbb{E}_p f$ in closed form.

$$\mathrm{MMD}(extit{ extit{P}}, extit{ extit{Q}}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathrm{E}_q f - \mathrm{E}_{ extit{ extit{p}}} f]$$

Stein idea

To get rid of $E_{p}f$ in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_{\textcolor{red}{p}} f]$$

we use the (1-D) Langevin Stein operator

$$\left[\mathcal{A}_{m{p}}f
ight](x)=rac{1}{m{p}(x)}rac{d}{dx}\left(f(x)m{p}(x)
ight)$$

Then

$$\mathbf{E}_{p} \mathcal{A}_{p} f = 0$$

subject to appropriate boundary conditions.

$$\mathrm{E}_p\left[\mathcal{A}_p f
ight] = \int \left[rac{1}{p(x)}rac{d}{dx}\left(f(x)p(x)
ight)
ight] rac{p}{(x)}dx = \left[f(x)p(x)
ight]_{-\infty}^{\infty}$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

Stein idea

To get rid of $E_{p}f$ in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_{\boldsymbol{q}} f - \mathbf{E}_{\boldsymbol{p}} f]$$

we use the (1-D) Langevin Stein operator

$$\left[\mathcal{A}_{m{p}}f
ight](x)=rac{1}{m{p}(x)}rac{d}{dx}\left(f(x)m{p}(x)
ight)$$

Then

$$\mathbf{E}_{p} \mathcal{A}_{p} f = 0$$

subject to appropriate boundary conditions.

Do not need to normalize p, or sample from it.

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

Stein operator

$$\mathcal{A}_{m{p}}f = rac{1}{m{p}(x)}rac{d}{dx}(f(x)m{p}(x))$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_{m p}(m Q) = \sup_{\|g\|_{m F} \leq 1} \mathrm{E}_q \mathcal{A}_{m p} g - \mathrm{E}_{m p} \mathcal{A}_{m p} g$$

Stein operator

$$\mathcal{A}_{m{p}}f = rac{1}{m{p}(x)}rac{d}{dx}\left(f(x)m{p}(x)
ight).$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_{\textcolor{red}{p}}(\textcolor{blue}{Q}) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathrm{E}_{\textcolor{blue}{q}} \textcolor{blue}{\mathcal{A}_{\textcolor{blue}{p}}g} - \underline{\mathrm{E}_{\textcolor{blue}{p}}} \textcolor{blue}{\mathcal{A}_{\textcolor{blue}{p}}g} = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathrm{E}_{\textcolor{blue}{q}} \textcolor{blue}{\mathcal{A}_{\textcolor{blue}{p}}g}$$

Stein operator

$$\mathcal{A}_{m p} f = rac{1}{m p(x)} rac{d}{dx} \left(f(x) m p(x)
ight)$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_{\textcolor{red}{p}}(\textcolor{blue}{Q}) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathrm{E}_{\textcolor{blue}{q}} \textcolor{blue}{\mathcal{A}_{\textcolor{blue}{p}}g} - \underline{\mathrm{E}_{\textcolor{blue}{p}}} \textcolor{blue}{\mathcal{A}_{\textcolor{blue}{p}}g} = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathrm{E}_{\textcolor{blue}{q}} \textcolor{blue}{\mathcal{A}_{\textcolor{blue}{p}}g}$$

How do we get the KSD in closed form (with kernels)?

Can we define "Stein features"?

$$\left[\mathcal{A}_{p}f\right](x)=rac{1}{p(x)}rac{d}{dx}\left(f(x)p(x)
ight)$$

How do we get the KSD in closed form (with kernels)?

Can we define "Stein features"?

$$egin{aligned} \left[\mathcal{A}_{m{p}}f
ight](x) &= rac{1}{m{p}(x)}rac{d}{dx}\left(f(x)m{p}(x)
ight) \ &= rac{d}{dx}f(x) + f(x)rac{1}{m{p}(x)}rac{d}{dx}m{p}(x) \ &= f(x)rac{d}{dx}\logm{p}(x) + rac{d}{dx}f(x) \end{aligned}$$

How do we get the KSD in closed form (with kernels)?

Can we define "Stein features"?

$$egin{aligned} \left[\mathcal{A}_{m{p}}f
ight](x) &= rac{1}{m{p}(x)}rac{d}{dx}\left(f(x)m{p}(x)
ight) \ &= rac{d}{dx}f(x) + f(x)rac{1}{m{p}(x)}rac{d}{dx}m{p}(x) \ &= f(x)rac{d}{dx}\logm{p}(x) + rac{d}{dx}f(x) \ &\stackrel{?}{=} \left\langle f, \quad rac{m{\xi}(x)}{ ext{stein features}}
ight
angle_{m{\mathcal{F}}} \end{aligned}$$

where $\mathrm{E}_{x\sim p}\xi(x)=0$.

How do we get the KSD in closed form (with kernels)?

Can we define "Stein features"?

$$egin{aligned} \left[\mathcal{A}_{m{p}}f
ight](m{x}) &= rac{1}{m{p}(m{x})}rac{d}{dm{x}}\left(f(m{x})m{p}(m{x})
ight) \ &= rac{d}{dm{x}}f(m{x}) + f(m{x})rac{1}{m{p}(m{x})}rac{d}{dm{x}}m{p}(m{x}) \ &= f(m{x})rac{d}{dm{x}}\logm{p}(m{x}) + rac{d}{dm{x}}f(m{x}) \ &\stackrel{?}{=} \left\langle f, \quad rac{m{\xi}(m{x})}{\sinh(m{x})}
ight
angle_{m{\mathcal{F}}} \ & ext{stein features} \end{aligned}$$

where $\mathbb{E}_{x \sim p} \xi(x) = 0$.

Intended destination:

$$ext{KSD}(oldsymbol{p},\,oldsymbol{q},\mathcal{F}) = \sup_{\|oldsymbol{q}\|_{\mathcal{T}} \leq 1} \left\langle oldsymbol{g},\, E_{z \sim oldsymbol{q}} oldsymbol{\xi}_z
ight
angle_{\mathcal{F}} = \left\| E_{z \sim oldsymbol{q}} oldsymbol{\xi}_z
ight\|_{\mathcal{F}}$$

11/44

Stein RKHS features

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x) = \left\langle f, rac{d}{dx}arphi(x)
ight
angle_{\mathcal{F}} \qquad \left\langle rac{d}{dx}arphi(x), arphi(x')
ight
angle_{\mathcal{F}} = rac{d}{dx}k(x,x')$$

Stein RKHS features

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x) = \left\langle f, rac{d}{dx}arphi(x)
ight
angle_{\mathcal{F}} \qquad \left\langle rac{d}{dx}arphi(x), arphi(x')
ight
angle_{\mathcal{F}} = rac{d}{dx}k(x,x')$$

Using kernel derivative trick in (a),

$$egin{aligned} \left[\mathcal{A}_{m{p}}f
ight](m{x}) &= \left(rac{d}{dx}\logm{p}(m{x})
ight)f(m{x}) + rac{d}{dx}f(m{x}) \ &= \left\langle f, \left(rac{d}{dx}\logm{p}(m{x})
ight)arphi(m{x}) + \underbrace{rac{d}{dx}arphi(m{x})}_{(m{a})}
ight
angle_{\mathcal{F}} \ &=: \left\langle f, m{\xi}(m{x})
ight
angle_{\mathcal{F}}. \end{aligned}$$

Proof: differentiable translation invariant k(x, x'), $\mathcal{X} := [-\pi, \pi]$, periodic boundary

$$rac{d}{dx}f(x) = \left\langle f, rac{d}{dx}arphi(x)
ight
angle_{\mathcal{F}} \qquad \left\langle rac{d}{dx}arphi(x), arphi(x')
ight
angle_{\mathcal{F}} = rac{d}{dx}k(x,x')$$

Proof: differentiable translation invariant k(x, x'), $\mathcal{X} := [-\pi, \pi]$, periodic boundary

$$rac{d}{dx}f(x) = \left\langle f, rac{d}{dx}arphi(x)
ight
angle_{\mathcal{F}} \qquad \left\langle rac{d}{dx}arphi(x), arphi(x')
ight
angle_{\mathcal{F}} = rac{d}{dx}k(x,x')$$

Fourier series representation:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp\left(\imath \ell x
ight), \qquad \hat{f}_{\ell} = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \exp\left(-\imath \ell x
ight) dx.$$

Fourier series representation of derivative:

$$rac{d}{dx}f(x)\stackrel{F.S.}{\longrightarrow} \left\{(\imath\ell)\hat{f}_\ell
ight\}_{\ell=-\infty}^{\infty}$$

Proof: differentiable translation invariant k(x, x'), $\mathcal{X} := [-\pi, \pi]$, periodic boundary

$$rac{d}{dx}f(x) = \left\langle f, rac{d}{dx}arphi(x)
ight
angle_{\mathcal{F}} \qquad \left\langle rac{d}{dx}arphi(x), arphi(x')
ight
angle_{\mathcal{F}} = rac{d}{dx}k(x,x')$$

Fourier series representation:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp\left(\imath \ell x
ight), \qquad \hat{f}_{\ell} = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \exp\left(-\imath \ell x
ight) dx.$$

Fourier series representation of derivative:

$$rac{d}{dx}f(x) \overset{F.S.}{\longrightarrow} \left\{(\imath\ell)\hat{f}_\ell
ight\}_{\ell=-\infty}^{\infty} \qquad rac{d}{dx}k(x,\cdot) = \sum_{\ell=-\infty}^{\infty} (\imath\ell)\hat{k}_\ell \exp\left(\imath\ell(x-\cdot)
ight)$$

From previous slide,

$$rac{d}{dx}f(x) \stackrel{F.S.}{\longrightarrow} \left\{(\imath\ell)\hat{f}_\ell
ight\}_{\ell=-\infty}^{\infty} \qquad rac{d}{dx}k(x,\cdot) = \sum_{\ell=-\infty}^{\infty} (\imath\ell)\hat{k}_\ell \exp\left(\imath\ell(x-\cdot)
ight)$$

We can write

$$egin{aligned} \left\langle f, rac{d}{dx} k(x, \cdot)
ight
angle_{\mathcal{F}} &= \sum_{\ell=-\infty}^{\infty} rac{\left(\hat{f}_{\ell}
ight) \left(\overline{-\imath \ell \hat{k}_{\ell}' \exp(-\imath \ell x)}
ight)}{\hat{k}_{\ell}'} \ &= \sum_{\ell=-\infty}^{\infty} \left(\imath \ell
ight) \left(\hat{f}_{\ell}
ight) \left(\exp(\imath \ell x)
ight) = rac{d}{dx} f(x). \end{aligned}$$

Does the mean stein embedding exist?

The KSD is written:

$$egin{aligned} \left[T_{m{p}}f
ight](z) &= \left(rac{d}{dz}\log m{p}(z)
ight)f(z) + rac{d}{dz}f(z) \ &= \left\langle f, \left(rac{d}{dz}\log m{p}(z)
ight)k(z,\cdot) + rac{d}{dz}k(z,\cdot)
ight
angle_{\mathcal{F}} \ &=: \left\langle f, rac{m{\xi}}{z}
ight
angle_{\mathcal{F}}. \end{aligned}$$

Does the mean stein embedding exist?

The KSD is written:

$$egin{aligned} \left[T_{m{p}}f
ight](m{z}) &= \left(rac{d}{dz}\logm{p}(m{z})
ight)f(m{z}) + rac{d}{dz}f(m{z}) \ &= \left\langle f, \left(rac{d}{dz}\logm{p}(m{z})
ight)k(m{z},\cdot) + rac{d}{dz}k(m{z},\cdot)
ight
angle_{m{\mathcal{F}}} \ &=: \left\langle f, m{\xi}_{m{z}}
ight
angle_{m{\mathcal{F}}}. \end{aligned}$$

Next step: show that

$$E_{z \sim q}\left[\left.T_{p}f
ight] = E_{z \sim q}\left\langle f, oldsymbol{\xi}_{z}
ight
angle_{\mathcal{F}} = \left\langle f, E_{z \sim q}oldsymbol{\xi}_{z}
ight
angle_{\mathcal{F}}.$$

Does the mean stein embedding exist?

The KSD is written:

$$[T_{p}f](z) = \left(\frac{d}{dz}\log p(z)\right)f(z) + \frac{d}{dz}f(z)$$

$$= \left\langle f, \left(\frac{d}{dz}\log p(z)\right)k(z,\cdot) + \frac{d}{dz}k(z,\cdot)\right\rangle_{\mathcal{F}}$$

$$=: \left\langle f, \xi_{z}\right\rangle_{\mathcal{F}}.$$

Next step: show that

$$E_{z \sim q} [T_{p}f] = E_{z \sim q} \langle f, \xi_{z} \rangle_{\mathcal{F}} = \langle f, E_{z \sim q} \xi_{z} \rangle_{\mathcal{F}}.$$

Riesz theorem!

Riesz theorem: need boundedness,

$$|E_{z \sim q} \langle f, \mathbf{\xi}_z \rangle_{\mathcal{F}}| \leq \|f\|_{\mathcal{F}} \lambda$$

for some $\lambda \in \mathbb{R}$.

By Jensen and Cauchy-Schwarz,

$$egin{aligned} |E_{z\sim q}\left\langle f,oldsymbol{\xi}_{z}
ight
angle_{\mathcal{F}}| &\leq E_{z\sim q}\left|\left\langle f,oldsymbol{\xi}_{z}
ight
angle_{\mathcal{F}}| \ &\leq \|f\|_{\mathcal{F}}\underbrace{E_{z\sim q}\left\|oldsymbol{\xi}_{z}
ight\|_{\mathcal{F}}}_{ ext{bounded}?} \end{aligned}$$

Riesz theorem: need boundedness,

$$|E_{z \sim q} \langle f, rac{oldsymbol{\xi}}{oldsymbol{\xi}} z
angle_{\mathcal{F}}| \leq \|f\|_{\mathcal{F}} \lambda$$

for some $\lambda \in \mathbb{R}$.

By Jensen and Cauchy-Schwarz,

$$egin{aligned} |E_{z \sim q} \, \langle f, oldsymbol{\xi}_z
angle_{\mathcal{F}}| & \leq E_{z \sim q} \, |\langle f, oldsymbol{\xi}_z
angle_{\mathcal{F}}| \ & \leq \|f\|_{\mathcal{F}} \, \underbrace{E_{z \sim q} \, \|oldsymbol{\xi}_z\|_{\mathcal{F}}}_{ ext{bounded}?}. \end{aligned}$$

$$\begin{aligned} &\|\boldsymbol{\xi}_{\boldsymbol{z}}\|_{\mathcal{F}}^{2} = \langle \boldsymbol{\xi}_{\boldsymbol{z}}, \boldsymbol{\xi}_{\boldsymbol{z}} \rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot) + \frac{d}{dz} k(\boldsymbol{z}, \cdot), \ldots \right\rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot), \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot) \right\rangle_{\mathcal{F}} \\ &+ \left\langle \frac{d}{dx} k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x}', \cdot) \right\rangle_{\mathcal{F}} \Big|_{\boldsymbol{x} = \boldsymbol{x}' = \boldsymbol{z}} \\ &+ 2 \left\langle \left(\frac{d}{dx} \log \boldsymbol{p}(\boldsymbol{x}) \right) k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x}', \cdot) \right\rangle_{\mathcal{F}} \Big|_{\boldsymbol{x} = \boldsymbol{x}' = \boldsymbol{z}} \\ &+ 2 \left\langle \left(\frac{d}{dx} \log \boldsymbol{p}(\boldsymbol{x}) \right) k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x}', \cdot) \right\rangle_{\mathcal{F}} \Big|_{\boldsymbol{x} = \boldsymbol{x}' = \boldsymbol{z}} \end{aligned}$$

$$\begin{aligned} &\|\boldsymbol{\xi}_{\boldsymbol{z}}\|_{\mathcal{F}}^{2} = \langle \boldsymbol{\xi}_{\boldsymbol{z}}, \boldsymbol{\xi}_{\boldsymbol{z}} \rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log p(z) \right) k(z, \cdot) + \frac{d}{dz} k(z, \cdot), \ldots \right\rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log p(z) \right) k(z, \cdot), \left(\frac{d}{dz} \log p(z) \right) k(z, \cdot) \right\rangle_{\mathcal{F}} \\ &+ \left\langle \frac{d}{dx} k(x, \cdot), \frac{d}{dx'} k(x', \cdot) \right\rangle_{\mathcal{F}} \Big|_{x = x' = z} \\ &+ 2 \left\langle \left(\frac{d}{dx} \log p(x) \right) k(x, \cdot), \frac{d}{dx'} k(x', \cdot) \right\rangle_{\mathcal{F}} \Big|_{x = x' = z} \end{aligned}$$

$$\begin{aligned} &\| \boldsymbol{\xi}_{\boldsymbol{z}} \|_{\mathcal{F}}^{2} = \langle \boldsymbol{\xi}_{\boldsymbol{z}}, \boldsymbol{\xi}_{\boldsymbol{z}} \rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot) + \frac{d}{dz} k(\boldsymbol{z}, \cdot), \ldots \right\rangle_{\mathcal{F}} \\ &= \underbrace{\left\langle \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot), \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot) \right\rangle_{\mathcal{F}}}_{(A)} \\ &+ \underbrace{\left\langle \frac{d}{dx} k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x}', \cdot) \right\rangle_{\mathcal{F}}}_{(B) = \frac{d}{dz} \frac{d}{dx'} k(\boldsymbol{x} - \boldsymbol{x}') \Big|_{\boldsymbol{z} = \boldsymbol{x}' = \boldsymbol{z}}}_{\boldsymbol{z} = \boldsymbol{z}} \\ &+ 2 \underbrace{\left\langle \left(\frac{d}{dx} \log \boldsymbol{p}(\boldsymbol{x}) \right) k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x}', \cdot) \right\rangle_{\mathcal{F}}}_{\boldsymbol{z} = \boldsymbol{x}' = \boldsymbol{z}} \end{aligned}$$

$$\begin{aligned} &\|\boldsymbol{\xi}_{\boldsymbol{z}}\|_{\mathcal{F}}^{2} = \langle \boldsymbol{\xi}_{\boldsymbol{z}}, \boldsymbol{\xi}_{\boldsymbol{z}} \rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log p(z) \right) k(z, \cdot) + \frac{d}{dz} k(z, \cdot), \ldots \right\rangle_{\mathcal{F}} \\ &= \underbrace{\left\langle \left(\frac{d}{dz} \log p(z) \right) k(z, \cdot), \left(\frac{d}{dz} \log p(z) \right) k(z, \cdot) \right\rangle_{\mathcal{F}}}_{(A)} \\ &+ \underbrace{\left\langle \frac{d}{dx} k(x, \cdot), \frac{d}{dx'} k(x', \cdot) \right\rangle_{\mathcal{F}} \Big|_{x = x' = z}}_{(B) = \frac{d}{dx} \frac{d}{dx'} k(x - x') \Big|_{x = x' = z}} \\ &+ 2 \underbrace{\left\langle \left(\frac{d}{dx} \log p(x) \right) k(x, \cdot), \frac{d}{dx'} k(x', \cdot) \right\rangle_{\mathcal{F}} \Big|_{x = x' = z}}_{(C)} \end{aligned}$$

$$\begin{aligned} &\|\boldsymbol{\xi}_{\boldsymbol{z}}\|_{\mathcal{F}}^{2} = \langle \boldsymbol{\xi}_{\boldsymbol{z}}, \boldsymbol{\xi}_{\boldsymbol{z}} \rangle_{\mathcal{F}} \\ &= \left\langle \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot) + \frac{d}{dz} k(\boldsymbol{z}, \cdot), \ldots \right\rangle_{\mathcal{F}} \\ &= \underbrace{\left\langle \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot), \left(\frac{d}{dz} \log \boldsymbol{p}(\boldsymbol{z}) \right) k(\boldsymbol{z}, \cdot) \right\rangle_{\mathcal{F}}}_{(A)} \\ &+ \underbrace{\left\langle \frac{d}{dx} k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x'}, \cdot) \right\rangle_{\mathcal{F}} \Big|_{\boldsymbol{x} = \boldsymbol{x'} = \boldsymbol{z}}}_{(B) = \frac{d}{dx} \frac{d}{dx'} k(\boldsymbol{x} - \boldsymbol{x'}) \Big|_{\boldsymbol{x} = \boldsymbol{x'} = \boldsymbol{z}}} \\ &+ 2 \underbrace{\left\langle \left(\frac{d}{dx} \log \boldsymbol{p}(\boldsymbol{x}) \right) k(\boldsymbol{x}, \cdot), \frac{d}{dx'} k(\boldsymbol{x'}, \cdot) \right\rangle_{\mathcal{F}} \Big|_{\boldsymbol{x} = \boldsymbol{x'} = \boldsymbol{z}}}_{(C)} \end{aligned}$$

First two (easy) terms

First term (A):

$$egin{aligned} (A) &= \left\langle \left(rac{d}{dz} \log p(z)
ight) k(z,\cdot), \left(rac{d}{dz} \log p(z)
ight) k(z,\cdot)
ight
angle_{\mathcal{F}} \ &= \left[\left(rac{d}{dz} \log p(z)
ight)^2 \underbrace{k(z,z)}_{=c}
ight] \end{aligned}$$

First two (easy) terms

Second term (B):

$$egin{aligned} (B) &= \left\langle rac{d}{dx} k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x)
ight] \left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} -(\imath \ell)^2 \hat{k}_{\ell} \exp\left(\imath \ell (x'-x)
ight) \ &= 1 \, ext{when} \, x=x'=z \ &= \sum_{\ell=-\infty}^{\infty} \ell^2 \hat{k}_{\ell} =: C > 0 \end{aligned}$$

First two (easy) terms

Second term (B):

$$egin{aligned} (B) &= \left\langle rac{d}{dx} k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x)
ight] \left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}{\hat{k}_{\ell}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} -(\imath \ell)^2 \hat{k}_{\ell} \exp\left(\imath \ell (x'-x)
ight) \ &= 1 \, ext{when} \, x=x'=z \ &= \sum_{\ell=-\infty}^{\infty} \ell^2 \hat{k}_{\ell} =: C > 0 \end{aligned}$$

First two (easy) terms

Second term (B):

$$egin{aligned} (B) &= \left\langle rac{d}{dx} k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x)
ight] \left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}{\hat{k}_{\ell}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} -(\imath \ell)^2 \hat{k}_{\ell} \exp\left(\imath \ell (x'-x)
ight) \ &= 1 \operatorname{when} x = x' = z \ &= \sum_{\ell=-\infty}^{\infty} \ell^2 \hat{k}_{\ell} =: C > 0 \end{aligned}$$

First two (easy) terms

Second term (B):

$$egin{aligned} (B) &= \left\langle rac{d}{dx} k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x)
ight] \left[-\imath \ell \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}{\hat{k}_{\ell}} igg|_{x=x'=z} \ &= \sum_{\ell=-\infty}^{\infty} -(\imath \ell)^2 \hat{k}_{\ell} \exp\left(\imath \ell (x'-x)
ight) \ &= 1 \operatorname{when} x = x' = z \ \ &= \sum_{\ell=-\infty}^{\infty} \ell^2 \hat{k}_{\ell} =: C > 0 \end{aligned}$$

Third term (C):

$$\begin{split} (C) &= \left\langle \left(\frac{d}{dx} \log p(x) \right) k(x, \cdot), \frac{d}{dx'} k(x', \cdot) \right\rangle_{\mathcal{F}} \Big|_{x = x' = z} \\ &= \left(\frac{d}{dz} \log p(z) \right) \sum_{\ell = -\infty}^{\infty} \frac{\left[\hat{k}_{\ell} \exp(-i\ell x) \right] \left[(-i\ell) \hat{k}_{\ell} \exp(-i\ell x') \right]}{\hat{k}_{\ell}} \\ &= \left(\frac{d}{dz} \log p(z) \right) \sum_{\ell = -\infty}^{\infty} (i\ell) \hat{k}_{\ell} \exp(i\ell(x' - x)) \\ &= 0 \end{split}$$

Third term (C):

$$egin{aligned} (C) &= \left\langle \left(rac{d}{dx} \log p(x)
ight) k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} \Big|_{x=x'=z} \ &= \left(rac{d}{dz} \log p(z)
ight) \sum_{\ell=-\infty}^{\infty} rac{\left[\hat{k}_{\ell} \exp(-\imath \ell x)
ight] \left[\left(-\imath \ell
ight) \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}{\hat{k}_{\ell}} \Big|_{x=x'=z} \ &= \left(rac{d}{dz} \log p(z)
ight) \sum_{\ell=-\infty}^{\infty} (\imath \ell) \hat{k}_{\ell} \exp\left(\imath \ell (x'-x)
ight) \ &= 1 \ ext{when } x=x'=z \end{aligned}$$

Third term (C):

$$egin{aligned} (C) &= \left\langle \left(rac{d}{dx} \log p(x)
ight) k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} \Big|_{x=x'=z} \ &= \left(rac{d}{dz} \log p(z)
ight) \sum_{\ell=-\infty}^{\infty} rac{\left[\hat{k}_{\ell} \exp(-\imath \ell x)
ight] \overline{\left[(-\imath \ell) \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}}{\hat{k}_{\ell}} \Big|_{x=x'=z} \ &= \left(rac{d}{dz} \log p(z)
ight) \sum_{\ell=-\infty}^{\infty} (\imath \ell) \hat{k}_{\ell} \underbrace{\exp\left(\imath \ell (x'-x)
ight)}_{=1 ext{ when } x=x'=z} \end{aligned}$$

20/44

Third term (C):

$$egin{aligned} (C) &= \left\langle \left(rac{d}{dx} \log p(x)
ight) k(x,\cdot), rac{d}{dx'} k(x',\cdot)
ight
angle_{\mathcal{F}} \Big|_{x=x'=z} \ &= \left(rac{d}{dz} \log p(z)
ight) \sum_{\ell=-\infty}^{\infty} rac{\left[\hat{k}_{\ell} \exp(-\imath \ell x)
ight] \left[\left(-\imath \ell
ight) \hat{k}_{\ell} \exp(-\imath \ell x')
ight]}{\hat{k}_{\ell}} \Big|_{x=x'=z} \ &= \left(rac{d}{dz} \log p(z)
ight) \sum_{\ell=-\infty}^{\infty} (\imath \ell) \hat{k}_{\ell} \underbrace{\exp\left(\imath \ell (x'-x)
ight)}_{=1 ext{ when } x=x'=z} \ &= 0. \end{aligned}$$

Putting it all together

We found:

$$\|\boldsymbol{\xi}_z\|_{\mathcal{F}}^2 = C + \left(\frac{d}{dz}\log p(z)\right)^2 c,$$

Thus for boundedness, we have the condition:

$$egin{aligned} E_{z \sim q} \left\| oldsymbol{\xi}_z
ight\|_{\mathcal{F}} &= E_{z \sim q} \sqrt{C + \left(rac{d}{dx} \log p(x)
ight)^2 c} \ &\leq \sqrt{E_{z \sim q} \left[C + \left(rac{d}{dz} \log p(z)
ight)^2 c
ight]} \end{aligned}$$

So Riesz holds when $E_{z\sim q}\left(rac{d}{dz}\log p(z)
ight)^2<\infty$

Putting it all together

We found:

$$\|\boldsymbol{\xi}_z\|_{\mathcal{F}}^2 = C + \left(\frac{d}{dz}\log \boldsymbol{p}(z)\right)^2 c,$$

Thus for boundedness, we have the condition:

$$egin{aligned} E_{z \sim q} \left\| oldsymbol{\xi}_z
ight\|_{\mathcal{F}} &= E_{z \sim q} \sqrt{C + \left(rac{d}{dx} \log p(x)
ight)^2 c} \ &\leq \sqrt{E_{z \sim q} \left[C + \left(rac{d}{dz} \log p(z)
ight)^2 c
ight]}, \end{aligned}$$

So Riesz holds when $E_{z \sim q} \left(\frac{d}{dz} \log {p \choose z} \right)^2 < \infty$

Does the Riesz condition matter?

Consider the standard normal,

$${m p}(x)=rac{1}{\sqrt{2\pi}}\exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x) = -x.$$

If q is a Cauchy distribution, then the integral

$$\mathrm{E}_{x \sim q} \left(rac{d}{dx} \log p(x)
ight)^2 = \int_{-\infty}^{\infty} x^2 q(x) dx$$

is undefined.

Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x) = -x.$$

If q is a Cauchy distribution, then the integral

$$\operatorname{E}_{x \sim q} \left(rac{d}{dx} \log { extbf{p}}(x)
ight)^2 = \int_{-\infty}^{\infty} x^2 q(x) dx$$

is undefined.

Kernel Stein discrepancy: population expression

Multi-dimensional Stein operator:

$$\left[\left.T_{oldsymbol{p}}f
ight](x) = \left\langle f(x), rac{
abla_{oldsymbol{p}}(x)}{
oldsymbol{p}(x)}
ight
angle + \left\langle
abla, f(x)
ight
angle.$$

Kernel Stein discrepancy: population expression

Population kernel Stein discrepancy (in \mathbb{R}^D):

$$\mathrm{KSD}^2_{\pmb{p}}(\pmb{Q}) = \mathrm{E}_{\pmb{x},\pmb{x}'\sim \pmb{Q}}h_{\pmb{p}}(\pmb{x},\pmb{x}')$$

where

$$egin{aligned} h_{m p}(x,x') &= \mathrm{s}_{m p}(x)^{ op} \mathrm{s}_{m p}(x') k(x,x') + \mathrm{s}_{m p}(x)^{ op} k_2(x,x') \ &+ \mathrm{s}_{m p}(x')^{ op} k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

- $\mathbf{s}_{p}(x) \in \mathbb{R}^{D} = rac{
 abla_{p}(x)}{p(x)}$
- $lacksquare k_1(a,b)\coloneqq
 abla_x k(x,x')|_{x=a,x'=b}\in \mathbb{R}^D, \ k_2(a,b)\coloneqq
 abla_{x'} k(x,x')|_{x=a,x'=b}\in \mathbb{R}^D,$
- $lacksquare k_{12}(a,b) \coloneqq
 abla_x
 abla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D imes D}$

Kernel Stein discrepancy: population expression

Population kernel Stein discrepancy (in \mathbb{R}^D):

$$ext{KSD}^2_{m p}(m Q) = \mathbb{E}_{x,x'\sim\,m Q} h_{m p}(m x,m x')$$

where

$$egin{aligned} h_{m p}(x,x') &= \mathrm{s}_{m p}(x)^{ op} \mathrm{s}_{m p}(x') k(x,x') + \mathrm{s}_{m p}(x)^{ op} k_2(x,x') \ &+ \mathrm{s}_{m p}(x')^{ op} k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

- lacksquare $\mathbf{s}_{m{p}}(x) \in \mathbb{R}^D = rac{
 abla_{m{p}}(x)}{m{p}(x)}$
- $egin{aligned} oldsymbol{k}_1(a,b) \coloneqq
 abla_x k(x,x')|_{x=a,x'=b} \in \mathbb{R}^D, \ k_2(a,b) \coloneqq
 abla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^D, \end{aligned}$
- $lacksquare k_{12}(a,b) \coloneqq
 abla_x
 abla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D imes D}$

If kernel is C_0 -universal and Q satisfies $\mathbb{E}_{x \sim Q} \left\| \nabla \left(\log \frac{p(x)}{q(x)} \right) \right\|^2 < \infty$, then $KSD_n^2(Q) = 0$ iff P = Q.

Constructing threshold for a statistical test

Given samples $\{z_i\}_{i=1}^n \sim q$, empirical KSD (test statistic) is:

$$\widehat{ ext{KSD}}(\pmb{p},\pmb{q},\mathcal{F}) := rac{1}{n(n-1)} \sum_{i=1}^n \sum_{j
eq i}^n h_{\pmb{p}}(\pmb{z}_i,\pmb{z}_j).$$

When q = p, U-statistic is degenerate. Estimate of null distribution with wild bootstrap:

$$\widetilde{KSD}(extbf{p},\,q,\mathcal{F}) := rac{1}{n(n-1)} \sum_{i=1}^n \sum_{j
eq i}^n \sigma_i \sigma_j h_{ extbf{p}}(extbf{z}_i,\, extbf{z}_j).$$

where
$$\{\sigma_i\}_{i=1}^n$$
 i.i.d, $E(\sigma_i) = 0$, and $E(\sigma_i^2) = 1$

- Consistent estimate of the null distribtion when q = p
- Consistent test (Type II error goes to zero) under a rich class of alternatives Chwialkowski, Strathmann, G., ICML 2016

Model Criticism

Model Criticism

Model Criticism

Data = robbery events in Chicago in 2016.

The witness function: Chicago Crime

Model p = 10-component Gaussian mixture.

The witness function: Chicago Crime

Witness function g shows mismatch

Empirical statistic, asymptotic normality for $P \neq Q$

The empirical statistic:

$$\widehat{ ext{KSD}^2_{m p}}(Q) := rac{1}{n(n-1)} \sum_{i
eq j} h_{m p}(m x_i, m x_j).$$

Asymptotic distribution when $q \neq p$:

$$\sqrt{n}\left(\widehat{ ext{KSD}_p^2}(Q) - ext{KSD}_p(Q)
ight) \stackrel{d}{ o} \mathcal{N}(0,\sigma_{h_p}^2) \qquad \sigma_{h_p}^2 = 4 ext{Var}[\mathbb{E}_{x'}[h_p(x,x')]].$$

Relative goodness-of-fit testing

- Two latent variable models P and Q, data $\{x_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} R$.
- Distinct models $p \neq q$

Hypotheses:

$$H_0: \mathrm{KSD}_p(R) \leq \mathrm{KSD}_q(R) \text{ vs. } H_1: \mathrm{KSD}_p(R) > \mathrm{KSD}_q(R)$$

($H_0: {}^{\prime}P$ is as good as Q , or better' vs. $H_1: {}^{\prime}Q$ is better')

Relative GOF testing: joint asymptotic normality

Joint asymptotic normality when $P \neq R$ and $Q \neq R$

$$\sqrt{n} \left[\begin{array}{c} \widehat{\mathrm{KSD}^2_{\pmb{p}}}(R) - \mathrm{KSD}_{\pmb{p}}(R) \\ \widehat{\mathrm{KSD}^2_{\pmb{q}}}(R) - \mathrm{KSD}_{\pmb{q}}(R) \end{array} \right] \overset{d}{\to} \mathcal{N} \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{cc} \sigma_{h_{\pmb{p}}}^2 & \sigma_{h_{\pmb{p}}h_q} \\ \sigma_{h_{\pmb{p}}h_q} & \sigma_{h_q}^2 \end{array} \right] \right)$$

$$\operatorname{KSD}_q^2(R)$$
 $\operatorname{KSD}_q^2(R)$
 $\operatorname{KSD}_p^2(R)$
 $\operatorname{KSD}_p^2(R)$

Relative GOF testing: joint asymptotic normality

Joint asymptotic normality when $P \neq R$ and $Q \neq R$

$$\sqrt{n} \left[\begin{array}{c} \widehat{\mathrm{KSD}}_{p}^{2}(R) - \mathrm{KSD}_{p}(R) \\ \widehat{\mathrm{KSD}}_{q}^{2}(R) - \mathrm{KSD}_{q}(R) \end{array} \right] \overset{d}{\to} \mathcal{N} \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{cc} \sigma_{h_{p}}^{2} & \sigma_{h_{p}h_{q}} \\ \sigma_{h_{p}h_{q}} & \sigma_{h_{q}}^{2} \end{array} \right] \right)$$

Difference in statistics is asymptotically normal:

$$egin{aligned} \sqrt{n} \left[\widehat{ ext{KSD}_{m{p}}^2}(R) - \widehat{ ext{KSD}_{m{q}}^2}(R) - (ext{KSD}_{m{p}}(R) - ext{KSD}_{m{q}}(R))
ight] \ & \stackrel{d}{ o} \mathcal{N} \left(0, \sigma_{h_{m{p}}}^2 + \sigma_{h_{m{q}}}^2 - 2 \sigma_{h_{m{p}} h_{m{q}}}
ight) \end{aligned}$$

 \implies a statistical test with null hypothesis $KSD_p(R) - KSD_q(R) \le 0$ is straightforward.

Latent variable models

Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} oldsymbol{p}(x) &= \int oldsymbol{p}(x|z) p(z) dz \ & \ q(x) &= \int q(x|w) p(w) dw \end{aligned}$$

Multi-dimensional Stein operator:

$$[T_{p}f](x) = \left\langle f(x), \underbrace{rac{
abla_{p}(x)}{p(x)}} \right
angle + \left\langle
abla, f(x)
ight
angle.$$

Expression (a) requires marginal p(x), often intractable...

What not to do

Approximate the integral using $\{z_j\}_{j=1}^m \sim p(z)$:

$$egin{aligned} oldsymbol{p}(x) &= \int oldsymbol{p}(x) oldsymbol{p}(z) oldsymbol{p}(z) dz \ &pprox oldsymbol{p}_m(x) &= rac{1}{m} \sum_{j=1}^m oldsymbol{p}(x|z_j) \end{aligned}$$

Estimate KSD with approximate density:

$$\widehat{\mathrm{KSD}^2_p}(R) pprox \widehat{\mathrm{KSD}^2_{p_m}}(R)$$

What not to do

Approximate the integral using $\{z_j\}_{j=1}^m \sim p(z)$:

$$egin{aligned} oldsymbol{p}(x) &= \int oldsymbol{p}(x) oldsymbol{p}(z) oldsymbol{p}(z) dz \ &pprox oldsymbol{p}_m(x) &= rac{1}{m} \sum_{j=1}^m oldsymbol{p}(x|z_j) \end{aligned}$$

Estimate KSD with approximate density:

$$\widehat{\mathrm{KSD}^2_p}(R) pprox \widehat{\mathrm{KSD}^2_{p_m}}(R)$$

Problem: $\widehat{KSD}_{p_m}^{2}(R)$ asymptotically normal but slow bias decay.

MCMC approximation of score function

Result we use:

$$\mathbf{s}_{\textcolor{red}{p}}(x) = \mathbb{E}_{z|x}[\mathbf{s}_{\textcolor{red}{p}}(x|z)]$$

Proof:

$$egin{aligned} \mathbf{s}_{m{p}}(x) &= rac{
abla_{m{p}}(x)}{m{p}(x)} = rac{1}{m{p}(x)} \int
abla_{m{p}}(x|z) \mathrm{d}p(z) \ &= \int rac{
abla_{m{p}}(x|z)}{m{p}(x|z)} \cdot rac{m{p}(x|z) dm{p}(z)}{m{p}(x)} = \mathbb{E}_{z|x}[\mathbf{s}_{m{p}}(x|z)], \end{aligned}$$

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance estimation with intractable likelihoods. Bayesian Analysis, 11, 215-245.

MCMC approximation of score function

Result we use:

$$\mathbf{s}_{m{p}}(x) = \mathbb{E}_{z|x}[\mathbf{s}_{m{p}}(x|z)]$$

Proof:

$$egin{aligned} \mathbf{s}_{p}(x) &= rac{
abla_{p}(x)}{p(x)} = rac{1}{p(x)} \int
abla_{p}(x|z) \mathrm{d}p(z) \ &= \int rac{
abla_{p}(x|z)}{p(x|z)} \cdot rac{p(x|z) dp(z)}{p(x)} = \mathbb{E}_{z|x}[\mathbf{s}_{p}(x|z)], \end{aligned}$$

Approximate intractable posterior $\mathbb{E}_{z|x_i}[\mathbf{s}_p(x_i|z)]$

$$ar{\mathbf{s}}_{m{p}}(x_i; z_i^{(t)}) \coloneqq rac{1}{m} \sum_{j=1}^m \mathbf{s}_{m{p}}(x_i | z_{i,j}^{(t)}) pprox \mathbf{s}_{m{p}}(x_i)$$

with
$$z_i^{(t)} = (z_{i,1}^{(t)}, \dots, z_{i,m}^{(t)})$$
 via MCMC (after t burn-in steps)

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance estimation with intractable likelihoods. Bayesian Analysis, 11, 215–245.

KSD for latent variable models

Recall earlier KSD estimate:

$$U_n(extstyle{P}) = rac{1}{n(n-1)} \sum_{i
eq j} h_{ extstyle{p}}(x_i, x_j) \; (pprox ext{KSD}^2_{ extstyle{p}}(R))$$

KSD for latent variable models

Recall earlier KSD estimate:

$$U_n(extstyle{p\over p}) = rac{1}{n(n-1)} \sum_{i
eq j} h_p(x_i,x_j) \; (pprox ext{KSD}^2_{ extstyle{p}}(R))$$

KSD estimate for latent variable models:

$$U_n^{(t)}(extstyle{P}) \coloneqq rac{1}{n(n-1)} \sum_{i
eq j} ar{H}_{m{p}}[(x_i, z_i^{(t)}), (x_j, z_j^{(t)})] \; (pprox \operatorname{KSD}_{m{p}}^2(R))$$

where \bar{H}_p is the Stein kernel h_p with $s_p(x_i)$ replaced with $\bar{s}_p(x_i; z_i^{(t)})$.

Return to relative GOF test, latent variable models

Hypotheses:

```
H_0: \mathrm{KSD}_p(R) \leq \mathrm{KSD}_q(R) \text{ vs. } H_1: \mathrm{KSD}_p(R) > \mathrm{KSD}_q(R)
(H_0: {}^{\circ}P is as good as Q, or better vs. H_1: {}^{\circ}Q is better )
```

Return to relative GOF test, latent variable models

Hypotheses:

$$H_0: \mathrm{KSD}_p(R) \leq \mathrm{KSD}_q(R) \text{ vs. } H_1: \mathrm{KSD}_p(R) > \mathrm{KSD}_q(R)$$

($H_0: {}^{\circ}P$ is as good as Q , or better vs. $H_1: {}^{\circ}Q$ is better)

Strategy:

■ Estimate the difference $KSD_p^2(R) - KSD_q^2(R)$ by

$$D_n^{(t)}(P,Q) = U_n^{(t)}(P) - U_n^{(t)}(Q).$$

- If $D_n^{(t)}(P, Q)$ is sufficiently large, reject H_0 .
 - "Sufficient": control type-I error (falsely rejecting H_0)
 - Requires the (asymptotic) behaviour of $D_n^{(t)}(P,Q)$

Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate $n, t \to \infty$:

$$\sqrt{n}\left[D_n^{(t)}(extbf{P},Q)-\mu_{ extbf{P}Q}
ight]\overset{d}{
ightarrow}\mathcal{N}(0,\sigma_{ extbf{P}Q}^2)$$

where

$$\mu_{PQ} = \mathrm{KSD}_p^2(R) - \mathrm{KSD}_q^2(R),$$

$$\sigma_{PQ}^2 = \lim_{n,t \to \infty} n \cdot \mathrm{Var}\left[D_n^{(t)}(P,Q)\right].$$

Fine print:

■ The double limit requires fast bias decay

$$\sqrt{n}[\mathbb{E}\{D_n^{(t)}(extbf{ extit{P}},\,Q)\}-\mu_{ extbf{ extit{P}}Q}]
ightarrow 0$$

■ The fourth moment of $\bar{H}_{\mathbf{p}}^{(t)} - \bar{H}_{q}^{(t)}$ has finite limit sup. $(t \to \infty)$.

Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate $n, t \to \infty$:

$$\sqrt{n}\left[D_n^{(t)}(extbf{P},Q)-\mu_{ extbf{P}Q}
ight]\overset{d}{
ightarrow}\mathcal{N}(0,\sigma_{ extbf{P}Q}^2)$$

where

$$egin{aligned} \mu_{PQ} &= \mathrm{KSD}_p^2(R) - \mathrm{KSD}_q^2(R), \ \sigma_{PQ}^2 &= \lim_{n,t o \infty} n \cdot \mathrm{Var}\left[D_n^{(t)}(P,Q)
ight]. \end{aligned}$$

Level- α test:

Reject
$$H_0$$
 if $D_n^{(t)}(\begin{subarray}{c} P, Q \end{subarray}) \geq rac{\hat{\sigma}_{PQ}}{\sqrt{n}} c_{1-lpha}$

- $c_{1-\alpha}$ is $(1-\alpha)$ -quantile of $\mathcal{N}(0,1)$.
- \bullet $\hat{\sigma}_{PQ}$ estimated via jackknife

Experiments

Experiment 1: sensitivity to model difference

■ Data R: Probabilistic Principal Component Analysis PPCA(A):

$$x_i \in \mathbb{R}^{100} \sim \mathcal{N}(Az_i, I), \,\, z_i \in \mathbb{R}^{10} \sim \mathcal{N}(0, I_z)$$

■ Generate P, Q: perturb (1,1)-entry: $A_{\delta} = A + \delta E_{1,1}$

Experiment: sensitivity to model difference

■ Data R: Probabilistic Principal Component Analysis PPCA(A):

$$x_i \in \mathbb{R}^{100} \sim \mathcal{N}(Az_i, I), \,\, z_i \in \mathbb{R}^{10} \sim \mathcal{N}(0, I_z)$$

■ Generate P, Q: perturb (1,1)-entry : $A_{\delta} = A + \delta E_{1,1}$

- Alt. H_1 (Q is better):
 - P's perturbation $\delta_P = 2$
 - Q's perturbation $\delta_Q = 1$
- IMQ kernel: $k(x, x') = (1 + ||x x'||_2^2 / \sigma_{\text{med}}^2)^{-1/2}$
- NUTS-HMC with sample size m = 500 (after t = 200 steps).

 $\cdots \circ \cdots \quad \text{MMD} \qquad \cdots \star \cdots \quad \text{KSD} \qquad \cdots \nabla \cdots \quad \text{LKSD}$

Experiment: sensitivity to model difference

■ Data R: Probabilistic Principal Component Analysis PPCA(A):

$$x_i \in \mathbb{R}^{100} \sim \mathcal{N}(Az_i, I), \,\, z_i \in \mathbb{R}^{10} \sim \mathcal{N}(0, I_z)$$

■ Generate P, Q: perturb (1,1)-entry: $A_{\delta} = A + \delta E_{1,1}$

(L)KSD = higher power

- Sample-wise difference in models = subtle (MMD fails)
- Model information is helpful

···•··· MMD ···•··· KSD ····▼··· LKSD

Experiment 2: topic models for arXiv articles

- Data R: arXiv articles from category stat.TH (stat theory):
- Models P, Q: LDAs trained on articles from different categories
 - P: math.PR (math probability theory)
 - Q: stat.ME (stat methodology). H_1 : Q is better

Graphical model of LDA

Experiment 2: topic models for arXiv articles

- Data R: arXiv articles from category stat.TH (stat theory):
- Models P, Q: LDAs trained on articles from different categories (100) topics)
 - P: math.PR (math probability theory)
 - Q: stat.ME (stat methodology). H_1 : Q is better

- $\mathbb{Z} = \{1, \ldots, L\}^D, D = 100,$ L = 126, 190.
- IMQ kernel in BoW rep.: k(x, x') = $(1 + ||B(x) - B(x')||_2^2)^{-1/2}$
- MCMC size m = 5000(after t = 500 steps).

Conclusion

Relative goodness-of-fit tests for Models with Latent Variables

- The kernel Stein discrepancy
 - Comparing two models via samples: MMD and the witness function.
 - Comparing a sample and a model: Stein modification of the witness class
- Constructing a relative hypothesis test using the KSD
- Relative hypothesis tests with latent variables

References

A Kernel Test of Goodness of Fit Kacper Chwialkowski, Heiko Strathmann, Arthur Gretton https://arxiv.org/abs/1602.02964

A Kernel Stein Test for Comparing Latent Variable Models Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey, Kenji Fukumizu, Arthur Gretton https://arxiv.org/abs/1907.00586