Probability Divergences and Generative Models

Arthur Gretton

Gatsby Computational Neuroscience Unit,
University College London

MLSS Taipei, 2021

Training generative models

■ Have: One collection of samples X from unknown distribution P.
■ Goal: generate samples Q that look like P

LSUN bedroom samples P

Generated Q, MMD GAN Role of divergence $D(P, Q)$?

Testing for differences in samples

Given samples $X \sim P$ and $Y \sim Q$, are P and Q distinguishable (via $D(P, Q))$?

- Application: detecting domain shift (did I train for the right task?)

CIFAR-10 test set (Krizhevsky 2009)

$$
X \sim P
$$

CIFAR-10.1 (Recht+ ICML 2019)

$$
Y \sim Q
$$

Outline

- Integral probability metrics (MMD, Wasserstein)

■ ϕ-divergences (f-divergences) and a variational lower bound (KL)

■ Generalized energy-based models

- "Like a GAN" but incorporate critic into sample generation
- Perform better than using generator alone

Arbel, Zhou, G., Generalized Energy Based Models (ICLR 2021)
■ Comparing samples with MMD
Liu, Xu, Lu, Zhang, G. Sutherland, Learning Deep Kernels for
Non-Parametric Two-Sample Tests (ICML 2020)

Divergence measures (critics)

Divergences

Divergences

The Integral Probability Metrics

Wasserstein distance

A helpful critic witness:

$$
\begin{gathered}
W_{1}(P, Q)=\sup _{\|f\|_{L} \leq 1} E_{P} f(X)-E_{Q} f(Y) . \\
\|f\|_{L}:=\sup _{x \neq y}|f(x)-f(y)| /\|x-y\| \\
W_{1}=0.88
\end{gathered}
$$

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

Wasserstein distance

A helpful critic witness:

$$
\begin{gathered}
W_{1}(P, Q)=\sup _{\|f\|_{L} \leq 1} E_{P} f(X)-E_{Q} f(Y) . \\
\|f\|_{L}:=\sup _{x \neq y}|f(x)-f(y)| /\|x-y\| \\
W_{1}=0.65
\end{gathered}
$$

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

The Maximum Mean Discrepancy

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

The Maximum Mean Discrepancy

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Functions are linear combinations of features:

$$
\left.\begin{array}{rl}
f(x)=\langle f, \varphi(x)\rangle_{\mathcal{F}} & =\sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x)=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right]^{\top f \|_{\mathcal{F}}^{2}}:=\sum_{i=1}^{\infty} f_{i}^{2} \leq 1
\end{array}\right]
$$

Infinitely many features using kernels

Kernels: dot products of
features

Feature $\operatorname{map} \varphi(x) \in \mathcal{F}$,
$\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}$

For positive definite k,
$k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}$
Infinitely many features $\varphi(x)$, dot product in
closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

For characteristic RKHS $\mathcal{F}, M M D(P, Q ; F)=0$ iff $P=Q$

- Energy distance is a special case [Sejdinovic, Sriperumbudur, G. Fukumizu, 2013]

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Expectations of functions are linear combinations of expected features

$$
\mathrm{E}_{P}(f(X))=\left\langle f, \mathrm{E}_{P} \varphi(X)\right\rangle_{\mathcal{F}}=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

(always true if kernel is bounded)

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right]
\end{aligned}
$$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

use

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}
\end{aligned}
$$

IPM view equivalent to feature mean difference (kernel case only)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe $X=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\} \sim P$

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
f^{*}(v)=\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& =\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, v\right)-\frac{1}{n} \sum_{i=1}^{n} k\left(\mathrm{y}_{i}, v\right)
\end{aligned}
$$

Don't need explicit feature coefficients $f^{*}:=\left[\begin{array}{lll}f_{1}^{*} & f_{2}^{*} & \ldots\end{array}\right]$

Maximum mean discrepancy

A helpful critic:

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F}} \leq 1} E_{P} f(X)-E_{Q} f(Y)
$$

$\mathrm{MMD}=1.8$

Maximum mean discrepancy

A helpful critic:

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F}} \leq 1} E_{P} f(X)-E_{Q} f(Y)
$$

$\mathrm{MMD}=1.1$

Maximum mean discrepancy

An unhelpful critic:
$M M D(P, Q)$ with a narrow kernel.

$$
\mathrm{MMD}=0.64
$$

Maximum mean discrepancy

An unhelpful critic:
$M M D(P, Q)$ with a narrow kernel.

$$
\mathrm{MMD}=0.64
$$

The ϕ-divergences

The ϕ-divergences

Define the ϕ-divergence(f-divergence):

$$
D_{\phi}(P, Q)=\int \phi\left(\frac{p(z)}{q(z)}\right) q(z) d z
$$

where ϕ is convex, lower-semicontinuous, $\phi(1)=0$.
$\phi(u)=u \log (u)$ gives KL divergence,

The ϕ-divergences

Define the ϕ-divergence(f-divergence):

$$
D_{\phi}(P, Q)=\int \phi\left(\frac{p(z)}{q(z)}\right) q(z) d z
$$

where ϕ is convex, lower-semicontinuous, $\phi(1)=0$.

■ Example: $\phi(u)=u \log (u)$ gives KL divergence,

$$
\begin{aligned}
D_{K L}(P, Q) & =\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& =\int\left(\frac{p(z)}{q(z)}\right) \log \left(\frac{p(z)}{q(z)}\right) q(z) d z
\end{aligned}
$$

Are ϕ-divergences good critics?

Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

$$
D_{K L}(P, Q)=\infty \quad D_{J S}(P, Q)=\log 2
$$

Are ϕ-divergences good critics?

Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

$$
D_{K L}(P, Q)=\infty \quad D_{J S}(P, Q)=\log 2
$$

ϕ-divergences in practice

Background: the conjugate (Fenchel) dual

$$
\phi^{*}(v)=\sup _{u \in \mathbb{R}}\{u v-\phi(u)\} .
$$

- $\phi^{*}(v)$ is negative intercept of tangent to ϕ with slope v

ϕ-divergences in practice

Background: the conjugate (Fenchel) dual

$$
\phi^{*}(v)=\sup _{u \in \mathbb{R}}\{u v-\phi(u)\}
$$

■ For a convex l.s.c. ϕ we have

$$
\phi^{* *}(x)=\phi(x)=\sup _{v \in \mathbb{R}}\left\{x v-\phi^{*}(v)\right\}
$$

ϕ-divergences in practice

Background: the conjugate (Fenchel) dual

$$
\phi^{*}(v)=\sup _{u \in \mathbb{R}}\{u v-\phi(u)\} .
$$

■ For a convex l.s.c. ϕ we have

$$
\phi^{* *}(x)=\phi(x)=\sup _{v \in \mathbb{R}}\left\{x v-\phi^{*}(v)\right\}
$$

■ KL divergence:

$$
\phi(x)=x \log (x) \quad \phi^{*}(v)=\exp (v-1)
$$

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
D_{\phi}(P, Q)=\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z
$$

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
\begin{aligned}
D_{\phi}(P, Q) & =\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z \\
& =\int q(z) \underbrace{\sup _{f_{z}}\left(\frac{p(z)}{q(z)} f_{z}-\phi^{*}\left(f_{z}\right)\right)}_{\phi\left(\frac{p(z)}{q(z)}\right)}
\end{aligned}
$$

$$
\phi^{*}(v) \text { is dual of } \phi(x) \text {. }
$$

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
\begin{aligned}
D_{\phi}(P, Q) & =\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z \\
& =\int q(z) \sup _{f_{z}}\left(\frac{p(z)}{q(z)} f_{z}-\phi^{*}\left(f_{z}\right)\right) \\
& \geq \sup _{f \in \mathcal{H}} \mathrm{E}_{P} f(X)-\mathrm{E}_{Q} \phi^{*}(f(Y))
\end{aligned}
$$

(restrict the function class)

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
\begin{aligned}
D_{\phi}(P, Q) & =\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z \\
& =\int q(z) \sup _{f_{z}}\left(\frac{p(z)}{q(z)} f_{z}-\phi^{*}\left(f_{z}\right)\right) \\
& \geq \sup _{f \in \mathcal{H}} \mathrm{E}_{P} f(X)-\mathrm{E}_{Q} \phi^{*}(f(Y))
\end{aligned}
$$

(restrict the function class)
Bound tight when:

$$
f^{\diamond}(z)=\partial \phi\left(\frac{p(z)}{q(z)}\right)
$$

if ratio defined.

Case of the KL

$$
D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z
$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$$
\begin{aligned}
& D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& \geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \underbrace{\exp (-f(Y))}_{\phi^{*}(-f(Y)+1)}
\end{aligned}
$$

Case of the KL

$D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z$
$\geq \sup _{f}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y))$ $f \in \mathcal{H}$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

Bound tight when:
$f^{\diamond}(z)=-\log \frac{p(z)}{q(z)}$
if ratio defined.

Case of the KL

$$
\begin{array}{ll}
D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z & \\
\geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y)) & x_{i} \stackrel{\text { i.i.d. }}{\sim} P \\
\approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1 & y_{i} \stackrel{\text { i.i.d. }}{\sim} Q
\end{array}
$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$$
\begin{aligned}
& D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& \geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y)) \\
& \approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1
\end{aligned}
$$

This is a
KL
Approximate
Lower-bound
Estimator.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$$
\begin{aligned}
& D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& \geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y)) \\
& \approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1
\end{aligned}
$$

This is a
K
A
L
E

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$$
\begin{aligned}
& D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& \geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y)) \\
& \approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1
\end{aligned}
$$

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Empirical properties of KALE

$$
\begin{aligned}
K A L E(P, Q ; \mathcal{H}) & =\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f & =\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS } \\
\|w\|_{\mathcal{H}}^{2} & \text { penalized : }
\end{aligned}
$$

Empirical properties of KALE

$$
\begin{gathered}
K A L E(P, Q ; \mathcal{H})=\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \text { H an RKHS } \\
\|w\|_{\mathcal{H}}^{2} \quad \text { penalized : KALE smoothie }
\end{gathered}
$$

Empirical properties of KALE

$$
K A L E(P, Q ; \mathcal{H})=\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1
$$

$$
f=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS }
$$

$$
\|w\|_{\mathcal{H}}^{2} \quad \text { penalized : KALE smoothie }
$$

$$
K A L E(Q, P ; \mathcal{H})=0.18
$$

Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (arXiv, 2021, Section 2)

Empirical properties of KALE

$$
\begin{gathered}
K A L E(P, Q ; \mathcal{H})=\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS } \\
\|w\|_{\mathcal{H}}^{2} \quad \text { penalized }: \text { KALE smoothie } \\
K A L E(Q, P ; \mathcal{H})=0.12
\end{gathered}
$$

Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (arXiv, 2021, Section 2)

The KALE smoothie and "mode collapse"

- Two Gaussians with same means, different variance

Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X} :

- Compact domain \mathcal{X},
$\square \mathcal{H}$ dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\|\cdot\|_{\infty}$.
\square If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $c f \in \mathcal{H}$ for $0 \leq c \leq C_{\max }$.

Theorem: $\operatorname{KALE}(P, Q ; \mathcal{H}) \geq 0$ and $\operatorname{KALE}(P, Q ; \mathcal{H})=0$ iff $P=Q$.

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs"
(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X} :

- Compact domain \mathcal{X},
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\|\cdot\|_{\infty}$.
\square If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $c f \in \mathcal{H}$ for $0 \leq c \leq C_{\max }$.

Theorem: $\operatorname{KALE}(P, Q ; \mathcal{H}) \geq 0$ and $\operatorname{KALE}(P, Q ; \mathcal{H})=0$ iff $P=Q$.
\mathcal{H} dense in $C(\mathcal{X})$ for $\mathcal{X} \subset \mathbb{R}^{d}$ when:

$$
\begin{gathered}
\mathcal{H}=\operatorname{span}\{\sigma(w \top x+b):[w, b] \in \Theta\} \\
\sigma(u)=\max \{u, 0\}^{\alpha}, \alpha \in \mathbb{N}, \text { and }\{\lambda \theta: \lambda \geq 0, \theta \in \Theta\}=\mathbb{R}^{d+1}
\end{gathered}
$$

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs"
(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $\operatorname{KALE}\left(P, Q^{n} ; \mathcal{H}\right) \rightarrow 0$ iff $Q^{n} \rightarrow P$ under the weak topology.

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $\operatorname{KALE}\left(P, Q^{n} ; \mathcal{H}\right) \rightarrow 0$ iff $Q^{n} \rightarrow P$ under the weak topology.

Partial proof idea:

$$
\begin{aligned}
\operatorname{KALE}(P, Q ; \mathcal{H})= & -\int f d P-\int \exp (-f) d Q+1 \\
= & \int f(x) d Q(x)-f\left(x^{\prime}\right) d P\left(x^{\prime}\right) \\
& -\int \underbrace{(\exp (-f)+f-1)}_{\geq 0} d Q \\
\leq & \int f(x) d Q(x)-f\left(x^{\prime}\right) d P\left(x^{\prime}\right) \leq L W_{1}(P, Q)
\end{aligned}
$$

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1)

How to train your GAN
 Generalized Energy-Based Model

Visual notation: GAN setting

Visual notation: GAN setting

Reminder: the generator

Radford, Metz, Chintala, ICLR 2016

Generalized energy-based models: illustration

Target distribution P

$$
\begin{aligned}
z & \sim \operatorname{Unif}[0,1] \\
\tilde{z} & =\tau(z) \\
X & =G_{\theta^{\star}}(\tilde{z}), \quad X_{1}=\tilde{z}
\end{aligned}
$$

Example thanks to M. Arbel

Generalized energy-based models: illustration

EBM approximation to target:

$$
\begin{aligned}
& p(X) \propto \exp (-E(X)) \\
& E(X)= \frac{1}{2 \sigma^{2}}\left\|G_{\theta}\left(X_{1}\right)-X\right\|^{2} \\
&+A_{\theta}\left(X_{1}\right)
\end{aligned}
$$

Example thanks to M. Arbel

Generalized energy-based models: illustration

GAN (generator) distribution Q_{θ}

Generator
$z \sim u n i f[0,1]$
$X=B_{\theta}(z)$

Critic
$M L P(X)$

Example thanks to M. Arbel

Generalized energy-based models: illustration

Mass of GEBM corrected by critic

Generator

$$
\begin{aligned}
& z \sim u n i f[0,1] \\
& X=B_{\theta}(z)
\end{aligned}
$$

Re-weight using importance weights defined by energy:

$$
w(x) \propto \exp (-E(x))
$$

Example thanks to M. Arbel

Generalized energy-based models

Define a model $Q_{B_{\theta}, E}$ as follows:

- Sample from generator with parameters θ

$$
X \sim Q_{\theta} \quad \Longleftrightarrow \quad X=B_{\theta}(Z), \quad Z \sim \eta
$$

- Reweight the samples according to importance weights:

$$
f_{Q, E}(x)=\frac{\exp (-E(x))}{Z_{Q_{\theta}, E}}, \quad Z_{Q, E}=\int \exp (-E(x)) d Q_{\theta}(x),
$$

where $E \in \mathcal{E}$, the energy function class.

```
fQ,E}(x)\mathrm{ is Radon-Nikodym derivative of }\mp@subsup{Q}{\mp@subsup{B}{0,E}{}}{}\mathrm{ wrt }\mp@subsup{Q}{0}{}\mathrm{ .
```

■ When Q_{θ} has density wrt Lebesgue on \mathcal{X}, this is a standard energy-based model.

The energy function, on our example

Target distribution P

Example thanks to M. Arbel

The energy function, on our example

GAN (generator) Q_{θ}, correct support but wrong mass

Example thanks to M. Arbel

The energy function, on our example

Log energy function and Q_{θ}

Key:

- Orange: increase mass

■ Blue: reduce mass

The energy function, on our example

Target distribution P and GAN (generator) Q_{θ}, wrong support and wrong mass

Example thanks to M. Arbel

The energy function, on our example

Log energy function, P, and Q_{θ}

Key:

- Orange: increase weight

■ Blue: reduce weight
Example thanks to M. Arbel

How do we learn the energy E ?

How do we learn the energy E ?

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log Z_{Q, E}
$$

■ When $K L\left(P, Q_{\theta}\right)$ well defined, above is Donsker-Varadhan lower bound on KL

- tight when $E(z)=-\log (p(z) / q(z))$.

■ However, Generalized Log-Likelihood still defined when P and Q_{θ} mutually singular (as long as E smooth)!

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.
Generalized Log-Likelihood has the lower bound:

$$
\begin{aligned}
\mathcal{L}_{P, Q}(E) & \geq-\int(E+c) d P-\int \exp (-E-c) d Q_{\theta}+1 \\
& :=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)
\end{aligned}
$$

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.
Generalized Log-Likelihood has the lower bound:

$$
\begin{aligned}
\mathcal{L}_{P, Q}(E) & \geq-\int(E+c) d P-\int \exp (-E-c) d Q_{\theta}+1 \\
& :=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)
\end{aligned}
$$

This is the KALE! with function class $\mathcal{E}+\mathbb{R}$.

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.
Generalized Log-Likelihood has the lower bound:

$$
\begin{aligned}
\mathcal{L}_{P, Q}(E) & \geq-\int(E+c) d P-\int \exp (-E-c) d Q_{\theta}+1 \\
& :=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)
\end{aligned}
$$

Jointly maximizing yields the maximum likelihood energy E^{*} and corresponding $c^{*}=\log \int \exp (-E) d Q_{\theta}$.

Training the base measure (generator)

Recall the generator:

$$
X=B_{\theta}(Z), \quad Z \sim \eta
$$

Define: $\mathcal{K}(\theta):=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)$

Training the base measure (generator)

Recall the generator:

$$
X=B_{\theta}(Z), \quad Z \sim \eta
$$

Define: $\mathcal{K}(\theta):=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)$
Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with:

$$
\nabla \mathcal{K}(\theta)=Z_{Q, E^{*}}^{-1} \int \nabla_{x} E^{*}\left(B_{\theta}(z)\right) \nabla_{\theta} B_{\theta}(z) \exp \left(-E^{*}\left(B_{\theta}(z)\right)\right) \eta(z) d z
$$

where E^{*} achieves supremum in $\mathcal{F}(P, Q ; \mathcal{E}+\mathbb{R})$.

Training the base measure (generator)

Recall the generator:

$$
X=B_{\theta}(Z), \quad Z \sim \eta
$$

Define: $\mathcal{K}(\theta):=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)$
Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with:

$$
\nabla \mathcal{K}(\theta)=Z_{Q, E^{*}}^{-1} \int \nabla_{x} E^{*}\left(B_{\theta}(z)\right) \nabla_{\theta} B_{\theta}(z) \exp \left(-E^{*}\left(B_{\theta}(z)\right)\right) \eta(z) d z
$$

where E^{*} achieves supremum in $\mathcal{F}(P, Q ; \mathcal{E}+\mathbb{R})$.
Assumptions:
■ Functions in \mathcal{E} parametrized by $\psi \in \Psi$, where Ψ compact,

- jointly continous w.r.t. $(\psi, x), L$-lipschitz and L-smooth w.r.t. x.
$\square(\theta, z) \mapsto B_{\theta}(z)$ jointly continuous wrt $(\theta, z), z \mapsto B_{\theta}(z)$ uniformly Lipschitz w.r.t. z, lipschitz and smooth wrt θ (see paper: constants depend on z)

Sampling from the model

Consider end-to-end model $Q_{B_{\theta}, E}$, where recall that $X=B_{\theta}(Z), \quad Z \sim \eta$,

$$
f_{B, E}(x):=\frac{\exp (-E(x))}{Z_{Q, E}}
$$

Sampling from the model

Consider end-to-end model $Q_{B_{\theta}, E}$, where recall that $X=B_{\theta}(Z), \quad Z \sim \eta$,

$$
f_{B, E}(x):=\frac{\exp (-E(x))}{Z_{Q, E}}
$$

For a test function g,

$$
\int g(x) d Q_{B, E}(x)=\int g(B(z)) f_{B, E}(B(z)) \eta(z) d z
$$

Posterior latent distribution therefore

$$
\nu_{B, E}(z)=\eta(z) f_{B, E}(B(z))
$$

Sampling from the model

Consider end-to-end model $Q_{B_{\theta}, E}$, where recall that $X=B_{\theta}(Z), \quad Z \sim \eta$,

$$
f_{B, E}(x):=\frac{\exp (-E(x))}{Z_{Q, E}}
$$

For a test function g,

$$
\int g(x) d Q_{B, E}(x)=\int g(B(z)) f_{B, E}(B(z)) \eta(z) d z
$$

Posterior latent distribution therefore

$$
\nu_{B, E}(z)=\eta(z) f_{B, E}(B(z))
$$

Sample $z \sim \nu_{B, E}$ via Langevin diffusion-derived algorithms (MALA, ULA, HMC,...) to exploit gradient information.
Generate new samples in \mathcal{X} via

$$
X \sim Q_{B, E} \quad \Longleftrightarrow \quad Z \sim \nu_{B, E}, \quad X=B_{\theta}(Z)
$$

Experiments

Examples: sampling at modes

Tempered GEBM Cifar10 samples at different stages of sampling using a Kinetic Langevin Algorithm (KLA). Early samples \rightarrow late samples. Model run at low temperature $(\beta=100)$ for better quality samples.

Sampling at modes: results

The relative FID score: $\frac{\operatorname{FID}\left(Q_{B_{\theta}, E}\right)}{\operatorname{FID}\left(B_{\theta}\right)}$

IHM [Turner et al., 2019 DOT [Tanaka 2019] Langevin (ours)

For a given generator B_{θ} and energy E, samples always better (FID score) than generator alone.

Examples: moving between modes

Tempered GEBM Cifar10 samples at different stages of sampling using KLA. Early samples \rightarrow late samples.
Model run at lower friction (but still low temperature, $\beta=100$) for mode exploration.

Summary

- Generalized energy based model:
- End-to-end model incorporating generator and critic
- Always better samples than generator alone.

■ ICLR 2021
https://github.com/MichaelArbel/GeneralizedEBM
arXiv.org > stat > arXiv:2003.05033
Statistics > Machine Learning
[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]

Generalized Energy Based Models

Michael Arbel, Liang Zhou, Arthur Gretton

Summary

- Generalized energy based model:
- End-to-end model incorporating generator and critic
- Always better samples than generator alone.

■ ICLR 2021

https://github.com/MichaelArbel/GeneralizedEBM

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning
[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]
Generalized Energy Based Models
Michael Arbel, Liang Zhou, Arthur Gretton

NeurIPS 2020:

arXiv.org > cs > arXiv:2003.06060
Computer Science > Machine Learning
(Submitted on 12 Mar 2020 (v1), last revised 24 Mar 2020 (this version, v2)]
Your GAN is Secretly advan Energy-based Model
and You Should use Discriminator Driven
Latent Sampling
Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle,
Liam Paull, Yuan Cao, Yoshua Bengio

ICLR 2021:

arXiv.org > cs > arXiv:2012.00780	Search...
Computer Science > Machine Learning	
[Submitted on 1 Dee 2020 (v1), inst revised 5 Jun 2021 (chis version, va)]	
Refining Deep Generati Gradient Flow	ato

Abdul Fatir Ansari, Ming Liang Ang, Harold Soh
ICLR 2021:

arXiv.org > cs > arXiv:2010.00654
Computer Science > Machine Learning
Help\|
[Submitred on 1 oct 2020(v1), /ast revised 9 Feb 2022 (sthis version, v22]
VAEBM: A Symbiosis between Variational
Autoencoders and Energy-based Models
Zhisheng Xiao, Karsten Kreis, Jan Kautz, Arash Vahdat

How to find the best kernel for MMD

Integral prob. metric vs feature difference

The MMD:
$M M D(P, Q ; F)$
$=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right]$
$=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}$

The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

$$
M M D^{2}(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2}
$$

The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathbb{P P}_{P} k\left(X, X^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbb{Q Q}_{Q} k\left(Y, Y^{\prime}\right)}_{(\mathrm{a})}-\underbrace{2 \underbrace{}_{P, Q} k(X, Y)}_{(\mathrm{b})}
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathbb{P}_{P} k\left(X, X^{\prime}\right)}_{(\mathrm{a})}+\underbrace{\mathbb{E}_{Q} k\left(Y, Y^{\prime}\right)}_{(\mathrm{a})}-\underbrace{2 \mathbb{E}_{P, Q} k(X, Y)}_{(\mathrm{b})}
\end{aligned}
$$

$(a)=$ within distrib. similarity,$(b)=$ cross-distrib. similarity.

The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathrm{E}_{P} k\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathrm{E}_{Q} k\left(Y, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathrm{E}_{P, Q} k(X, Y)}_{\text {(b) }}
\end{aligned}
$$

Illustration of MMD

- Dogs $(=P)$ and fish ($=Q$) example revisited

■ Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}\right.$, fish $\left._{j}\right)$, or $k\left(\right.$ fish $_{i}$, fish $\left._{j}\right)$

Illustration of MMD

The maximum mean discrepancy:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right) \\
\\
\end{gathered}
$$

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

How does this help decide whether $P=Q$?

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".
- Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$
- should see $\widehat{M M D}^{2}$ "far from zero"

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".
- Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$
- should see $\widehat{M M D}^{2}$ "far from zero"

Want Threshold c_{α} for $\widehat{M M D}^{2}$ to get false positive rate α

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Draw $n=200$ i.i.d samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Draw $n=200$ i.i.d samples from P and Q

- Laplace with different y -variance.
- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Draw $n=200$ new samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.5$

Number of MMDs: 2

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 150 times ...
Number of MMDs: 150

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 300 times ...
Number of MMDs: 300

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Repeat this 3000 times ...
Number of MMDs: 3000

Asymptotics of $\widehat{M M D}^{2}$ when $P \neq Q$
When $P \neq Q$, statistic is asymptotically normal,

$$
\frac{\widehat{\mathrm{MMD}}^{2}-\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}} \xrightarrow{D} \mathcal{N}(0,1)
$$

where variance $V_{n}(P, Q)=O\left(n^{-1}\right)$.

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

What happens when P and Q are the same?

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 10

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$
■ Case of $P=Q=\mathcal{N}(0,1)$
Number of MMDs: 20

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 50

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 100

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 1000

Asymptotics of $\widehat{M M D}^{2}$ when $P=Q$
Where $P=Q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}}^{2} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

MMD density under \mathcal{H}_{0}

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

A statistical test

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
\operatorname{lon} & \ldots
\end{array}\right] \\
& Y=\left[\begin{array}{ll}
\log
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=\left[\begin{array}{ll}
\operatorname{lon} & \operatorname{mon}
\end{array}\right] \\
& \tilde{Y}=\left[\begin{array}{ll}
\operatorname{lom}
\end{array}\right]
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
\tilde{X}= & {\left[\begin{array}{c}
\tilde{Y}= \\
\widehat{M M D}^{2}= \\
\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \\
\\
+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{y}_{i}, \tilde{y}_{j}\right) \\
\\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(\tilde{x}_{i}, \tilde{y}_{j}\right)
\end{array}\right.}
\end{aligned}
$$

Permutation simulates
$P=Q$

The best test for the job

- A test's power depends on $k\left(x, x^{\prime}\right), P$, and Q (and n)

■ With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem

- But, for many P and Q, will have terrible power with reasonable n !

The best test for the job

- A test's power depends on $k\left(x, x^{\prime}\right), P$, and Q (and $\left.n\right)$

■ With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem

- But, for many P and Q, will have terrible power with reasonable n !

■ You can choose a good kernel for a given problem

- You can't get one kernel that has good finite-sample power for all problems
- No one test can have all that power

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

- But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
- But choice of σ is very important for finite $n \ldots$

■ ... and some problems (e.g. images) might have no good choice for σ

Graphical illustration

■ Maximising test power same as minimizing false negatives

Optimizing kernel for test power

The power of our test (Pr_{1} denotes probability under $P \neq Q$):

$$
\operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

where
$\square \Phi$ is the CDF of the standard normal distribution.

- \hat{c}_{α} is an estimate of c_{α} test threshold.

Optimizing kernel for test power

The power of our test (Pr_{1} denotes probability under $P \neq Q$):

$$
\begin{aligned}
& \operatorname{Pr}_{1}(n{\left.\widehat{\mathrm{MMD}^{2}}>\hat{c}_{\alpha}\right)}^{\rightarrow \Phi(\underbrace{\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}}_{O\left(n^{1 / 2}\right)}-\underbrace{\left.\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)}_{O\left(n^{-1 / 2}\right)}}=\$ \text {. }
\end{aligned}
$$

For large n, second term negligible!

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $P \neq Q$):

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

To maximize test power, maximize

$$
\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}
$$

Data splitting

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels
■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

$$
X \sim P
$$

CIFAR-10.1 (Recht+ ICML 2019)

$$
Y \sim Q
$$

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels
■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

```
arXiv.org > stat > arXiv:2002.09116
```

Statistics > Machine Learning
[Submitted on 21 Feb 2020]
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland
ICML 2020

Questions?

Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel
Gatsby Computational Neuroscience Unit
University College London
michael.n.arbel@gmail.com
\section*{Adil Salim}
Visual Computing Center KAUST
adil.salim@kaust.edu.sa

Sanity check: reduction to EBM case

