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Observation vs intervention

Conditioning from observation: E[Y|A = a] = Y _ E[Y|a, z]p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.85
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect (intervention): E[Y(%)] = 3 E[Y|a, z]p(z)

From our intervention (making all patients take a treatment):
m P(Y(®ls) = cyred) = 0.64
m P(Y(ueery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the

Counterfactual and Graphical Approaches to Causality 2/56



Questions we will solve

/



Outline

Causal effect estimation, observed covariates:

m Average treatment effect (ATE), conditional average treatment effect
(CATE)

Causal effect estimation, hidden covariates:

m ... instrumental variables, proxy variables

What’s new? What is it good for?

m Treatment A, covariates X, etc can be multivariate, complicated...

m ...by using or feature representations
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Model assumption: linear functions of features

All learned functions will take the form:

1z)=7"0(x) = (71,0(z))y
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Model assumption: linear functions of features

All learned functions will take the form:

1(z) =" p(z) = (1,0(2))y
Option 1: Finite dictionaries of learned neural net features ¢4(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

(p(z:), o(2))gy = k(i )

Kernel is feature dot product.

Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika, 2023)

Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢s(z;) with outcomes v;:

7 = argmin (Z (v - 7T<pe(¢r¢))2 + AH’YHZ) (1)

1=1
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Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢s(z;) with outcomes v;:

n
X - T 2 2
= i — )+ A 1
7 = argmin (2_:1 (v =7 0a())” + A1l ) (1)

Solution for linear final layer «:

7= CY(Cix + 0
1 n
Cyx = > lvi os(w) ]
1=1
1 n
Cik = = > lpo(w:) po(@) ]

@
Il
—
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Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢s(z;) with outcomes v;:

n
X - T 2 2
g arg min (El(y 7' ps(:))” + Al ) (1)

Solution for linear final layer «:
y=clchr+0t

C(e) = Z[yz' vo(zi)']

6
c = —z po(z:) po(:)]
=1
How to solve for 4:
Substitute 4 into (1), backprop through Cholesky for 6.

More details: Galashov, Da Costa, Xu, Hennig, G, Closed-Form Last Layer Optimization
(2025, arxiv:2510.04606) 6/%6



Model fitting: kernel ridge regression
Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +Auvuﬂ>

1=1
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Model fitting: kernel ridge regression
Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +>\H“YHH>

1=1

Infinite dimensional solution at z:
’7($) = CYX(CXX + A)fl(p(il:)

Cyx = ii[yi o(z:) ']
Cxx = = 3 lo(m) o(a:) ]

1=1
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Model fitting: kernel ridge regression

Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

y = argmip (Z 2)))? +}\H’YHH>

1=1

Kernel solution at =

(as weighted sum of y) ZZ
n 0.4

= vifi(z) g 02

i=1 0

B(z) = (Kxx + )\I)_lka 0z

0.4

(Kxx)y = k(zi,3j) = (o(@i), 0(zj))yy, o 4 2 0 2 4 6 s
(kxz); = k(=i z)
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Observed covariates: (conditional) ATE

Kernels (Biometrika 2023):

ar (iv > econ > arXiv:2010.04855

NN features (ICLR 2023):

Search,

Help | Adv
Economics > Economet)

ar (1v > ¢s > arXiv:2210.06610

Computer Science > Machine Learning

[Submited on 10 Oct 2020 1), lat revised 23 Aug 2022 (i vrsion, vo)] Pcbmicted on 12 0ct 2022]

Kernel Methods for Causal Functions: Dose, Heterogeneous, A Neural Mean Embedding Approach for Back-door and
and Incremental Response Curves Front-door Adjustment

Liyuan Xu, Arthur Gretton

Rahul Singh, Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:
https://github.com/1iyuan9988/DeepFrontBackDoor/
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https://github.com/liyuan9988/DeepFrontBackDoor/

Observed covariates: (conditional) ATE

Kernel features

(in revision, Biometrika):

ar (iv > econ > arXiv:2010.04855

Economics > Econometrics.
[submitted on 10 Oct 2020 (v1), last revised 23 Aug 2022 (thi version, v6)]

Kernel Methods for Causal Functions: Dose, Heterogeneous,
and Incremental Response Curves

Rahul Singh, Liyuan Xu, Arthur Gretton

NN features (ICLR 2023):

ar \/\1V > ¢s > arXiv:2210.06610

Computer Science > Machine Learning
[Submitted on 12 Oct 2022]

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:

https://github.com/1liyuan9988/DeepFrontBackDoor/
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https://github.com/liyuan9988/DeepFrontBackDoor/

Average treatment effect

Potential outcome (intervention):
E[Y()] = /E[Y\a,w]dp(x)

(the average structural function; in epidemiology, for continuous a,

the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y () 1L A|X. (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

m A: treatment (training hours)

m Y: outcome (percentage
employment)

m X: covariates (age, education, @
marital status, ...) @
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:
m covariate features p(z) with
kernel k(z, z') @
m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):
¢(z,a) =p(a)®p(z)  K([a,z][a,2]) = k(a, a')k(z, ')
Ridge regression solution:

Az, a) = viBi(a,2), Bla,z) =[Kaa® Kxx + AI]7" Kaa © Ky,
1=1



ATE (dose-response curve)

Well-specified setting:
E[Y]a,z] =: 10(a, ) = (710, ¥(a) ® (z))
ATE as feature space dot product:

ATE(a) = E[yo(a, X)]

= E [(70, ¢(a) ® p(X))] @
g
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ATE (dose-response curve)
Well-specified setting:

E[Y’a7 ZL’] = 70(0’7 (L‘) = <70: ‘P(a) ® ‘p(m»
ATE as feature space dot product:

ATE(a) = E[yo(a, X)]

el e@ee()]  [(a)
= (70, ¢(a) ®E[§g{/”>

Feature map of probability P(X),

px = Elpi(X)]...]
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ATE: example
US job corps: training for dis-
advantaged youths:

m X: covariate/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (percent
employment) @
Empirical ATE:
ATE(a) = E (%0, o(X) ® p(a))]

1 n
— E ZYT(KAA © Kxx + ’I‘L)\I)_l(KAa ©®© KX&%)
1=1

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study. 13/56

Singh, Xu, G (2023).



ATE: results
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m First 12.5 weeks of classes confer employment gain: from 35% to 47%.
m [RKHS] is our K’ITE(&).
| Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.
Singh, Xu, G (2023)
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Conditional average treatment effect

Well-specified setting:

E[Y|a,z,v] =: 70(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @ @
CATE(CL, ’U) /

=E[Y@|V = v
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Conditional average treatment effect

Well-specified setting:

E[Y|a,z,v] =: 70(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @
CATE(a, v)

=E[Y@|V = v
=E[{70,0(a) ® p(X) @ o(V)) |V = 1]
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Conditional average treatment effect

Well-specified setting:

E[Y]a,z,v] = 7(a,z,v)
= (70, p(a) ® (z) ® (v)) .

Conditional ATE @
CATE(a, v)

=E[Y|V = v

=E[{70,p(a) ® p(X)® p(V)) |V = v]
=..7

How to take conditional expectation?

Density estimation for p(X|V = v)? Sample from p(X|V = v)?
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Conditional average treatment effect

Well-specified setting:

E[Y]a,z,v] = 7(a,z,v)
= (70, p(a) ® (z) ® (v)) .

Conditional ATE @ @
CATE( a, ’U) /

=E[Y|V = v

=E[{70,p(a) ® p(X)® p(V)) |V = v]
= (70, 9(a) ® E[p(X)|V = v] ® p(v))
KX | V=0

Learn conditional mean embedding: ux|v—, := Ex [@(X)|V = ]
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Regressing from feature space to feature space

Our goal: an operator 7y : Hy —Hx such that

Fop(v) = px|v—y

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.

Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning 16/56
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Regressing from feature space to feature space

Our goal: an operator 7y : Hy —Hx such that

Fop(v) = px|v—y

Assume

Fy € span{p(z) ® p(v)} < Fy € HS(Hy, Hx)
Implied smoothness assumption:
Eh(X)|V =v]€Hy VheHy

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
I = argmin ) [lo(ze) — Fp(ve)llg,, + Al 7 s
FEHS ;=4

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.
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Regressing from feature space to feature space
Our goal: an operator : Hy —Hx such that

o(v) = px|v—v

Assume

€ span{p(z) ® p(v)} <= € HS(Hy, Hx)
Implied smoothness assumption:
Er(X)|V =v]€Hy VhEHx
Kernel ridge regression from ¢(v) to infinite features ¢(z):
- argergénlzl lo(ze) = Fp(ue)ll3,, + Al 7 lIs
Ridge regression solution:

px|v—y = Elp(X)|V = v] ~ = o(ze)Be(v
=

1
B(v) = [Kvv + A1) ks 16/56



Conditional ATE: example

US job corps:
m X: confounder/context
(education, marital
status, ...)

m A: treatment (training
hours)

m Y: outcome (percent @ @
employed)
m V: age

Empirical CATE:
CATE(a,v) = (J0,0(a) ® Fo(v) & p(v))

(with consistency guarantees: see paper!)

Singh, Xu, G (2023) 17/56



Conditional ATE: results

24

221
9201 <
48.0 AL
1813
16 ' 49.0 36.0 ——]
500 1000 1500
Class-hours

Average percentage employment Y () for class hours a, conditioned
on age v. Given around 12-14 weeks of classes:

m 16 y/o: employment increases from 28% to at most 36%.

m 22 y/o: percent employment increases from 40% to 56%.

Singh, Xu, G (2023)
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...dynamic treatment effect...

Dynamic treatment effect: sequence A;, A; of treatments.

m potential outcomes Y(a) y(a) y(a,0)
m counterfactuals E [Y(ai’“é)ml =a, Ay = ag]
(c.f. the Robins G-formula)

Singh, Xu, G. (Bernoulli 2025) Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
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What if there are hidden confounders?
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Illustration: ticket prices for air travel

Ticket price A, seats sold Y.

0—0@

What is the effect on seats sold Y (%) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexiblg1/56
Approach for Counterfactual Prediction.



Illustration: ticket prices for air travel

Ticket price A, seats sold Y.
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Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexiblg1/56
Approach for Counterfactual Prediction.



Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

m Desire for travel:
X ~ N(w,0.01)

et 108}

D(‘maud X

T T

(6
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Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

m Desire for travel:
X ~ N(u,0.01)
~Ul-1o1l
K 21Y 3
m Price:
A=X+ 2,
Z ~ N(5,0.04)
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Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.
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X ~ N(u,0.01)
1 1
M~ u {_57 07 §}
m Price:
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Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

B e m Desire for travel:
R X ~ N(u,0.01)
11
B~ u {_57 07 §}
m Price:
A=X+ 7,
Z ~ N(5,0.04)
> m Seats sold:
Y=10—-A+2X

Average treatment effect:

ATE(a) = E[Y(®)] = /(10 ~a+2X)dp(X) =10 a
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Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

§ m Desire for travel:
X ~ N(,0.01)
14 1
pu{-4,0,3}
m Price:
A=X+ 2,
Z ~ N(5,0.04)
m Seats sold:
Y=10—-A+2X

Z is an instrument (cost of fuel). Condition on Z,
E[Y|Z] = 10 — E[A|Z] + 2E[X|Z]
N—_——

=0 22/56



Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

5.41

521

EY|Z]

4.8

4.6

4.6

4.8

5.0

ElA|Z]

m Desire for travel:
X ~ N(u,0.01)
1 1
w~ u {_57 07 5}
m Price:
A=X+ 2,
Z ~ N (5,0.04)
m Seats sold:
Y=10—-A+2X

Z is an instrument (cost of fuel). Condition on Z,

E[Y|Z] = 10 — E[A|Z] + 2E[X|Z]

N—_——
=0

Regressing from E[A|Z] to E[Y|Z] recovers causal relation! 22/56



Instrumental variable regression

The Sveriges Riksbank Prize in

Economic Sciences in Memory of
Alfred Nobel 2021

Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo:
Paul Kennedy Risdon Photography Paul Kennedy
David Card Joshua D. Angrist

Prize share: 1/4

Guido W. Imbens
Prize share: 1/2

Prize share: 1/4

The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2021 was divided, one
half awarded to David Card "for his empirical
contributions to labour economics", the other half
jointly to Joshua D. Angrist and Guido W. Imbens

"for their methodological contributions to the
analysis of causal relationships"
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Instrumental variable regression with NN features

m X: unobserved
confounder.

m A: treatment
m Y: outcome

B Z: instrument

Assumptions
E[X|Z]=0
ZpA
(Y L Z[A)g,

Y =7 ¢p(A)+ X

‘

®

gas
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Instrumental variable regression with NN features

m X: unobserved
confounder. e

‘

m A: treatment

m Y: outcome /
B Z: instrument @
Vad

Assumptions
E[X|Z]=0
LA Average causal effect:
(Y L Z]A), ATE(a) = [ E(Y|X, @)dp(X) =77 ¢o(a)

Y =97 ¢s(A) + X
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Instrumental variable regression with NN features

m X: unobserved
confounder. e

‘

m A: treatment -
m Y: outcome
®m Z: instrument @ @ v

Assumptions
E[X|Z]=0
ZpA
(Y L Z[A)g,

Y =7 ¢p(A)+ X

IV regression: Condition both sides on Z,

E[Y|Z] = 7 Elge(A)|Z] + E[X|Z]
N—_——

-0 24/56



Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

tielp | Ad
Computer Science > Machine Learning

EI‘(iV > ¢s > arXiv:2010.07154

[Submiteed on 1Jun 2019 (v1, It revised 15 ul 2020 (this version, v6)
Kernel Instrumental Variable Regression

Computer Science > Machine Learning
Rahul Singh, Maneesh Sahani, Arthur Gretton

[subrmitted on 14 Oct 2020 (v1, last revised 1 Nov 2020 (tis version, v3)

Learning Deep Features in Instrumental Variable Regression

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeaturelV/
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https://github.com/liyuan9988/DeepFeatureIV/

Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Computer Science > Machine Learning

Help | Ad

ar (1V > ¢s > arXiv:2010.07154

[Submiteed on 1Jun 2019 (v1, It revised 15 ul 2020 (this version, v6)
Kernel Instrumental Variable Regression

Computer Science > Machine Learning
Rahul Singh, Maneesh Sahani, Arthur Gretton

[submitted on 14 Oct 2020 (v1), last revised 1 Nov 2020 (tis version, v3)]

Learning Deep Features in Instr

| Variable Reg i
Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeaturelV/
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https://github.com/liyuan9988/DeepFeatureIV/

IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

Eyz |(Y -7 "Elgs(A4)|2])°] + Al

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 27/56
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:
Eyz [(Y = 7 Elge(A) 21| + Aoy
learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
Ell¢s(A) = o (2)|1? + Al F s
Challenge: how to learn 67

From Stage 2 regression?
...which requires E[¢y(A)|Z] from regression
...which requires ¢¢(A)... which requires 6...

Use the linear final layers! (ie. y and F)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 27/56



IV using neural net features

Stage 1 regression: learn NN features ¢.(Z) and linear layer /"
Elgs(A)|Z] ~ F¢:(Z)
with RR loss
E [[lgs(4) = F¢:(2)I] + Ml 7 Ihs

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
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IV using neural net features

learn NN features ¢/(Z) and linear layer
E[¢e(A)|Z] ~ F¢:(Z)
with RR loss
E [l(A) — 7 (Z)17] + Ml 7%
g, in closed form wrt ¢g, ¢.:
6 = Caz(Czz + MI) ' Caz =Elgs(A)g! (2)]
Czz = Elp(2)$](2)]
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IV using neural net features

learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] = F¢.(Z)
with RR loss
E [l(A) — 7 (Z)17] + Ml 7%
g, in closed form wrt ¢g, ¢.:
o0 = Caz(Czz +MI) 1 Caz = E[¢s(A)¢/ (2))]
Czz = Elp.(2)$/(2)]
Plug 74 into 51 loss, take gradient steps for ( (...but not 6...)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 28/56



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 29/56
Alternative: functional bilevel optimization: Petrulionyte, Mairal, Arbel (2024)



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evzl(Y 7" Foc$:(2)7) + Xallnll?
RS

Stage 1

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 29/56
Alternative: functional bilevel optimization: Petrulionvte. Mairal. Arbel (2024)



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evz[(Y =7 Fo, 6c(2))2) + dalln?

9o in closed form wrt ¢g:

Yo := Cyaz(Caniz + XI)™t  Cyaz =E [Y [Focp (Z)]T]
Canz =E[Fo 0 (2)] [Fo0:(2)]]

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 29/56
Alternative: functional bilevel optimization: Petrulionyte, Mairal, Arbel (2024)



Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evz[(Y =7 Fo, 6c(2))2) + dalln?

9o in closed form wrt ¢g:

Yo := Cyaz(Caniz + XI)™t  Cyaz =E [Y [Focp (Z)]T]
Canz =E[Fo 0 (2)] [Fo0:(2)]]

From linear final layers in Stages 1,2:
Learn ¢4(A) by plugging 9 into S2 loss, taking gradient steps for 4
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer 7 to
obtain Y with RR loss:

£2(7,0) = Evz [(Y = 7 Elgs(4)|2])2] + Aol
= Evz[(Y =7 Fo, 6c(2))2) + dalln?

9o in closed form wrt ¢g:

Yo := Cyaz(Caniz + XI)™t  Cyaz =E [Y [Focp (Z)]T]
Canz =E[Fo 0 (2)] [Fo0:(2)]]

From linear final layers in Stages 1,2:

Learn ¢4(A) by plugging 9 into S2 loss, taking gradient steps for 4
...but  changes with 6

...s0 alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 29/56
Alternative: functional bilevel optimization: Petrulionyte, Mairal, Arbel (2024)



Neural IV in reinforcement learning

5 @
¢
(a) Catch (b) Mountain Car (¢) Cartpole
B

(a) Cartpole Swingup ~ (b) Cheetah Run (¢) Humanoid Run (d) Walker Walk

Policy evaluation: want Q-value:

Q"(s,a) = Z’th So=s,4=a
t=0

for policy 7(A|S = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite

Tassa et al. (2020). dm_ control:Software and tasks for continuous control. 30/56
https://github.com/deepmind/dm_control


https://github.com/deepmind/bsuite
https://github.com/deepmind/dm_control

Application of IV: reinforcement learning

Q value is a minimizer of Bellman loss
Lpeliman = Esar [(R+’Y[ [Q™(5, A)]S, A QW(S,A))Z] :
Corresponds to “IV-like” problem
Loetiman = Evz (Y - E[f(X)|2))?]

with
Y = R,
=(8, A" S, A)
Z =(S,A),

fO(X): QW(S7 CL) - nyw(sI) a’l)
RL experiments and data:
https://github.com/1liyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressiorgfggﬁ
Deep Offline Policy Evaluation.


https://github.com/liyuan9988/IVOPEwithACME

Results on mountain car problem

mountain_car

-
T e—

104 =
— — [ ; Algorithm
"

T - e
N ='= :% |

ES FOE

=LY
| . L] :
| . L DRIV

Absolute Errar

oo 01 02 03 04 05
Noise Level

Good performance compared with FQE.

Warning: IV assumption can fail when regression underfits. See
papers for details.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressioxsé936
Deep Offline Policy Evaluation.



...but seriously, what if there are hidden
confounders?

33/56



We record symptom W, not disease X

m P(W = fever|X = mild) =0.2
m P(W = fever|X = severe) = 0.8

34/56



We record symptom W, not disease X

2 19 o v,

Y 0.0 or ‘A
e 4 or
et 00

. .
—_—
fX )

m P(W = fever|X = mild) =0.2
m P(W = fever| X = severe) = 0.8

Could we just write: P(Y (%)) L 2 wefo,13 E[Y|a, w]p(w)

34/56



We record symptom W, not disease X

Wrong recommendation made:

® > wego,} Elcured|pills, w]p(w) = 0.8 (# 0.64)

B > ueqo,1} Elcured|surgery, w]p(w) = 0.73  (# 0.75)
Correct answer impossible without observing X

R 34/56
Pearl (2010), On Measurement Bias in Causal Inference



Proxy causal learning (negative controls)

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

Applications: effect of actions under

® privacy constraints (email, ads, DMA)
m data gathering constraints (edge computing)

m fundamental limitations (preferences, state of mind)

35/56



Proxy causal learning (negative controls)

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

Applications: effect of actions under

® privacy constraints (email, ads, DMA)
m data gathering constraints (edge computing)

m fundamental limitations (preferences, state of mind)

Don’t meet—rour-herees model your hidden variables!

35/56



What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example: @
m X: true physical status
m A: exercise regimes ==

m Y: fitness goal X
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

X: true physical status

A: exercise regimes P
m Y fitness goal “X ' > ( )I
—( Y

—

an

@

before A A

2@ O

AN

m IW: health readings \

° |7
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

Q
m X: true physical status fep e Jan
m A: exercise regimes ._“’/ Rt _'%’/‘
lllllll@ ' ,‘ w llllIII
m Y: fitness goal j -
m W: health readings R
before A ‘é 9”
m Z: health readings or (A @ u
after A %‘_ \
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

X: true physical status fep

= Jan
. L) h ®
. e e
A: exercise regimes ﬁﬁi@ ' X! @.—m
m Y: fitness goal ak

m W: health readings

before A ‘l?.s -
. - 3,
m Z: health readings or (A @
after A %’_ \

— Can recover E( Y (%) from observational data
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example: e
m X: true physical status fep e Jan
m A: exercise regimes ._“’/ Rt _'%’/‘
|II|III Z X ,I W llllIII
m Y: fitness goal /-
m W: health readings R
before A ‘gs a
. = \?/
m Z: health readings or (A @
after A %‘_ \

— Can recover E( Y (%) from observational data

— More usefully: evaluate novel, on-device policy:
E( Y (r(420))

36/56



Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment JOTR

m Y: outcome @<_'\)_<,“""'>
m Z: treatment proxy '

m W outcome proxy '

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 37/56



Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment JOTR
m Y: outcome @<_'\)_<,“"""
m Z: treatment proxy }‘\‘
m W outcome proxy \
F—0
Structural assumptions:
X
Y 1L Z|(A, X)

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 37/56



Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

If X were observed,

de
P(Y@):=3" P(Y|z;, a)P(z;)
dyx1 =1
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Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

If X were observed,

dy
P(Y®):=5" P(Y|z;, a)P(z;) = P(Y|X,a)P(X)

N—— i=1
dyXl dy)(dz dz><1
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Why proxy variables? A simple proof

The definitions are:
m X: unobserved confounder.
m A: treatment Pt

m Y: outcome -

O—0O

If X were observed,
dz

P(Y@):=3" P(Y|z;, a)P(z;) = P(Y|X,a)P(X)

—— —
dyx1 =1 dyxds  dox1

Goal: “get rid of the blue” X

38/56



..add the outcome proxy W

The definitions are:

m X: unobserved confounder.
m A: treatment

B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y|X,a) =
————

dy X dg

Hy,o P(W]X)
N ——
dyxdw dedz

AV

39/56



..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P( }’\}(, a) = Hy,q f’(lﬂf\)()
———— —— ————
dyx dy dyxdy dwXds

P(Y®) = P(Y|X,a)P(X)
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..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P( }’\}(, a) = Hy,q f’(lﬂf\)()
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..add the outcome proxy W

The definitions are: ' X 14 -

m X: unobserved confounder.

m A: treatment \
B Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y\X, a) = Hw,aP(W\X)
———— —— ————
dyx dy dyxdy dwXds

P(Y®) = P(Y|X,a)P(X)
= Hy, . P(W|X)P(X)
- Hw,aP( W) 39/56



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a) = Hy, P(W|X)

40/56



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dIXdz dedz

Because ,

P(W|X)p(X|Z,a) =
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dg;Xdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dLXdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)

Solve for Hy 4:
P(Y|Z,a) = Hy,
Everything observed!

40/56



Proxy/Negative Control Methods
in the Real World

41/56



Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):

Searcn
Help | Advan{
Computer Science > Machine Learning

arXiv.org > ¢s > arXiv:2106.03907
[submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (his version, va)]

Searn
Help | Advand
Computer Science > Machine Learning
imal C. | N ith ! s [submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 this version, v2)]
:r(:')um: aus:h:.earm:% WIt" f’erne s: Two-Stage Deep Proxy Causal Learning and its Application to
stimation and Moment Restriction Confounded Bandit Policy Evaluation
Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

2
)

Code for NN and kernel proxy methods:

B
W

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ .56


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Searn
Help | Advan{

Computer Science > Machine Learning

[Submited on 10 May 2021 v, fast revised 3 Oct 2021 (i vrsion, v

Proximal Causal Learning with Kernels: Two-Stage

Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Search,

Help | Advar
Computer Science > Machine Learning
[Submitted on 7 Jun 2021 (v1), las revised 7 Dec 2021 (thi version, v2)]

Deep Proxy Causal Learning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

Code for NN and kernel proxy methods:

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ ,3/s6


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Road map: NN proxy learning

We'll proceed as follows:
m Proxy relation for continuous variables
m Loss function for deep proxy learning
m Define primary (ridge) regression with this loss

m Define (ridge) regression as input to primary

44/56



Proxy relation, general domains

If X were observed, we would write (dose-response curve)

E(Y(2) :/E(Y\a,x)p(w)dw.

....but we do not observe X.
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Proxy relation, general domains

If X were observed, we would write (dose-response curve)
E(Y(%)) = / E(Y|a,z)p(z)dz.

....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y]a,z) = hy (W, a)

m “Primary” E(Y|a, 2), “secondary” linked by A,
m All variables observed, X not seen or modeled.

Fredholm equation of first kind. Link existence requires >, identification of ATE requires
A (and further technical assumptions) [XKG: Asspumption 2, Prop. 1,Corr. 1; Deaner]

Ef(X)JA=a,Z =2] =0, V(z,a) < f(X)=0,Pxas. A

E[f(X)|A=a, W =w] =0, ¥(w,a) < f(X)=0,Pxas. < 48/66



Proxy relation, general domains

If X were observed, we would write (dose-response curve)
E(Y(%)) = / E(Y|a,z)p(z)dz.

....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y]a,z) = hy (W, a)

m “Primary” E(Y|a, 2), “secondary” linked by A,
m All variables observed, X not seen or modeled.

Dose-response curve via p(w):

B(Y®) = [ hy(a, w)p(w)du

45/56



Proxy relation, general domains

If X were observed, we would write (dose-response curve)
E(Y(%)) = / E(Y|a,z)p(z)dz.

....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Yla,z) = Ew o hy(V, a)

m “Primary” E(Y|a, 2), “secondary” [y, . linked by A,
m All variables observed, X not seen or modeled.

Dose-response curve via p(w):

B(Y®) = [ hy(a, w)p(w)du

Challenge: need a loss function for A,
45/56



Primary loss function for h,(w, a)

Goal:
E(Y|a,z) = EW‘G’Zhy(W, a)

Primary loss function:
. . 2
hy = argminEy 47 (Y = Ewiazhy(7, 4))
Y

Why?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 16/56



Primary loss function for h,(w, a)

Goal:
E(Y|a: Z) = EDV\a,zhy( W; a)

Primary loss function:

~

) 2
hy = argn}lllnEy,A,Z (Y — EWM,Zhy(W,A))
Y

Why?
f*(a,z) =E(Y|a, z) solves
argmin By 4 7 (Y — f(4, Z))2
f

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
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Primary loss function for h,(w, a)

Goal:
E(Y|a: Z) = EDV\a,zhy( W; a)

Primary loss function:

~

. 2
hy = argn}lllnEy,A,Z (Y — EWM,Zhy(W,A))
Y
Why?
f*(a,z) =E(Y|a, z) solves
argmin Ey 4 7 (Y — f(4, Z))2
f

...and by the proxy model above,
E( Y|a: Z) = EDV\a,zhy( W; a)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 16/56



NN for link hy(a, w)

The link function is a function of two arguments

[ po,1(w)pe,1(a) ]
po,1(w)pe2(a)

hy(a, w) = 7" [ps(w) ® pe(a)] ="

05.2(w)pe1(a)

Assume we have:

m output proxy NN features pg(w) Rt
. X -4 ———e
m treatment NN features p¢(a) 2
m linear final layer
(argument of feature map indicates feature space)

A
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NN for link hy(a, w)

The link function is a function of two arguments

hy(a,w) =" [pe(w) ® pe(a)]

Assume we have:

m output proxy NN features pg(w) RARE
- X 14 -
m treatment NN features p¢(a) 2
m linear final layer
(argument of feature map indicates feature space)

Questions:

m Why feature map pg(w) ® p¢(a)?
m Why final linear layer 7

Both are necessary (next slide)!

47/56



NN ridge regression for A, (w, a)

Goal:
E(Y|a,z) = EW‘G’Zhy(W, a)

Primary regression:

~

) 2
hy :argn}LlnEy,A,Z (Y—EW‘A,Zhy(W,A)) +)\2||'y||2
Y

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

48/56
Xu, Kanagawa, G. (2021).



NN ridge regression for A, (w, a)

Goal:
E(Y|a: Z) = E‘/V\a,zhy( W; a)

Primary regression:

~

X 2
hy = arg II}ILIHEY,A,Z (Y — EDV\A,Zhy( W, A)) + )\2||’)’||2
Yy

How to get conditional expectation .y, . hy( 1/, a)?
Density estimation for p( 1V |a, 2)? Sample from p( 1V |a, 2)?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 48/56
Xu, Kanagawa, G. (2021).



NN ridge regression for A, (w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:

~

. 2

hy = arg II}ILIHEY,A,Z (Y — EDV\A,Zhy( W, A)) + )\2||’)’||2
Y

Recall link function

Ry (17, @) = (77 (pe(17) ® 9 (a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

48/56
Xu, Kanagawa, G. (2021).



NN ridge regression for A, (w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:

~

) 2

hy = argn}lllnEy,A,Z (Y — EW‘A,Zhy(W, A)) + )\2||'y||2
Y

Recall link function

Ea: hy(W,0) = By [17 (0s() @ pe(a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

48/56
Xu, Kanagawa, G. (2021).



NN ridge regression for A, (w, a)

Goal:
E( Y| a, Z) = EW’\a,z hy( W, a)
Primary regression:

~

. 2
h, = arg II}ILIIIEY,A,Z (Y — Ew|a,zhy( W, A)) + Aa|7|I?
Y
Recall link function
EI/V|a,z hy( W: a‘) = EVV|a,z I:’YT (‘PG( W) ® (pf(a‘))]

=" (Be- [pa(17)]) ® 92 (a))

cond. feat. mean

(this is why linear 7y and feature map ps(w) ® @s(a))

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for A, (w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:
- . 2
h, = arg II}ILIIIEY,A,Z (Y — EW‘A,Zhy( W, A)) + )\2||'y||2
Y
Recall link function

Ea: hy(W,0) = By [17 (0s() @ pe(a))]
=7 (B lpa(1)] ® pe(a))

cond. feat. mean

Ridge regression (again!)
EV[/‘a,z(pe( W) = FG,C‘PQ(G: Z)
Deaner (2021).

Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for =, .wq( W)

Secondary regression: learn NN features ¢ (Z) and linear layer /:
Fyyapa(WV) = Forpc(a, 2)
with RR loss
Ew,az |0s(W) = Foc(4, Z)|° + M| 7|

ﬁ'g’c in closed form wrt @, ¢,

Xu, Kanagawa, G. (2021).
49/56



NN ridge regression for wo( V)
learn NN features ¢/(Z) and linear layer

wo( W) = Forpc(a,z)
with RR loss

Ew az |les(W) — Foc (A, Z)|? + M| 7|2

9,0 in closed form wrt g, @,

Plug /4, into S1 loss, backprop through Cholesky for
(...not 4...why not?)

Xu, Kanagawa, G. (2021).
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

| Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

| Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

® Primary: Solve for 4 in terms of /'y ¢/ (A, Z) and p:(A)
m Primary: Gradient steps on 6, ¢ (backprop through Cholesky)

¢,c Temains optimal wrt current ;.

Iterate between updates of 4, ¢ and

Key point: features @s( W) learned specially for:

E(Y|a7z): h’y( 10‘)

Contrast with autoencoders/sampling: must reconstruct/sample all of W.

Xu, Kanagawa, G. (2021). 50/56



Experiments
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Synthetic experiment, adaptive neural net features

dSprite example:

B X = {scale,rotation, posX,posY} dSprite

B Treatment A is the image generated (with 50
Gaussian noise)

B Outcome Y is quadratic function of A with

multiplicative confounding by posY. Alggcithm

30 &

£ PMMR

CEVAE
k%l £ DFPV
20

m Comparison with CEVAE (Lougios et al. ?
0

B Z = {scale,rotation, posX},
W = noisy image sharing posY

Out-of-Sample MSE

2017)

1000 5000

20 Data Size

40

60
0 25 50

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variable52/56
Models (2017)




Confounded offline policy evaluation

Synthetic dataset, demand prediction

for flight purchase. 1ol T - -
m Treatment A is ticket price. N ?
o
m Policy A ~ m(Z) depends on fuel 5 ,
. o Algorithm
price. £ 1 - Flme
2 & DFPV
=}
Q
<
0.1
1500 7500
Data Size
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Conclusions

Neural net and kernel solutions:

m ..for ATE, CATE, dynamic treatment effects

m ...even for unobserved covariates/confounders (IV and proxy
methods)

m ...with treatment A, covariates X, V, proxies/instruments (W, Z)
multivariate, “complicated”

m Convergence guarantees for kernels and NN
Key messages:

m Don't meet-your-herees model/sample hidden variables
m “Ridge regression is all you need”
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