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Model Criticism
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Model Criticism

:;' : o Tk Is this a good model?
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Model Criticism

"All models are wrong."

G. Box (1976)
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Model comparison

m Have: two candidate models P and (), and samples {z;}? ; from
reference distribution R
m Goal: which of P and @) is better?
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P : two components @ : ten components
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Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested
CRP prior, Blei et al. (2003)
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Outline

Relative goodness-of-fit tests for Models with Latent
Variables

The Maximum Mean Discrepancy: an integral probability metric
maximize difference in expectations using an RKHS witness class
The kernel Stein discrepancy

Comparing a sample and a model: Stein modification of the witness
class

Constructing a relative hypothesis test using the KSD

Relative hypothesis tests with latent variables

6/44



Kernel Stein Discrepancy

m Model P, data {z;}]"; ~ Q.
m “All models are wrong” (P # Q).

KSD,(Q)
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Comparing a sample and model

Can we compute MMD with samples from ¢ and a model P?

Problem: usualy can’t compute E,f in closed form.

MMD(P, Q) = sup|s.<1[Eqf — Epf]
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Stein idea

To get rid of E,f in

sup [Eqf — Epf]
Ifll=<1

we use the (1-D) Langevin Stein operator

Auf1(2) = s i (F(@)p(@)

Then
E, A, f =0

subject to appropriate boundary conditions.

Ep [Apf] = /[Md (F(z)p(z ]de— (z)p(2)]%,

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Stein idea

To get rid of E,f in

sup [Eqf — Epf]
Ifll =<1

we use the (1-D) Langevin Stein operator

1 4
p(z) dz

[Apf] () = (f(z)p(z))

Then
E, A, f =0

subject to appropriate boundary conditions.

Do not need to normalize p, or sample from it.

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Kernel Stein Discrepancy

Stein operator
1 d

p(z
Kernel Stein Discrepancy (KSD)

A f =

~—
U
8

KSD,(Q) = sup EjA, 0 —E A9
llgll7<1
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Kernel Stein Discrepancy

Stein operator
1
A f =
()

Kernel Stein Discrepancy (KSD)

2 (f(@)(z)

KSD,(Q) = sup E,A,9 — B, Az7= sup EjA,g

llgll<1 llgllz<1

— p(x)
— q(x)
— g'(%)
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Kernel Stein Discrepancy

Stein operator 4
1

Kernel Stein Discrepancy (KSD)

KSD,(Q) = sup E,A,9 — B, Az7= sup EjA,g

llgll<1 llgllz<1

— p(x)
— q(x)
— g'(%)
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Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

1 d
4:1(@) = oy gz (@)

11/44



Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

1 d
[Apfl(z) = o(z) dz (f(z)p(2))

= 2 5@) + £(2) ()

p(z) dz
= /(@) 1og p(x) + = f(a)
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Computing the kernel Stein discrepancy

How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

1 d
[Apfl(z) = o(z) dz (f(z)p(2))

= 2 5@) + £(2) ()

p(z) dz
= /(@) 1og p(x) + = f(a)
= <f7 gﬁ){ >]—‘

stein features

where E;. £(z) = 0.
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Computing the kernel Stein discrepancy
How do we get the KSD in closed form (with kernels)?

Can we define “Stein features”?

1 d
[Apfl(z) = o(z) dz (f(z)p(2))

= 2 5@) + £(2) ()

p(z) dz
= /(@) 1og p(x) + = f(a)
= <f7 gﬁ){ >]—‘

stein features

where E;. £(z) = 0.

Intended destination:

KSD(p, ¢, F) = sup (9, Bzngls)r = | Banglellx
lgllF<1
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Stein RKHS features

Reproducing property for the derivative: for differentiable k(z, z'),

1@ =(r0@)  (vl@p@)) = k@)

Steinwart, Christmann, Support Vector Machines (2008), Lemma 4.3.4
12/44



Stein RKHS features
Reproducing property for the derivative: for differentiable k(z, z'),

d B d d , _d ;
S =(fige@)  (Felhe) = k)
Using kernel derivative trick in ,

4.1 (@) = (= log(z) ) £(2) + 21 (2)

= <f, (;ilogp(a:)> o(z) + CZI:§0($)>
- F

= {f,£(2)) -

Steinwart, Christmann, Support Vector Machines (2008), Lemma 4.3.4
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Proof: kernel derivative trick (on [—m, 7])

Proof: differentiable translation invariant k(z, z'), X := [, 7],
periodic boundary

(2o@p(e)) = 2 hla,o)

F

1@ = (1, 2 0(@))

F
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Proof: kernel derivative trick (on [—m, 7])

Proof: differentiable translation invariant k(z, z'), X := [, 7],
periodic boundary

d B d d , _d ;
@)= (fige@)  (ge@e)) = ke
Fourier series representation:

f(z) = Z foexp (1z), fo= % /_:f(x)exp(—zéw) dz.

{=—o0

Fourier series representation of derivative:

d F.S.

2 I@ 75 {00k}

(o0}
=
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Proof: kernel derivative trick (on [—m, 7])

Proof: differentiable translation invariant k(z, z'), X := [, 7],
periodic boundary

1@ = (figv@)  (fee)e)) =1k

Fourier series representation:

f(z) = Z foexp (1z), fo= % /_:f(a:)exp(—zéw) dz.

{=—o0

Fourier series representation of derivative:

d F.S.

@f(x) — {(zﬁ)ﬂ} = i (1) kg exp (14(z — -))

)
= {=—c0
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Proof: kernel derivative trick (on [—m, 7])

From previous slide,

o0

= 3 (Whkexp((z - )

2 f(2) % {0k} Py

o0
=

— o0

We can write

o2 )= > A
>
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Does the mean stein embedding exist?

The KSD is written:

T1(2) = (5 Y08 2(2)) F(2) + 5 5(2)

(£ (1o p(2)) ba )+ k()
=:(f, &) F-
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Does the mean stein embedding exist?
The KSD is written:
d d
(T,1(2) = (55 Yo 2(2)) £(2) + 5-5(2)

(1 (1o n(e)) k) + k(=)
= {f,&)r-

Next step: show that

Ez~q [Tpf] - Equ (f:£z>]: — (f: Ezwqé.z)}'-
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Does the mean stein embedding exist?
The KSD is written:
d d
(T,1(2) = (55 Yo 2(2)) £(2) + 5-5(2)

(1 (1o n(e)) k) + k(=)
= {f,&)r-

Next step: show that

Ez~q [Tpf] - Equ (f:gz)]: — (f: Ezwq&Z)}“

Riesz theorem!
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Next step: taking expectations

Riesz theorem: need boundedness,

|Beng (Fr €20 7l < IFll£ A

for some X € R.
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Next step: taking expectations

Riesz theorem: need boundedness,

|Beng (Fr €20 7l < IFll£ A

for some A € R.
By Jensen and Cauchy-Schwarz,

’EZNQ <f7£2>]—" S EZNq ’<f7£Z>]-"
< fllF Beng 1€zl 2-
N—_————

bounded?
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Next step: taking expectations

Compute the squared norm:

H£ZH_27-‘ = <£z:§z>]—‘
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Next step: taking expectations

Compute the squared norm:

€215 = (€2:62) 5
= <(:zlogp(2)) k(z,-)+ d%k(z,-), .. .>F
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Next step: taking expectations

Compute the squared norm:

€215 = (€2,62) 5
= <(:zlogp(z)) k(z,) + d%k(z,-), N .>F

= <(:zlogp(z)) k(z,-), ((Zlogp(d) k(Z,')>}_
(4)
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Next step: taking expectations

Compute the squared norm:

€215 = (€2:62) 5
= (g5 108 m() Kz ) + k(2 )hen)

= <(:zlogp(z)) k(z,-), ((Zlogp(d) k(Z,')>}_
()
" <(ka(:c,-), %k(m’, -)>F

(B)= g gok(z—a")| __,_

T=T =2

r=z'=2
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Next step: taking expectations

Compute the squared norm:

€215 = (€2:62) 5
= (g5 108 m() Kz ) + k(2 )hen)

= <(jzlogp(z)) k(z,-), <:z10817(z)> k(Z,')>}_
()
" <(ka(:c,-), %k(m’, -)>F

(B)= g gok(z—a")| __,_

T=T =2

+2 < (:x log p(ﬂﬂ)) k(z,), %k(x': ')>]r

(C)

r=z'=2

r=z'=2z
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First two (easy) terms

First term (A):



First two (easy) terms

Second term (B):

(B) = (ke k(s )
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First two (easy) terms

Second term (B):

(8) = (@), k@) —

F
oo etk exp(—utz)| |2l exp(—ula)|

{=—00
z=z'=2
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First two (easy) terms

Second term (B):

(B) = (ke k(s )

o0 {—zé exp(—zﬁa:)} —1f exp(—zﬁm’)}

z=z'=2

== r=z'=2
= > —(u0)*kexp (ul(z' — z))
I~ oo —_————

—1lwhenz—z'—2
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First two (easy) terms

Second term (B):

(B) = (ke k(s )

z=z'=2

= {—zé exp(—zﬁa:)} —1f eXP(—Zm/)}
_(i;oo z=z'=z2
= Y (e (e~ )

{=—00 R

—1lwhenz—z'—2

= Zéz =C>0

{=—o00
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Third term

Third term (C):

(€)= ( (g5 Yoer(e) ) ke, k("))
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Third term

Third term (C):

(©)= (s 1085() blo ki) |

00 exp(—lz)| |(—2£) K exp(—lz')
) >

=0

(& g5t

z—z'=2
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Third term

Third term (C):

(€)= (( 55 oer(@)) (@) k(@) |

[ivexp(—2t2)] [(-10) ¢ exp(—sta')]

) i (1£) keexp (4(z' — )
I=—

)
=1when z=z'=2
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Third term

Third term (C):

©1= ((rer@) s k) |

[ivexp(—2t2)] [(-10) ¢ exp(—sta')]

(2€) kgexp (14(z' — )

=1when z=z'=2
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Putting it all together

We found:

d 2
3 = ¢+ (4 logn(a)) e
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Putting it all together
We found:

d 2
3 = ¢+ (4 logn(a)) e

Thus for boundedness, we have the condition:

d 2
Equ ||£2||]—' = Equ\/C + (da: log p(ﬂ))) c

d 2
< JEM C+ (dzlogp(z)) c],

2
So Riesz holds when E,., (d% log p(z)) < 0o
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Does the Riesz condition matter?

Consider the standard normal,

p(z) = \/12? exp (—x2/2) .
Then

d
Tz logp(z) = —z.
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Does the Riesz condition matter?

Consider the standard normal,

p(z) = \/12? exp (—x2/2) .

Then

d
T logp(z) = —z.

If q is a Cauchy distribution, then the integral

Bevg (jilogp(x))z = [7 2q(z)ds

1s undefined.
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Kernel Stein discrepancy: population expression
Multi-dimensional Stein operator:

Vp(z)
p(z)
A

[Tpf](2) = <f($), > +(V,f(z)).
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Kernel Stein discrepancy: population expression
Population kernel Stein discrepancy (in RP):
KSD2(Q) = Eq o o0hy(2, 2')
where
hy(z,z') = s,(z) "sp(z')k(z, &) + 5p(2) " Ka(z, 2')

+5p(2") " ki(z, ') + tr [Riz(z, 2')]

v
m s,(z) e RP = pz(’g)
| kl(a’r b) = vxk(zi $/)|z:a,x’:b € RD’
k2(a; b) = v:c’k(m; xl)‘m:a,z’:b € RD;

m kiz(a, b) = VyVak(z,z')|smgz=p € RPXD
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Kernel Stein discrepancy: population expression
Population kernel Stein discrepancy (in RP):
KSD2(Q) = Eq o o0hy(2, 2')
where
hy(z,z') = s,(z) "sp(z')k(z, &) + 5p(2) " Ka(z, 2')

+5p(2") " ki(z, ') + tr [Riz(z, 2')]

v
m s,(z) e RP = pz(’g)
| kl(a’r b) = vxk(zi $/)|z:a,x’:b € RD’
k2(a; b) = v:c’k(m; xl)‘m:a,z’:b € RD;

m kiz(a, b) = VyVak(z,z')|smgz=p € RPXD

If kernel is Cp-universal and Q satisfies Bz~ ¢ HV (log p(z)) H2 < 00,

a(z)
then KSD2(Q) = 0iff P = Q.
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Constructing threshold for a statistical test
Given samples {2;}7 ; ~ g, empirical KSD (test statistic) is:
I’Té]\) F):= h (3]
(p,q,7) n_1;§ (2, 2)-

When g = p, U-statistic is degenerate. Estimate of null distribution
with wild bootstrap:

KSD(p, q,F) :== 1 ZZUIUJ (2, 2).
n<_ 1=1j5#1

where {0;}" , i.id, E(o;) =0, and E(c?) =1

m Consistent estimate of the null distribtion when ¢ = p

m Consistent test (Type II error goes to zero) under a rich class of
a].ternatlves Chwialkowski, Strathmann, G., ICML 2016
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Model Criticism
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Model Criticism

AL
Sa|L,
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Model Criticism

Data = robbery events in
Chicago in 2016.
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The witness function: Chicago Crime

<3
AT Model p = 10-component
Zeay | T Gaussian mixture.

(0 i 320 oe
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The witness function: Chicago Crime

Witness function g shows
mismatch




Empirical statistic, asymptotic normality for P # @

The empirical statistic:

KSDQ(Q Zh T;, Tj).
175.7

Asymptotic distribution when ¢ # p:
Jn (Ksng(g) - KSDp(Q)> 4 N(O,02) o = aVar[Eu[hy(z,2')]).

Prob
A

0.5

0.0 —=_
KSD2(Q) KSD?;(Q) 27/44



Relative goodness-of-fit testing

m Two latent variable models P and @, data {z;}} ; &R

m Distinct models p # g

Hypotheses:
Ho : KSD,(R) < KSD,(R) vs. H; : KSD,(R) > KSD,(R)
(Ho : ‘P is as good as @, or better’ vs. Hy : ‘Q is better’ )
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Relative GOF testing: joint asymptotic normality

Joint asymptotic normality when P # R and Q) # R

| ksD2(R) - KSD,(R) | 4

n —_—

| KSD(R) — KSD,(R) |

/\

2
KSD(R)

A

\

KSD?(R)

(|

il

] [ Th Onh,

2
Ohyhy Uhq

KSD3(R)

-
KSD(R)
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Relative GOF testing: joint asymptotic normality
Joint asymptotic normality when P # R and @Q # R

0 Uhphq Uhq

KSD?(R) — KSD,(R)

——

KSD?(R) — KSDy(R)

n

Difference in statistics is asymptotically normal:
vn {KSD@(R) — KSD?(R) — (KSD,(R) — KSD,(R))
d
=N (0,0’;2117 + 0';21(1 — 20’hphq)

— a statistical test with KSD,(R) — KSDy(R) <0
is straightforward.
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Latent variable models
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Latent variable models

Can we compare latent variable
models with KSD?

p() :/p(x|z)p(z)dz
q(z) :/q(w|w)p(w)dw

Multi-dimensional Stein operator:

_ Vp(z)
[Tpf](z) = <f($), (@) >+<V,f(fv))-
——
Expression requires marginal p(z), often intractable. ..
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What not to do

Approximate the integral using {z;}7; ~ p(z):

p(z) :/p(w\z)p(z)dz

~ (@) = - p(al)
j=1

Estimate KSD with approximate density:

KSD2(R) ~ KSDZ (R)
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What not to do

Approximate the integral using {z;}7; ~ p(z):

p(z) = /p(w\z)p(z)dz
1 m
~ () = 3 p(al%)
j=1
Estimate KSD with approximate density:
KSD?(R) ~ KSD? (R)
Problem: KSD%m(R) asymptotically normal but slow bias decay.
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MCMC approximation of score function

Result we use:

sp() = Ezo[sp(2]2)]

Proof:
so(e) = 1) — ap(2)
Vp (z]z) p(z|z)dp(z) _
- / ey ey = Eaalsp(al2)],

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance
estimation with intractable likelihoods. Bayesian Analysis, 11, 215-245.
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MCMC approximation of score function
Result we use:

sp(2) = Ezjz[sp(2]2)]
Proof:

dp(z)

Vp (z|z) p(z|z)dp(z) _
- / ey ey = Eaalsp(al2)],

sp(z) =

Approximate intractable posterior |4 [s,(z:]2)]

- ¢ 1 &
Sp(i; zz'( )) = m Zsp(mi‘zi(,j)) ~ sp(z:)
j=1
with z(t) (z( ) z-(t)) via MCMC (after ¢ burn-in ste
2,1y m I)S)

Friel, N., Mira, A. and Oates, C. J. (2016) Exploiting multi-core architectures for reduced-variance
estimation with intractable likelihoods. Bayesian Analysis, 11, 215-245.
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KSD for latent variable models

Recall earlier KSD estimate:

Un(P) = > hyp(zi, ;) (= KSDZ(R))

n—l 1#]
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KSD for latent variable models

Recall earlier KSD estimate:

Un(P) = > hyp(zi, ;) (= KSDZ(R))

n—l 1#]

KSD estimate for latent variable models:

ST H, (2, 2Y), (2, 21)] (~ KSD2(R))

n—l #]

where H, is the Stein kernel h, with s,(z;) replaced with §,(z;; zi(t)).
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Return to relative GOF test, latent variable models

Hypotheses:

Hy : KSD,(R) < KSD,(R) vs. Hy : KSD,(R) > KSD,(R)
(Ho: ‘P is as good as @), or better’ vs. H; : ‘Q is better’ )
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Return to relative GOF test, latent variable models

Hypotheses:

Hy : KSD,(R) < KSD,(R) vs. Hy : KSD,(R) > KSD,(R)
(Ho: ‘P is as good as @), or better’ vs. H; : ‘Q is better’ )

Strategy:
m Estimate the difference KSD2(R) — KSD?(R) by

p(p, @) = usP(P) — UiD(Q).

m If D%t)(P, @) is sufficiently large, reject Hp.
“Sufficient™ control type-I error (falsely rejecting Hp)

Requires the (asymptotic) behaviour of D,(Lt)(P, Q)
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Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate n,t — oo:

Vvn [DS)(P, Q) — MPQ] 4 N(0,0%,)

where
ppo = KSD2(R) — KSD?(R),
t
UJZDQ = nlggoon Var [ D! )( Q)] .
Fine print:

m The double limit requires fast bias decay

J/RE{DY (P, Q)} — uro] — 0

m The fourth moment of Er,ﬂt) - Fl(gt)has finite limit sup. (¢t — 00).
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Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate n,t — oo:

Vr[DE(P, Q) = pro] B N(0,0%0)
where
ppo = KSD2(R) — KSD?(R),
0%y = lim n-Var [DYY(P,Q)].

n,t—00

Level-o test:

~

Reject Hp if Dn (P Q) > Ti 1 o

B C1_o is (1 — a)-quantile of N(0, 1).
m 0po estimated via jackknife
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Experiments
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Experiment 1: sensitivity to model difference
m Data R : Probabilistic Principal Component Analysis PPCA(A):

z; € R ~ N(Az;, I), 2z € R® ~ N(0, I)

m Generate P, Q : perturb (1,1)-entry : As = A+ 6E1
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Experiment: sensitivity to model difference

m Data R : Probabilistic Principal Component Analysis PPCA(A):
z; € R ~ N(Az;, 1), 2z € R® ~ N(0, I)

m Generate P, Q : perturb (1,1)-entry : As = A+6E;;

m Alt. Hy (Q is better):
P’s perturbation ép = 2
Q’s perturbation 6 =1

m IMQ kernel: k(z,z') =
—1/2
(1+ 12 - 2'13/0%e0)
m NUTS-HMC with sample

. 1.01 PR o =
s
=
2 0.5 ¥
[T}
o .
0'0- @ ........ [ XEEREERE OEEEREEE] Qrusnnnns 10)
20 400
Sample size n
w0 MMD e KSD

Hoffman and Gelman (JMLR 2014)

size m = 500
(after ¢t = 200 steps).
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Experiment: sensitivity to model difference

m Data R : Probabilistic Principal Component Analysis PPCA(A):

T; € R0 ~ N'(Azi, I),

z € R ~ N(0, 1)

m Generate P, Q : perturb (1,1)-entry : As = A+6E;;

. 1.01 Gorertttt LEEEEREE w (L)KSD = higher power
§ i m Sample-wise difference in
= models = subtle
= 0.5 R (MMD fails)
8 o
oy m Model information is
= 0.0 @’ ...... Seneeens Greeneens Qererenes © helpful
20 400
Sample size n
w6« MMD cemes KSD ceme LKSD

Hoffman and Gelman (JMLR 2014)
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Experiment 2: topic models for arXiv articles

m Data R : arXiv articles from category stat.TH (stat theory) :

m Models P, @ : LDAs trained on articles from different categories
P : math.PR (math probability theory)
Q : stat.ME (stat methodology). Hi: @ is better

Graphical model of LDA

Blei, Ng, Jordan (JMLR 2003)
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Experiment 2: topic models for arXiv articles

m Data R : arXiv articles from category stat.TH (stat theory) :
m Models P, @ : LDAs trained on articles from different categories (100

topics)

P : math.PR (math probability theory)
Q : stat.ME (stat methodology). Hi: @ is better

[¢B)} 10 _,.-V ......... AR EE R iv4
= v
- .
9
Zos)
Q? ’ .O
Cd [CIEEEEERR] '3 Lk ORI o
200 400
Sample size n
=+« MMD eme LKSD

s X={1,...,L}?, D= 100,
L = 126, 190.

m IMQ kernel in BoW rep.:
k(z,z') =

np2y—1/2

(1+11B(z) - B(z')[I3)

m MCMC size m = 5000
(after ¢ = 500 steps).
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Conclusion

Relative goodness-of-fit tests for Models with Latent
Variables

m The kernel Stein discrepancy

Comparing two models via samples: MMD and the witness function.
Comparing a sample and a model: Stein modification of the witness
class

m Constructing a relative hypothesis test using the KSD

m Relative hypothesis tests with latent variables
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