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Testing goodness of fit
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Before: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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Now: statistical model criticism

MMD(P ;Q) = supkf kF�1[EQ f � Epf ]
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Can we compute MMD with samples from Q and a model P?
Problem: usualy can’t compute Epf in closed form.
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Stein idea

To get rid of Epf in
sup

kf kF�1
[Eq f � Epf ]

we define the Stein operator

[Tpf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

Then
EPTP f = 0

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)
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Stein idea: proof

Ep [Tpf ] =
Z �

1
p(x )

d
dx

(f (x )p(x ))
�
p(x )dxZ �

d
dx

(f (x )p(x ))
�
dx

= [f (x )p(x )]1�1
= 0
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Kernel Stein Discrepancy
Stein operator

Tpg =
1

p(x )
d
dx

(g(x )p(x ))

Kernel Stein Discrepancy (KSD)

KSD(p; q ;F) = sup
kgkF�1

EqTpg � EpTpg
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Simple expression using kernels
Re-write stein operator as:

[Tpg ] (x ) =
1

p(x )
d
dx

(g(x )p(x ))

=
d
dx

g(x ) + g(x )
1

p(x )
d
dx

p(x )

=
d
dx

g(x ) + g(x )
d
dx

log p(x )

Can we get a dot product in feature space?

[Tpg ] (x ) =
�

d
dx

log p(x )
�

g(x ) +
d
dx

g(x )

=: hg ; �x iF
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Simple expression using kernels

Reproducing property for derivatives: for differentiable k(x � x 0),

d
dx

g(x ) =
�
g ;

d
dx

k(x ; �)
�
F

From previous slide, and denoting z � q ,

[Tpg ] (z ) =
�

d
dx

log p(z )
�

g(z ) +
d
dx

g(z )

=:

�
g ; k(z ; �)

d
dz

log p(z ) +
d
dz

k(z ; �)| {z }
�z

�
F
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Kernel stein discrepancy
The kernel Stein discrepancy:

KSD(p; q ;F) = sup
kgkF�1

Ez�q hg ; �z iF

= kEz�q�z kF

Closed-form expression for KSD test statistic:

kEz�q�z k
2
F = Ez ;z 0�qhp(z ; z 0)

where

hp(x ; y) := @x log p(x )@y log p(y)k(x ; y)

+ @y log p(y)@xk(x ; y) + @x log p(x )@yk(x ; y)

+ @x@yk(x ; y)

Do not need to normalize p, or sample from it.
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Constructing threshold for a statistical test
Given samples fzigni=1 � q , empirical KSD (test statistic) is:

[KSD(p; q ;F) :=
1

n(n � 1)

nX
i=1

nX
j 6=i

hp(zi ; zj ):

When q = p, obtain estimate of null distribution with wild bootstrap:

]KSD(p; q ;F) :=
1

n(n � 1)

nX
i=1

nX
j 6=i

�i�jhp(zi ; zj ):

where f�ig
n
i=1 i.i.d, E(�i ) = 0; and E(�2i ) = 1

Consistent estimate of the null distribtion when q = p
Consistent test (Type II error goes to zero) under a rich class of
alternatives (see Chwialkowski, Strathmann, G., ICML 2016 for
details).
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Statistical model criticism

Chicago crime data
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components

Stein witness function
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components

Stein witness function
Code: https://github.com/karlnapf/kernel_goodness_of_fit 12/61



Kernel stein discrepancy
Further applications:

Evaluation of approximate MCMC methods.
(Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)

What kernel to use?

The inverse multiquadric kernel,

k(x ; y) =
�
c + kx � yk22

��
for � 2 (�1; 0).
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Testing statistical dependence
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Dependence testing

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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MMD as a dependence measure?

Could we use MMD?

MMD(PXY| {z }
P

;PXPY| {z }
Q

;H�)

We don’t have samples from Q := PXPY , only pairs
f(xi ; yig

n
i=1

i:i:d:
� PXY

� Solution: simulate Q with pairs (xi ; yj ) for j 6= i .

What kernel � to use for the RKHS H�?
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MMD as a dependence measure
Kernel k on images with feature space F ,

Kernel l on captions with feature space G,
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MMD as a dependence measure
Kernel k on images with feature space F ,

Kernel l on captions with feature space G,

Kernel � on image-text pairs: are images and captions similar?

17/61



MMD as a dependence measure

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

MMD2( bPXY ; bPX bPY ;H�) :=
1
n2 trace(KL)

( K, L column centered)
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MMD as a dependence measure

Two questions:

Why the product kernel? Many ways to combine kernels - why not
eg a sum?

Is there a more interpretable way of defining this dependence
measure?
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Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?

0 0.2 0.4 0.6 0.8 1
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1

1.5
Correlation: 0.88
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Illustration: dependence 6=correlation

Given: Samples from a distribution PXY

Goal: Are X and Y dependent?
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Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5
Correlation: 0.00

21/61



Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5
Correlation: 0.00

-2 0 2

-1

-0.5

0

0.5

-2 0 2

-1

-0.5

0

0.5

21/61



Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5
Correlation: 0.00

-2 0 2

-1

-0.5

0

0.5

-2 0 2

-1

-0.5

0

0.5

-1 -0.5 0 0.5

-1

-0.5

0

0.5
Correlation: 0.90 

21/61



Define two spaces, one for each witness

Function in F

f (x ) =
1X

j=1

fj'j (x )

Feature map

Kernel for RKHS F on X :

k(x ; x 0) = h'(x ); '(x 0)iF

Function in G

g(y) =
1X

j=1

gj�j (y)

Feature map

Kernel for RKHS G on Y:

l(x ; x 0) = h�(y); �(y 0)iG
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

cov[f (x )g(y)]
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

cov

240@ 1X
j=1

fj'j (x )

1A0@ 1X
j=1

gj�j (y)

1A35
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

Exy

240@ 1X
j=1

fj ~'j (x )

1A0@ 1X
j=1

gj ~�j (y)

1A35

Feature centering: ~'(x ) = '(x )� Ex'(x ) and ~�(y) = �(y)� Ey�(y).
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The constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

Exy

240@ 1X
j=1

fj ~'j (x )

1A0@ 1X
j=1

gj ~�j (y)

1A35

Feature centering: ~'(x ) = '(x )� Ex'(x ) and ~�(y) = �(y)� Ey�(y).

Rewriting:

Exy [f (x )g(y)]

=

2664
f1
f2
...

3775
>

Exy

0BB@
2664

~'1(x )
~'2(x )
...

3775 h ~�1(y) ~�2(y) : : :
i1CCA

| {z }
C ~'(x)~�(y)

2664
g1
g2
...

3775

23/61
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The constrained covariance is
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...
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COCO: max singular value of feature covariance C ~'(x )~�(y)
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Does feature space covariance exist?
Does an uncentered covariance “matrix” (operator) in feature space
exist? I.e. is there some C'(x )�(y) : G ! F such that

hf ;C'(x )�(y)giF = Exy [f (x )g(y)]

Does “something” exist ! Riesz theorem.
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Does feature space covariance exist?
Does an uncentered covariance “matrix” (operator) in feature space
exist? I.e. is there some C'(x )�(y) : G ! F such that

hf ;C'(x )�(y)giF = Exy [f (x )g(y)]

Does “something” exist ! Riesz theorem.
Reminder: Riesz representation theorem
In a Hilbert space H, all bounded linear operators A (meaning
jAh j � �AkhkH) can be written

Ah = hh(�); gA(�)iH

for some gA 2 H.
We used this theorem to show the mean embedding �P exists.
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The Hilbert Space HS(G;F)

F and G separable Hilbert spaces.
(gj )j2J orthonormal basis for G.
Index set J either finite or countably infinite.

hgi ; gj iG :=

8<:1 i = j ;

0 i 6= j

Linear operators L : G ! F and M : G ! F

Hilbert space HS(G;F)

hL;M iHS =
X
j2J

hLgj ;Mgj iF

(independent of orthonormal basis)
Hilbert-Schmidt norm of the operators L:

kLk2HS =
X
j2J

kLgj k
2
F

L is Hilbert-Schmidt when this norm is finite. 25/61
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The tensor product a 
 b is in HS(G;F)

Given a 2 F and b 2 G, the tensor product a 
 b as a rank-one
operator from G to F (generalize finite case a b>)

(a 
 b)g 7! hg ; biG a

Is a 
 b 2 HS(G;F)?

ka 
 bk2HS =
X
j2J

k(a 
 b)gj k
2
F

=
X
j2J

a hb; gj iG
2F

= kak2F
X
j2J

���hb; gj iG
���2

= kak2Fkbk
2
G

where we use Parseval’s identity. Thus, the operator is
Hilbert-Schmidt. 26/61
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Covariance operator in RKHS
Reminder: does there exist C'(x )�(y) : G ! F in some Hilbert space
HS(G;F) such that

D
C'(x )�(y);A

E
HS

= Exy h'(x )
 �(y);AiHS

and in particular,D
C'(x )�(y); f 
 g

E
HS

= Exy [f (x )g(y)]

Proof: Use Riesz representer theorem. The operator

C'(x )�(y) : HS(G;F) ! <

A 7! Exy h�(x )
  (y);AiHS

is bounded when Exy (k'(x )
 �(y)kHS) <1.
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Covariance operator in RKHS

Proof (continued): Condition comes from

jExy h'(x )
 �(y);AiHSj � Exy jh'(x )
 �(y);AiHSj

� kAkHSExy (k'(x )
 �(y)kHS)

(first Jensen, then Cauchy-Schwarz). Thus covariance operator exists
by Riesz.
Simpler condition:

Exy (k'(x )
 �(y)kHS) = Exy (k'(x )kFk�(y)kG)

= Exy

�q
k(x ; x )l(y ; y)

�
<1:
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Covariance operator in RKHS

Proof (continued): Condition comes from
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Covariance operator in RKHS

Does the covariance do what we want? Namely,D
C'(x )�(y); f 
 g

E
HS

= Exy [f (x )g(y)]

Proof: D
f ;C'(x )�(y)g

E
F =

D
C'(x )�(y); f 
 g

E
HS

(a)
= Exy h'(x )
 �(y); f 
 giHS
= Exy [hf ; '(x )iF hg ; �(y)iF ]

= Exy [f (x )g(y)]
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Back to the constrained covariance
The constrained covariance is

COCO(PXY ) = sup
kf kF � 1
kgkG � 1

cov[f (x )g(y)]

-2 -1 0 1 2
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Correlation: 0.00

-2 0 2

-1

-0.5

0

0.5
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-1 -0.5 0 0.5

-1

-0.5

0

0.5
Correlation: 0.90 
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Computing COCO from finite data
Given sample f(xi ; yi )g

n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Computing COCO from finite data

Given sample f(xi ; yi )g
n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

\COCO is largest eigenvalue max of"
0 1

n
fK eL

1
n
eLfK 0

# "
�

�

#
= 

" fK 0
0 eL

# "
�

�

#
:

fKij = h'(xi )� �̂x ; '(xj )� �̂x iF =: h ~'(xi ); ~'(xj )iF

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Computing COCO from finite data
Given sample f(xi ; yi )g

n
i=1

i:i:d:
� PXY , what is empirical \COCO ?

\COCO is largest eigenvalue max of"
0 1

n
fK eL

1
n
eLfK 0

# "
�

�

#
= 

" fK 0
0 eL

# "
�

�

#
:

fKij = h'(xi )� �̂x ; '(xj )� �̂x iF =: h ~'(xi ); ~'(xj )iF

Witness functions:

f (x ) /
nX

i=1

�i

24k(xi ; x )�
1
n

nX
j=1

k(xj ; x )

35

G., Smola., Bousquet, Herbrich, Belitski, Augath, Murayama, Pauls, Schoelkopf, and Logothetis,

AISTATS’05
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Empirical COCO: proof
The Lagrangian is

L(f ; g ; �; ) =
1
n

nX
i=1

240@f (xi )�
1
n

nX
j=1

f (xj )

1A0@g(yi )�
1
n

nX
j=1

g(yj )

1A35
| {z }

covariance

�
�

2

�
kf k2F � 1

�
�


2

�
kgk2G � 1

�
| {z }

smoothness constraints

with Lagrange multipliers � � 0 and  � 0:
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Empirical COCO: proof
The Lagrangian is

L(f ; g ; �; ) =
1
n

nX
i=1

240@f (xi )�
1
n

nX
j=1

f (xj )

1A0@g(yi )�
1
n

nX
j=1

g(yj )

1A35
| {z }

covariance

�
�

2

�
kf k2F � 1

�
�


2

�
kgk2G � 1

�
| {z }

smoothness constraints

with Lagrange multipliers � � 0 and  � 0:
Assume:

f =
nX

i=1

�i ~'(xi ) g =
nX

i=1

�i ~ (yi )

for centered ~'(xi ); ~�(yi ).
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Proof (continued)

First step is smoothness constraint:

kf k2F � 1 =

* nX
i=1

�i ~'(xi );
nX

i=1

�i ~'(xi )

+
F
� 1

= �>fK�� 1

33/61



Proof (continued)

First step is smoothness constraint:

kf k2F � 1 =

* nX
i=1

�i ~'(xi );
nX

i=1

�i ~'(xi )

+
F
� 1

= �>fK�� 1
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Proof (continued)
Second step is covariance:

=
1
n

nX
i=1

hf ; ~'(xi )iF
D
g ; ~�(yi )

E
G

=
1
n

nX
i=1

D nX
`=1

�` ~'(x`)| {z }
f

; ~'(xi )
E
F

D
g ; ~�(yi )

E
G

=
1
n
�>fK eL�
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Proof (continued)
Second step is covariance:

=
1
n

nX
i=1

hf ; ~'(xi )iF
D
g ; ~�(yi )

E
G

=
1
n

nX
i=1

D nX
`=1

�` ~'(x`)| {z }
f

; ~'(xi )
E
F

D
g ; ~�(yi )

E
G

=
1
n
�>fK eL�

Kernel matrices between centered variables:fK = HKH H = In �
1
n
1n1>n :
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What is a large dependence with COCO?

−2 0 2
−3

−2

−1

0

1

2

3

X

Y

Smooth density

−4 −2 0 2 4
−4

−2

0

2

4

X

Y

500 Samples, smooth density

−2 0 2
−3

−2

−1

0

1

2

3

X
Y

Rough density

−4 −2 0 2 4
−4

−2

0

2

4

X

Y

500 samples, rough density

Density takes the form:

PXY / 1+sin(!x ) sin(!y)

Which of these is the more “dependent”?
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Finding covariance with smooth transformations

Case of ! = 1:

-4 -2 0 2 4
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4
Correlation: 0.31
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Correlation: 0.50      COCO: 0.09
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Finding covariance with smooth transformations

Case of ! = 2:
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4
Correlation: 0.02
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Correlation: 0.54      COCO: 0.07
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Finding covariance with smooth transformations

Case of ! = 3:
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Correlation: 0.03
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Correlation: 0.44      COCO: 0.04
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Finding covariance with smooth transformations

Case of ! = 4:
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Finding covariance with smooth transformations

Case of ! =??:
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Finding covariance with smooth transformations

Case of ! = 0: uniform noise! (shows bias)
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Dependence largest when at “low” frequencies

As dependence is encoded at higher frequencies, the smooth
mappings f ; g achieve lower linear dependence.

Even for independent variables, COCO will not be zero at finite
sample sizes, since some mild linear dependence will be found by f,g
(bias)

This bias will decrease with increasing sample size.
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Can we do better than COCO?
A second example with zero correlation.
First singular value of feature covariance C'(x )�(y):
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1
: 0.11
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Can we do better than COCO?
A second example with zero correlation.
Second singular value of feature covariance C'(x )�(y):
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Can we do better than COCO?
A second example with zero correlation.
Second singular value of feature covariance C'(x )�(y):
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2
: 0.06
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The Hilbert-Schmidt Independence Criterion

Writing the ith singular value of the feature covariance C'(x )�(y) as

i := COCOi (PXY ;F ;G);

define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC 2(PXY ;F ;G) =
1X
i=1

2i :

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.
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The Hilbert-Schmidt Independence Criterion

Writing the ith singular value of the feature covariance C'(x )�(y) as

i := COCOi (PXY ;F ;G);

define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC 2(PXY ;F ;G) =
1X
i=1

2i :

G, Bousquet , Smola., and Schoelkopf, ALT05; G,., Fukumizu, Teo., Song., Schoelkopf., and Smola,
NIPS 2007,.

HSIC is MMD with product kernel!

HSIC 2(PXY ;F ;G) = MMD2(PXY ;PXPY ;H�)

where �((x ; y); (x 0; y 0)) = k(x ; x 0)l(y ; y 0).
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Asymptotics of HSIC under independence

Given sample f(xi ; yig
n
i=1

i:i:d:
� PXY , what is empirical\HSIC ?

Empirical HSIC (biased)

\HSIC =
1
n2 trace(KL)

Kij = k(xi ; xj ) and Lij = l(yiyj ) (K and L computed with
empirically centered features)

Statistical testing: given PXY = PXPY , what is the threshold c�
such that P(\HSIC > c�) < � for small �?
Asymptotics of\HSIC when PXY = PXPY :

n\HSIC D
!

1X
l=1

�lz 2
l ; zl � N (0; 1)i:i:d:

where �l l (zj ) =
R

hijqr l (zi )dFi;q;r ; hijqr = 1
4!

P(i;j ;q;r)
(t;u;v ;w)

ktu ltu + ktu lvw � 2ktu ltv
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A statistical test

Given PXY = PXPY , what is the threshold c� such that
P(\HSIC > c�) < � for small � (prob. of false positive)?

Original time series:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Permutation:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y7 Y3 Y9 Y2 Y4 Y8 Y5 Y1 Y6 Y10

Null distribution via permutation
� Compute HSIC for fxi ; y�(i)gn

i=1 for random permutation � of indices
f1; : : : ;ng. This gives HSIC for independent variables.

� Repeat for many different permutations, get empirical CDF
� Threshold c� is 1� � quantile of empirical CDF 46/61
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Application: dependence detection across languages
Testing task: detect dependence between English and French text

Les	ordres	de	gouvernements	
provinciaux	et	municipaux	
subissent	de	fortes	pressions

Honourable	senators,	I	have	a	
question	for	the	Leader	of	the	
Government	in	the	Senate

Text	from	the	aligned	hansards of	the	36th parliament	of	canada,
https://www.isi.edu/natural-language/download/hansard/

YX
Honorables	sénateurs,	ma	question	
s’adresse	au	leader	du	
gouvernement	au	Sénat

Au	contraire,	nous	avons	augmenté	
le	financement	fédéral	pour	le	
développement	des	jeunes	

No	doubt	there	is	great	pressure	
on	provincial	and	municipal	
governments	

In	fact,	we	have	increased	
federal	investments	for	early	
childhood	development.	

...
...
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Application: dependence detection across languages
Testing task: detect dependence between English and French text
k -spectrum kernel, k = 10, sample size n = 10

\HSIC =
1
n2 trace(KL)

(K and L column centered) 48/61



Application:Dependence detection across languages

Results (for � = 0:05)

k-spectrum kernel: average Type II error 0

Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for
“Agriculture” transcripts. Similar results for Fisheries and
Immigration transcripts.
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Testing higher order interactions
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Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

X Y

Z
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Detecting higher order interaction
How to detect V-structures with pairwise weak individual
dependence?

X ?? Y ;Y ?? Z ;X ?? Z
X1 vs Y1 Y1 vs Z1

X1 vs Z1 X1*Y1 vs Z1

X Y

Z

X ;Y i:i:d:
� N (0; 1)

Z j X ;Y � sign(XY )Exp( 1p
2
)

Fine print: Faithfulness violated here!
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V-structure discovery

X Y

Z

Assume X ?? Y has been established.
V-structure can then be detected by:

Consistent CI test: H0 : X ?? Y jZ [Fukumizu et al. 2008, Zhang et al. 2011]

Factorisation test: H0 : (X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X
(multiple standard two-variable tests)

How well do these work?
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Detecting higher order interaction

Generalise earlier example to p dimensions

X ?? Y ;Y ?? Z ;X ?? Z
X1 vs Y1 Y1 vs Z1

X1 vs Z1 X1*Y1 vs Z1

X Y

Z

X ;Y i:i:d:
� N (0; 1)

Z j X ;Y � sign(XY )Exp( 1p
2
)

X2:p ;Y2:p ;Z2:p
i :i :d :
� N (0; Ip�1)

Fine print: Faithfulness violated here!
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V-structure discovery

CI test for X ?? Y jZ from Zhang et al. (2011), and a factorisation test,
n = 500
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY
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D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ
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Lancaster interaction measure

Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

X Y

Z

X Y

Z

X Y

Z

X Y

Z

PXY Z −PXPY Z −PY PXZ −PZPXY +2PXPY PZ

∆LP =
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

X Y

Z

X Y

Z

X Y

Z

X Y

Z

PXY Z −PXPY Z −PXZPY −PXYPZ +2PXPY PZ

∆LP = 0

Case of PX ?? PYZ
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Lancaster interaction measure

Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

(X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X ) �LP = 0:

...so what might be missed?
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Lancaster interaction measure
Lancaster interaction measure of (X1; : : : ;XD) � P is a signed
measure �P that vanishes whenever P can be factorised non-trivially.

D = 2 : �LP = PXY � PXPY

D = 3 : �LP = PXYZ �PXPYZ �PY PXZ �PZPXY +2PXPY PZ

�LP = 0; (X ;Y ) ?? Z _ (X ;Z ) ?? Y _ (Y ;Z ) ?? X

Example:

P(0; 0; 0) = 0:2 P(0; 0; 1) = 0:1 P(1; 0; 0) = 0:1 P(1; 0; 1) = 0:1
P(0; 1; 0) = 0:1 P(0; 1; 1) = 0:1 P(1; 1; 0) = 0:1 P(1; 1; 1) = 0:2
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A kernel test statistic using Lancaster Measure

Construct a test by estimating k�� (�LP)k2H�
; where � = k 
 l 
m :

k��(PXYZ � PXY PZ � � � � )k
2
H�

=

h��PXYZ ; ��PXYZ iH�
� 2 h��PXYZ ; ��PXY PZ iH�

� � �
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A kernel test statistic using Lancaster Measure

Table: V -statistic estimators of h���; ��� 0iH�

(without terms PXPY PZ ). H
is centering matrix I � n�1

Lancaster interaction statistic: Sejdinovic, G, Bergsma, NIPS13

k�� (�LP)k2H�
=

1
n2 (HKH �HLH �HMH )++ :

Empirical joint central moment in the feature space 57/61
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V-structure discovery

Lancaster test, CI test for X ?? Y jZ from Zhang et al. (2011), and a
factorisation test, n = 500 58/61



Interaction for D � 4

Interaction measure valid for all D :
(Streitberg, 1990)

�SP =
X
�

(�1)j�j�1 (j�j � 1)!J�P

� For a partition �, J� associates to the
joint the corresponding factorisation,
e.g., J13j2j4P = PX1X3PX2PX4 :
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e.g., J13j2j4P = PX1X3PX2PX4 :

1e+04

1e+09

1e+14

1e+19

1 3 5 7 9 11 13 15 17 19 21 23 25
D

N
u

m
b

e
r 

o
f 

p
a

rt
it
io

n
s
 o

f 
{1

,.
..

,D
} Bell numbers growth

59/61



Co-authors

From Gatsby:
Kacper Chwialkowski

Wittawat Jitkrittum

Heiko Strathmann

External
collaborators:
Wicher Bergsma

Olivier Bousquet

Kenji Fukumizu

Bernhard Schoelkopf

Dino Sejdinovic

Bharath Sriperumbudur

Alex Smola

Le Song

Zoltan Szabo

60/61



Questions?
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