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Outline

e Kernel metric on the space of probability measures
— Function revealing differences in distributions
— Distance between means in space of features (RKHS)

— Independence measure: features of joint minus product of marginals
e Characteristic kernels: feature space mappings of probabilities unique

e Two-sample, independence tests for (almost!) any data type

— distributions on strings, images, graphs, groups (rotation matrices),

semigroups,. . .



Feature mean difference

e Simple example: 2 Gaussians with different means

e Answer: t-test

Two Gaussians with different means

Prob. density




Prob. density

Feature mean difference

e Two Gaussians with same means, different variance
e Idea: look at difference in means of features of the RVs

o In Gaussian case: second order features of form ¢(x) = z°

Two Gaussians with different variances
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Prob. density

Feature mean difference

e Two Gaussians with same means, different variance

e Idea: look at difference in means of features of the RVs

e In Gaussian case: second order features of form p(x) = x

Two Gaussians with different variances
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Densities of feature X°
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Feature mean difference

e Gaussian and Laplace distributions
e Same mean and same variance

e Difference in means using higher order features... RKHS

Gaussian and Laplace densities
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Probabilities in feature space

: the mean trick

The reproducing property (kernel
trick)

e Given z € X for some set X,

define feature map ¢(x) € F,

o(x) =1[..0i(x)...] €l

e For positive definite k(x, z'),

k(xaml) — <90($)7 90<CC,)>.7-'

e The reproducing property:
VfeF,



Probabilities in feature space: the mean trick

The reproducing property (kernel
trick)

e Given z € X for some set X,

define feature map ¢(x) € F,

o(x) =1[..0i(x)...] €l

e For positive definite k(x, z'),

k(CC,ZU/) — <90($)7 90<CC,)>.7-'

e The reproducing property:
VfeF,

The mean trick

e Given P a Borel probability
measure on X, define feature

map up € F
pp = [ Ep [pi(x)] .. .]
e For positive definite k(x, z),

EP,Qk(Xa y) — <UP7NQ>}—

for x ~ P and y ~ Q.

e The mean trick: (we call up a

mean /distribution embedding)

Ep(f(x) =: (e, F()) 7



Does the tfeature space mean exist?

Does there exist an element yup € F such that

Epf(x) =Ep(f(-),o(x))Fr = (f(). Epo(x))r = (f(),up(-))r  VfEF



Does the tfeature space mean exist?

Does there exist an element yup € F such that

Epf(x) =Ep(f(),o(x))r = (f(); Epe(x))r = (f(-),up(-))Fr  VfEF

Yes: You can exchange expectation and innner product (i.e. ¢(x) is Bochner

integrable [stcinwart and Christmann, 200s)) under the condition

Epllo()[l7 = Epv/k(x,x) < o0



The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

MMD*P,Q) = ||up — pqll> = (up, 1p) = + (1Q, Q)+ — 2 (P, Q) £
— PPIC(X; X,Z + PQk(ya ylz T 2EP,Qk(X7 y)

(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

MMD*P,Q) = ||up — pqll> = (up, 1p) = + (1Q, Q)+ — 2 (P, Q) £
— PPIC(X; X,Z + PQk(ya ylz T 2EP,Qk(X> y)

7

(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity
Proof:

lup — pQllz = (up — pQ, P — 1Q) =
= (up,pup) + (1q, Q) — 2 (1P, Q)
= Ep[,up(X)]—F...

= Ep(up(-),k(x,")) + ...
= Epk(x,X) + Eqk(y,y") — 2Ep qk(x,y)



The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

MMD?*(P,Q) = [|up — pqlF = (e, ip) 7 + {11, 1Q) 7 — 2 (1P, 11Q) £
— Ppk(x, X/Z + PQk(y, y’z — 2Ep qk(x,Yy)

TV TV N

(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity

Unbiased empirical estimate of first term (quadratic time)

mo o m

]Epk(x,x’) = ! ZZk(mz,x])
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The maximum mean discrepancy

— 2
MMD = Kp7p—|—KQ7Q — 2Kp7Q

(diagonal terms removed from Kp p and K¢g )



Function Showing Difference in Distributions

e Are P and @ different?



Function Showing Difference in Distributions

e Are P and @ different?

Samples from P and Q

0.5

of ® ® o® o X *¢ 6 ¢

—-0.5}




Function Showing Difference in Distributions

e Are P and @ different?

Samples from P and Q
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 Epf(x) — Eqf(y)].

Smooth function
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 [Epf(x) — Eqf(y)].

Smooth function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?1612 Epf(x) — Eqf(y)].

Bounded continuous function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?"EIF) Epf(x) — Eqf(y)].

Bounded continuous function
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ]S"lelg [Epf(x) — Eqf(y)].

e Gauss P vs Laplace Q

Witness f for Gauss and Laplace densities
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?"161112 [Epf(x) — Eqf(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F =bounded continuous [pudiey, 2002]
— I = bounded variation 1 (Kolmogorov metric) piier, 1997

— [ = bounded Lipschitz (Earth mover’s distances) mpudiey, 2002]
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F') := ?8161112 [Epf(x) — Eqf(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F =bounded continuous [pudiey, 2002]
— I = bounded variation 1 (Kolmogorov metric) piier, 1997
— [ = bounded Lipschitz (Earth mover’s distances) mpudiey, 2002]

e MMD(P,Q; F') =0 iff P = Q when F' =the unit ball in a characteristic

RKHS f (Coming SOOH!) [ISMB06, NIPS06a, NIPS07b, NIPS08a, JMLR10]

How do smooth functions relate to feature maps?




Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)
MMD(P, Q; F)

= sup [Epf(X) — EQf(y)]
fEF

Witness f for Gauss and Laplace densities
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Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD(P, Q; F) .
= fcgg [Epf(x) — Eq/f(y)] Eo(f() —



Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)
MMD(P, Q; F)

= sup [Epf(x) — Eq/f(y)] Ep(f(x) =:

— Sup <f7 Hp — MQ>]—"
fer



Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD(P, Q; F) use
— sup [Epf(x) — E

rep P 0 — Bafly) 1o = sup£.6);
— Sup <f7 Hp — MQ>]—" )

fek since F' := {f € F
= ||up — pall£ £l <1}

Function view and feature view equivalent




MMD for independence: HSIC

e Dependence measure: the Hilbert Schmidt Independence Criterion (avros,
NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuerverger, 1993]and [Székely and Rizzo, 2009, Székely et al., 2007]

HSIC(PXY, PXPY) e H:uPXY o :LLPXPYH2



MMD for independence: HSIC

e Dependence measure: the Hilbert Schmidt Independence Criterion (avros,
NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuerverger, 1993]and [Székely and Rizzo, 2009, Székely et al., 2007]

HSIC(PXY, PXPY) = H:uPXY o MPXPYH2

K(©,@) (9,9)
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MMD for independence: HSIC

e Dependence measure: the Hilbert Schmidt Independence Criterion [arros,
NIPSO07a, ALTO07, ALT08, JMLR10]

Related to [Feuerverger, 1993]and [Székely and Rizzo, 2009, Székely et al., 2007]

HSIC(Pxy,PxPy) = |lupyy — ppspy |2

HSIC using expectations of kernels:

Define RKHS F on X with kernel £, RKHS G on ) with kernel [. Then

HSIC(Pxy,PxPy)
— EXYEX’Y’k<X7 X/)l(y7 y/) + EXEX’k(Xv X/)EYEY’l<y7 y,)
— 2Exy |[Exk(x,xX)Eyi(y,y")].



HSIC: empirical estimate and intuition

Text from dogtime.com and petfinder.com

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.
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HSIC: empirical estimate and intuition

) Their noses guide them through life, and
f K they're never happier than when following
an interesting scent. They need plenty of L

exercise, about an hour a day if possible.

A large animal who slings slok
distinctive houndy odor, and

than to follow his nose. They
amount of exercise and ment

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Text from dogtime.com and petfinder.com

Empirical HSIC(PXy, PXpy):
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Characteristic kernels (Via Fourier, on the torus T)



Characteristic Kernels (via Fourier)

Reminder:

Characteristic: MMD a metric (MMD = 0 iff P = Q) ipsors, svirio

In the next slides:
1. Characteristic property on |—m, | with periodic boundary

2. Characteristic property on R?



Characteristic Kernels (via Fourier)

Reminder: Fourier series

e Function [—m, 7] with periodic boundary.

Z Foexp(ulx) Z fe (cos(€x) + 1sin(lx)) .

{=—00 [=—00
Top hat Fourier series coefficients
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Characteristic Kernels (via Fourier)

Reminder: Fourier series of kernel

k(o y) =k(z —y) =k(2),  k(z)= )  kpexp(1l2),
{=—00

E.g., k(x) = 119(%, 2;), k‘g— exp(_U;EQ).

¥ is the Jacobi theta function, close to Gaussian when o2 sufficiently narrower than [—m, 7].

Kernel Fourier series coefficients
‘ ‘ 0.16 ‘ o
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Characteristic Kernels (via Fourier)

Maximum mean embedding via Fourier series:
e Fourier series for P is characteristic function ¢p

e Fourier series for mean embedding is product of fourier series!
(convolution theorem)

0

,LLP(J?) — Epk(X — .CU) — / k(:c — t)dp(t) ,LAprg — /Aﬁg X ggp,g

—Tr



Characteristic Kernels (via Fourier)

Maximum mean embedding via Fourier series:
e Fourier series for P is characteristic function ¢p

e Fourier series for mean embedding is product of fourier series!
(convolution theorem)

0

,LLP(J?) — Epk(X — .CU) — / k(:c — t)dp(t) ,LAprg — /%g X ng,g

—Tr

e MMD can be written in terms of Fourier series:

oo

Z [@P,é - &Q,é) /;’4 exp(tfx)

{=—00

MMD(P,Q; F) :=

f



A simpler Fourier expression for MMD

e From previous slide,

@)

Z [(QEP,K - CBQ,E) ]%E] exp(1fx)

f=—00

MMD(P,Q; F) :=

JT.'

e The squared norm of a function f in F is:

5= Pr= > =

e Simple, interpretable expression for squared MMD:

op.e — Pq.el?
ke

E

MMD?(P, Q; F) = Z

[=—00

Z PP e —

[=—00
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Example

e Example: P differs from Q at one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency

0.2 1 °
0.15
N F < Characteristic function difference
— 0.1 — 05 1
0.05 \ 0.8}
0 Wczzzzzizaaziseiiid) > 06
2 0 2 -0 0 10 =
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Example

Is the Gaussian-spectrum kernel characteristic?

Kernel Fourier series coefficients
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Example

Is the Gaussian-spectrum kernel characteristic? Y S

Kernel Fourier series coefficients
T 0.16 T 1)
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0.5 0.12}
0.4} 0.1}
E o3 « 0.08}
=2
0.2} 0.06} ® (o)
0.1} 0.04}
0 B 002 [ T T
0.1 ‘ ‘ ‘ o-oooco00? Poococo000
—4 ) 0 2 4 10 -5 0 5 10
x V4
o0

MMD?(P,Q; F) :

> lope — dal’he

[=—0o0



Example

Is the triangle kernel characteristic?

Triangle Fourier series coefficients
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Example

Is the triangle kernel characteristic? NO
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Characteristic kernels (Via Fourier, on R?)
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Translation invariant kernels: k(z,y) = k(z — y) = k(z2)
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Characteristic Kernels (via Fourier)

Fourier representation of MMD:

MMD?(P, Q; F) = / 6p(w) — do(w)[2 dAw)

¢p characteristic function of P

Proof: Using Bochner’s theorem (a)... and Fubini’s theorem (b)

MMD?(P, Q) := Epk(x — X') + Eqk(y — y") — 2Ep qk(x, y)

— [ [ [t - nae - @] ae - @)
(@ / / /R T A ) d(P — Q) (s) d(P — Q)(t)

- / /R e d(P — Q)(s) /R e d(P — Q)(t) dA(w)

= | |¢p(w) — ¢@(w)|" dA(w)
Rd



Example

e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency

Exponentiated quadratic kernel
Difference |¢pp — ¢
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Example

e Example: P differs from Q at (roughly) one frequency

Characteristic
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Example

e Example: P differs from Q at (roughly) one frequency

Sinc kernel
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Example

e Example: P differs from Q at (roughly) one frequency

NOT characteristic
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Example

e Example: P differs from Q at (roughly) one frequency

Triangle (B-spline) kernel
Difference |¢pp — ¢
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e Example: P differs from Q at (roughly) one frequency
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Example

e Example: P differs from Q at (roughly) one frequency

Characteristic
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Summary: Characteristic Kernels

Characteristic kernel: (MMD = 0 iff P = Q) nipsorn, corros)

Main theorem: A translation invariant k£ characteristic for prob. measures on
R? if and only if supp(A) = R? (i.e. support zero on at most a countable set)

[COLTO08, JMLR10]

Corollary: continuous, compactly supported k characteristic (since Fourier

spectrum A(w) cannot be zero on an interval). 1-p proof sketch from [Mallat, 1999,

Theorem 2.6] proof on R% via distribution theory in [Sriperumbudur et al., 2010, Corollary 10 p. 1535]



k characteristic iff supp(A) = R

Proof: supp {A} = R? = k characteristic:

Recall Fourier definition of MMD:
MMD(P, Q) = [ [on() ~ da(w)* dAG).

Characteristic functions ¢p(w) and ¢q(w) uniformly continuous, hence their

difference cannot be non-zero only on a countable set.

Map ¢p uniformly continuous: Ve > 0, 3§ > 0 such that V(wi,w2) € Q2 for which d(w1,ws2) < d, we have

d(¢p(w1), ¢op(w2)) < €. Uniform: & depends only on €, not on wq, wa.



k characteristic iff supp(A) = R

Proof: k characteristic = supp {A} = R% :

Proof by contrapositive.

Given supp {A} C R%, hence 3 open interval U such that A(w) zero on U.

Construct densities p(x), q(x) such that ¢p, ¢q differ only inside U



Further extensions

e Similar reasoning wherever extensions of Bochner’s theorem exist:

[Fukumizu et al., 2009]
— Locally compact Abelian groups (periodic domains, as we saw)
— Compact, non-Abelian groups (orthogonal matrices)
— The semigroup R, (histograms)
e Related kernel statistics: Fisher statistic marchaoui et a1, 2008)(zero iff P = Q

for characteristic kernels), other distances (zhou and Chellappa, 2006) (N0t yet

shown to establish whether P = Q), energy distances



Statistical hypothesis testing



Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?
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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=50
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Motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=500
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Statistical test using MMD (1)

e Two hypotheses:
— Hy: null hypothesis (P = Q)
— H,: alternative hypothesis (P # Q)



Statistical test using MMD (1)

e Two hypotheses:

— Hy: null hypothesis (P = Q)

— H,: alternative hypothesis (P # Q)
e Observe samples  := {x1,...,z,} from P and y from Q
e If empirical MMD(x, y; F) is

—  “far from zero”: reject Hy

— “close to zero”: accept Hy



Statistical test using MMD (2)

e “far from zero” vs “close to zero” - threshold?

——2
e Omne answer: asymptotic distribution of MMD



Statistical test using MMD (2)

e “far from zero” vs “close to zero” - threshold?
2

e Omne answer: asymptotic distribution of MMD

e An unbiased empirical estimate (quadratic cost):

—2
MMD' = oobgs > K(w,ay) — k(i y5) — k(yi, 25) + k(yi, )

] h((:ci,y;)r,(l’j Yi))




Statistical test using MMD (2)

“far from zero” vs “close to zero” - threshold?
/\2
One answer: asymptotic distribution of MMD

An unbiased empirical estimate (quadratic cost):

/\2
MMD = ﬁ Zfi(mi,xj) — k(zi,y;) — k(yi, ;) + k(yi,

)

] h((azi,y;)r,(l’j Yi))

When P # Q, asymptotically normal
——2
(\/7) (MMD _ MMD2> ~ N(0,02)

[Hoeffding, 1948, Serfling, 1980]

Expression for the variance: z; := (x;, y;)

ot = 4 (Ex [(Boh(2.2)) ~ (B (h(2.2)]’)



Statistical test using MMD (3)

e Example: laplace distributions with different variance

MMD dIStrIbUtlon and GaUSSIan flt under H1 Two Laplace dlstrlbutlons with dlfferent variances
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Statistical test using MMD (4)

® When P = Q, U'StatiStiC degenerate: EZ/ [h(z, Z/)] =0 [Anderson et al., 1994]

e Distribution is

nMMD(x, y; F Z)\l — 2]

e where
ZZNN(02>iid
— [y k(z, 2" )i (2)dP(x) = A\ (2)
;\,_/

centred



Statistical test using MMD (4)

e When P = Q, U-statistic degenerate: [E, [h(z,2)] = 0 [anderson et al, 1994
e Distribution is

nMMD(x, y; F 23& — 2]

MMD density under HO

o
~

e where

T T
—— Xz sum

B pirical POF

o
2}

—ZZNN(OQ)iid
= Ja Bz, 2)hi(x)dP(z) = Nigpi(2')
N——

centred

Prob. density
o o o
w BN [6)]

o
N
T

0.1




Statistical test using MMD (5)

e Given P = Q, want threshold 7" such that P(MMD > T') < 0.05
—_— 2
MMD = Kp,p + KQ,Q — 2[(P,Q

MMD density under HO and H1

s U |

— alternative

©
n
T

‘(// 1-a null quantile

Prob. density
E

Type Il error




Statistical test using MMD (5)

e Given P = Q, want threshold 7" such that P(MMD > T") < 0.05



Statistical test using MMD (5)

Given P = Q, want threshold 7" such that P(MMD > T') < 0.05
Permutation for empirical CDF [arcones and Giné, 1992, Alba Fernandez et al., 2008]
Pearson curves by matching first four moments [johnson et al., 1994]
Large deviation bounds [Hoeffding, 1963, McDiarmid, 1989]

Consistent test using kernel eigenspectrum nipsoob]



Statistical test using MMD (5)

Given P = Q, want threshold 7" such that P(MMD > T') < 0.05
Permutation for empirical CDF [arcones and Giné, 1992, Alba Fernandez et al., 2008]
Pearson curves by matching first four moments [johnson et al., 1994]
Large deviation bounds [Hoefiding, 1963, McDiarmid, 1989]

Consistent test using kernel eigenspectrum nipsoob]

CDF of the MMD and Pearson fit
1 T T T T T

P(MMD < mmd)

0.4

0.2r

= Pearson

0 1 1 1 1 1 1
~0.02 0 0.02 004 0.06 0.08 0.1
mmd




Approximate null distribution of MMD via permutation

Empirical MMD:

%Z(kp,p Kpo QIwaD ~ I\TI\H)2




Approximate null distribution of MMD via permutation

Permuted case: [Alba Fernandez et al., 2008]

w=(1,-1,1,...1,—-1...,1,—-1,—-1) "

S\ /
~ N~
n n

(equal number of +1 and —1)

F2 (] )




Approximate null distribution of MMD via permutation

Permuted case: [Alba Fernandez et al., 2008]

(equal number of +1 and —1)

1 _Kp,p Kp ]
w2 ([ e clww]) -2

rn e

fan
HEE
M

Figure thanks to Kacper Chwialkowski.
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Approximate null distribution of MM D via permutation
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Detecting differences in brain signals

Do local field potential (LFP) signals change when measured near a spike
burst?

LFP without spike burst
l
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Neuro data: consistent test w/o permutation

e Maximum mean discrepancy (MMD): distance between P and Q

MMD(P, Q; F) := [|up — pall+

o Is MMD significantly > 07

e P = Q, null distrib. of MMD:

L ——

MMD N(z22 — 2
T g; l(zl )7

— )\ is lth eigenvalue of

kernel k(z;, ;)

P + Q (neuro)

— Spectral
= = = Permutation

o
~

Type Il error
o o
@

o
—h

0 L L L
100 150 200 250 300
Sample size m

Use Gram matrix spectrum for A

consistent test without permutation




Hypothesis testing with HSIC



Distribution of HSIC at independence

e (Biased) empirical HSIC a v-statistic

1
HSICy, = —trace(KHLH)
n

— Statistical testing: How do we find when this is larger enough that
the null hypothesis P = PPy is unlikely?

— Formally: given P = P,P,, what is the threshold 7" such that
P(HSIC > T') < « for small a?



Distribution of HSIC at independence

e (Biased) empirical HSIC a v-statistic

1
HSICy, = —trace(KHLH)
n

o Associated U-statistic degenerate when P = PPy (serfiing, 1050

nHSIC, & 3 Nz, 2~ N(0,1)idd.
=1

(%,7,9,7)

)\Z¢Z<Zj) — /hijqrwl(zi)dFi,q,ra hijqr — E Z ktultu + ktul’uw — thult’v

. (t,u,v,w)



Distribution of HSIC at independence

e (Biased) empirical HSIC a v-statistic

1
HSICy, = —trace(KHLH)
n

o Associated U-statistic degenerate when P = PPy (serfiing, 1050

nHSIC, & 3 Nz, 2~ N(0,1)idd.

=1
(4,4,9,7)
)\Z¢Z<Zj) — /hijqrwl(zi)dFi,q,ra hijqr — E Z ktultu + ktul’uw — thult’v
. (t,u,v,w)

e First two moments nipso7b

E(HSIC,) = %TrCmTrC'yy

2(n — 4)(n — 5)

var(HSICy) = oF

|Casllis I Cuylls +O(n ™).




Statistical testing with HSIC

e Given P = P,P,, what is the threshold 7" such that P(HSIC > T') < «

for small a?
e Null distribution via permutation [reuerverger, 1993]

— Compute HSIC for {x;, yr(; }i=; for random permutation 7 of indices
{1,...,n}. This gives HSIC for independent variables.
— Repeat for many different permutations, get empirical CDF

— Threshold 7" is 1 — a quantile of empirical CDF



Statistical testing with HSIC

e Given P = P,P,, what is the threshold 7" such that P(HSIC > T') < «

for small a?
e Null distribution via permutation [reuerverger, 1993]

— Compute HSIC for {x;, yr(; }i=; for random permutation 7 of indices
{1,...,n}. This gives HSIC for independent variables.

— Repeat for many different permutations, get empirical CDF

— Threshold 7" is 1 — a quantile of empirical CDF

e Approximate null distribution via moment matching [kankainen, 1995]:

xa—le—az/ﬂ
’nHSICb(Z) ~ 5O‘F(Oé)
where
Y (E(HSICy))? 5 — var(HSICy)
- var(HSICy) - nE(HSIC,)



Experiment: dependence testing for translation

Are the French text extracts translations of English?

X]_: Honourable senators, I have a question for
the Leader of the Government in the Senate with
regard to the support funding to farmers that has
been announced. Most farmers have not received

any money yet.

XQ: No doubt there is great pressure on provin-
cial and municipal governments in relation to the
issue of child care, but the reality is that there
have been no cuts to child care funding from the
federal government to the provinces. In fact,
we have increased federal investments for early
childhood development.

Y]_: Honorables sénateurs, ma question
s’adresse au leader du gouvernement au Sénat
et concerne l’aide financiére qu’on a annoncée
pour les agriculteurs. La plupart des agriculteurs
n’ont encore rien reu de cet argent.

YQ:II est évident que les ordres de gouverne-
ments provinciaux et municipaux subissent de
fortes pressions en ce qui concerne les ser-
vices de garde, mais le gouvernement n’a pas
réduit le financement qu’il verse aux provinces
pour les services de garde. Au contraire, nous
avons augmenté le financement fédéral pour le
développement des jeunes enfants.



Experiment: dependence testing for translation

... il est évident que les ordres de
gouvernements provinciaux et munici-

paux subissent de fortes pressions en

(Biased) empirical HSIC:

1 child ce unding 1e federal gov-
ernment to the provinces. In fact, we

j i SICb —_— _trace( l g j i L l- i ) have increased federal investments for raire, nous avons a nté le finance-
n2 early childhood development. . . ment fédéral pour le développement des

jeunes enfants. ..

Translation example: [N1Pso7b]
Canadian Hansard

(agriculture)

5-line extracts,

k-spectrum kernel, k = 10,

repetitions=300,

sample size 10

k-spectrum kernel: average Type II error 0 (a = 0.05)



Experiment: dependence testing for translation

(Biased) empirical HSIC:

1
HSICy, = —trace

n2

(KHLH)

... il est évident que les ordres de
gouvernements provinciaux et munici-
paux subissent de fortes pressions en
ce qui concerne les services de garde,
mais le gouvernement n’a pas réduit le
financement qu’il verse aux provinces
pour les services de garde. Au con-
traire, nous avons augmenté le finance-
ment fédéral pour le développement des

jeunes enfants. ..

Translation example: [N1Pso7b] I
Canadian Hansard

(agriculture)

5-line extracts,

k-spectrum kernel, k = 10,

repetitions=300,

sample size 10

k-spectrum kernel: average Type II error 0 (a = 0.05)
Bag of words kernel: average Type II error 0.18



Kernel two-sample tests for big data, optimal kernel choice



Quadratic time estimate of MMD

MMD? = ||up — uqll> = Epk(z,2') + Eqk(y,y') — 2Ep gk(z, )



Quadratic time estimate of MMD

MMD? = [|up — pqllF = Epk(z,2') + Eqk(y,y') — 2Ep qk(z, y)
Given iid. X :={z1,...,xpn}t and Y :={y1,...,ym} from P, Q,

respectively:

The earlier estimate: (quadratic time)

Epk(z,z') = ! ZZ/@(%,%)
iy




Quadratic time estimate of MMD

MMD? = [|up — pqllF = Epk(z,2') + Eqk(y,y') — 2Ep qk(z, y)
Given iid. X :={z1,...,xpn}t and Y :={y1,...,ym} from P, Q,

respectively:

The earlier estimate: (quadratic time)

~ 1
Epk(xz,2') = k(x;,x;)
1) 27 200
New, linear time estimate:
~ 2
Epk(z,z') = — k(x1,22) + k(x3,24) + .. .]

9 m/2
= — Z k(xo;i—1,x2i)
me



Linear time MMD

Shorter expression with explicit £ dependence:
MMD2 —- nk(p7 Q) — Ewm’yy’hk(xa ZE,) Y, y/) —- Evhk(v)a

where
hk(xaxlaya y,) — k(CC,CU/) + k(y7y/) o k(ﬂ?,y/) o k(xla y)a

and v := [z, 2/, vy, V]



Linear time MMD

Shorter expression with explicit £ dependence:
MMD2 —- nk(p7 Q) — Ewm’yy’hk(xa xla Y, y/) —- Evhk(?}),

where
hk(xaxlvya y,) — k(CC,CU/) + k(y7y/) o k(x7y/) o k(xla y)a

and v := [z, 2/, vy, V]

The linear time estimate again:

9 m/2
Me = m Z hi(vi),
1=1
where v; := [x2;—1, T2i, Y2i—1, Y2i] and

hi(vi) == k(x2i—1,22i) + k(y2i—1,y2:) — k(x2i-1,y2i) — k(x2i, Yy2i—1)



Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD
e Much higher variance for a given m, hence. ..

e ...a much less powerful test for a given m



Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD
e Much higher variance for a given m, hence. ..

e ...a much less powerful test for a given m

Advantages of the linear time MMD vs quadratic time MMD

e Very simple asymptotic null distribution (a Gaussian, vs an infinite

weighted sum of x?)
e Both test statistic and threshold computable in O(m), with storage O(1).

e Given unlimited data, a given Type II error can be attained with less

computation



Asymptotics of linear time MMD

By central limit theorem,
1/2 (= D N 2
m= (i — (P, @) = N (0, 20%)

e assuming 0 < E(h%) < co (true for bounded k)
o 02 = B2 (v) - [Eu(u(0))]?.



Hypothesis test

Hypothesis test of asymptotic level a:
tho = m_l/zak\/icb_l(l — Q) where ®~! is inverse CDF of A/(0, 1).

— 2
Null distribution, linear time MMD = 7
0.4r

0.35r
0.31

0.25r

(77x)

0.2r
R

0.15r

01l Type I error

t — (1 — «) quantile
0.05} ko= ) a




Type 1l error

0.4

Null vs alternative distribution, P (7))
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= 02
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Type II error
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The best kernel: minimizes Type II error

Type II error: 7 falls below the threshold ¢, and ng(p, q) > 0.
Prob. of a Type II error:

Plije < th o) = ((1)1(1 ) Q)\/m)

orV2
where ® is a Normal CDF.



The best kernel: minimizes Type II error

Type II error: 7 falls below the threshold ¢, and ng(p, q) > 0.
Prob. of a Type II error:

Pl <) =8 (3731 g BT

orV2
where ® is a Normal CDF.

Since ® monotonic, best kernel choice to minimize Type II error prob. is:

k. = a a Qo
rg rglelgnk(p q)0y

where K is the family of kernels under consideration.



Learning the best kernel in a family

Define the family of kernels as follows:

d
K= {k k=Y Buku, Bl = D, B >0, Vu € {1,...,d}}.
u=1

Properties: if at least one 5, > 0
e all kK € IC are valid kernels,

e If all k£, charateristic then k characteristic



Test statistic

The squared MMD becomes

(P, @) =l (p) — (@)1 7, = Zﬁunu P, q

where 1,(p, q) := Eyhy(v).



Test statistic

The squared MMD becomes

(P, @) =l (p) — (@)1 7, = Zﬁunu P, q

where 1,(p, q) := Eyhy(v).

Denote:

o 8= (B1,052,...,Ba) €R%
o h=(hi,hs,...,hg) €RY

= hu(z, 2y, y") = ku(z, o) + ku(y, y') — ku(z, ') — ku(2',y)
o n=Ey(h) = (n1,n2,...,mq)" €R?

Quantities for test:

me(p,q) =E@B'h)=8"n o= 8"cov(h)B.



Optimization of ratio n;.(p, ¢)o, "

Empirical test parameters:

k=07 O\ = \/5T (Q+)\m1) B,
() is empirical estimate of cov(h).

Note: 7,0 A computed on training data, vs 7, 0 on data to be tested
(why?)



Optimization of ratio n;.(p, ¢)o, "

Empirical test parameters:

k=07 O\ = \/5T (Q+)\m1) B,
() is empirical estimate of cov(h).

Note: 7,0 A computed on training data, vs 7, 0 on data to be tested
(why?)

Objective:

e . ~—1
p* = arg rgg(})( Mk (D, Q)Uk)\

— arg max (5Tﬁ) (BT (Q + )\ml) B)

5=0

=: (871, Q)

—1/2



Optmization of ratio ng(p, q)o;

Assume: 7) has at least one positive entry

A

Then there exists S =0 s.t. «(f8;1,Q) > 0.

A

Thus: a(8*;7,Q) > 0



Optmization of ratio n(p, q)Ok_l

Assume: 7) has at least one positive entry

A

Then there exists S =0 s.t. «(f8;1,Q) > 0.

A

Thus: a(8*;7,Q) > 0

A
A

Solve easier problem: 3* = arg maxgso @*(8; 7, Q).

Quadratic program:

min{3" (Q+Anl) B: 877 =1, = 0}



Optmization of ratio n(p, q)Ok_l

Assume: 7) has at least one positive entry

A

Then there exists S =0 s.t. «(f8;1,Q) > 0.

A

Thus: a(8*;7,Q) > 0

A
A

Solve easier problem: 3* = arg maxgso @*(8; 7, Q).

Quadratic program:

min{3" (Q+Anl) B: 877 =1, = 0}

What if 7 has no positive entries?



Test procedure

1. Split the data into testing and training.
2. On the training data:

(a) Compute 7, for all k, € K
(b) If at least one 7, > 0, solve the QP to get 5*, else choose random

kernel from K
3. On the test data:

(a) Compute 7+ using k* = Zzzl B* k.,
(b) Compute test threshold i, g+ using s

4. Reject null if fgx > £ g



Convergence bounds

Assume bounded kernel, o, bounded away from 0.
If Ay = ©(m~3) then

' =0p (m_1/3> .

A A —1 _
SUP N0y, \ — SUPTk0y,
kel kel



Convergence bounds

Assume bounded kernel, o, bounded away from 0.
If Ay = ©(m~3) then

NN | —1 ~1/3
SUp N0y, \ — SUP N0y, ‘::Cha(nz / ).
kek ke

Idea:

NP 1
SUP 70y, \ — SUPTk0y,
kek kel

< sup
kel

b

NP 1 1 1
MOk \ — nkak,)\‘ + 211’13 ‘ﬂkﬂk,,\ — NkOy |
S

< C1sup | — nk| + Cosup |Gz _Uk:,AQ + C3D* M\,

kek kek



Experiments



Competing approaches

e Median heuristic

e Max. MMD: choose k, € K with the largest 7,
— same as maximizing 3'7 subject to ||8]|; < 1

o /o statistic: maximize 8'# subject to ||8]|, < 1

e Cross validation on training set

Also compare with:

e Single kernel that maximizes ratio ny (p, q)cfk_ L



Blobs: data

Difficult problems: lengthscale of the difference in distributions not the same
as that of the distributions.



Blobs: data

Difficult problems: lengthscale of the difference in distributions not the same
as that of the distributions.

We distinguish a field of Gaussian blobs with different covariances.

Blob data p Blob data ¢
35 35
swﬂﬁwléf
2571 2571
= & tf‘f
15¢ . 15¢
*
bt %
10t ‘ *‘ 10t ‘ ’ ‘
* * 8“
5 — 5
5 10 15 20 25 30 35 5 35
X1

Ratio € = 3.2 of largest to smallest eigenvalues of blobs in g.



Blobs: results

Type II error

© © o ©o o o o o

N w B (6} » ~ oo © -
T T T T T

o
a

Parameters: m = 10,000 (for training and test). Ratio ¢ of largest to

smallest eigenvalues of blobs in g. Results are average over 617 trials.

: h o - . J -
S = & = L
\\
max ratio
opt
|| — 2
maxmmd
|| m— xval -
xvalc N
med

€ ratio

15



Blobs: results

0.9 o :\
0.81
0.7t
S 06f
o
= 0.5}
(]
=~
0.4H -
= — max ratio
0.3H opt
s | D
0.2H ==maxmmd
— val
0.1H === xvalc
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Feature selection: data

Idea: no single best kernel.

Each of the k, are univariate (along a single coordinate)

Selection data
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Feature selection: results
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Amplitude modulated signals

Given an audio signal s(t), an amplitude modulated signal can be defined
u(t) = sin(wt) |a s(t) + (]

e w.: carrier frequency

e a = 0.2 is signal scaling, [ = 2 is offset
Two amplitude modulated signals from same artist (in this case, Magnetic
Fields).

e Music sampled at 8KHz (very low)

e Carrier frequency is 24kHz

e AM signal observed at 120kHz

e Samples are extracts of length N = 1000, approx. 0.01 sec (very short).

e Total dataset size is 30,000 samples from each of p, q.



Amplitude modulated signals

Samples from P Samples from Q




Results: AM signals
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Observations on kernel choice

e It is possible to choose the best kernel for a kernel

two-sample test

e Kernel choice matters for “difficult” problems, where the
distributions differ on a lengthscale different to that of
the data.

e Ongoing work:

— quadratic time statistic

— avoid training/test split



Summary

e MMD a distance between distributions [smsos, NIPS06a, IMLR10, JMLR124]
— high dimensionality
— non-euclidean data (strings, graphs)

— Nonparametric hypothesis tests
e Measure and test independence [aLTos, NIPS07a, NIPSO7b, ALT08, JMLR10, JMLR12a]

e Characteristic RKHS: MMD a metric Nipso7b, coOLTO08, NIPS08a]

— Easy to check: does spectrum cover R?
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Local departures from the null

What is a hard testing problem?

e First version: for fixed m, “closer” P and Q have higher Type II error
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What is a hard testing problem?

e As m increases, distinguish “closer” P and Q with fixed Type II error
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What is a hard testing problem?
e As m increases, distinguish “closer” P and Q with fixed Type II error

e Example: fp and fq probability densities, fq = fp + dg, where 6 € R, ¢

some fized function such that fq is a valid density

— If § ~ m~ Y2, Type II error approaches a constant



More general local departures from null

e Example: fp and fq probability densities, fq = fp + dg, where 6 € R, ¢

some fized function such that fq is a valid density
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Local departures from the null

What is a hard testing problem?

e As we see more samples m, distinguish “closer” P and Q with same

Type 1I error
e Fixample: fp and fq probability densities, fq = fp + 0g, where 0 € R, g

some fized function such that fq is a valid density

— If § ~m~ Y2, Type II error approaches a constant

e ...but other choices also possible — how to characterize them all?



Local departures from the null

What is a hard testing problem?

e As we see more samples m, distinguish “closer” P and Q with same

Type 1I error
e Fixample: fp and fq probability densities, fq = fp + 0g, where 0 € R, g

some fized function such that fq is a valid density

— If § ~m~ Y2, Type II error approaches a constant
e ...but other choices also possible — how to characterize them all?
General characterization of local departures from H:

e Write uq = pup + gm, where g,, € F chosen such that up + g,, a valid
distribution embedding

e Minimum distinguishable distance nvrri2;

|gmll 7 = em™"/?



More general local departures from null

e More advanced example of a local departure from the null

—1/2

o Recall: uq = pp + gm, and ||gn|| r = cm
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Kernels vs kernels

e How does MMD relate to Parzen density estimate? [anderson et al., 1994]
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e How does MMD relate to Parzen density estimate? [anderson et al., 1994]

1 m
— E , where k satisfies / k(x)dr=1and k(z) > 0.
m = X

e [ distance between Parzen density estimates:

Ds(fe, fa)? :/{ Zm ;2%@._@} dz

1 < 1 m 2 =
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where k(x —y) = [ k(x — 2)k(y — 2)dz



Kernels vs kernels

e How does MMD relate to Parzen density estimate? [anderson et al., 1994]

1 m
— E , where k satisfies / k(x)dr=1and k(z) > 0.
m = X

e [ distance between Parzen density estimates:

Da(fp, fQ)’ :/{ Zm ;Z%(y._z)} dz
:# S k(i — miz % > k(wi —yj),

where k(x —y) = [ k(x — 2)k(y — 2)dz

e fq = fp + 09, minimum distance to discriminate fp from fq is
§ = (m)_l/zh;@dm, where h,, is width of .
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Characteristic Kernels (via universality)

Characteristic: MMD a metric (MMD = 0 iff P = Q) ipsors, corros)

Classical result: P = Q if and only if Ep(f(x)) = Eq(f(y)) for all f € C(X),

the space of bounded continuous functions on X [pudley, 2002]

Universal RKHS: k(x,z") continuous, X compact, and F dense in C(X) with

l“eSpeCt to LOO [Steinwart, 2001]

If 7 universal, then MMD {P,Q; F'} =0 iff P =Q



Characteristic Kernels (via universality)

Proof:
First, it is clear that P = Q implies MMD {P, Q; F'} is zero.
Converse: by the universality of F, for any given e > 0 and f € C(X) dg € F

Hf o gHoo S €.



Characteristic Kernels (via universality)

Proof:
First, it is clear that P = Q implies MMD {P, Q; F'} is zero.
Converse: by the universality of F, for any given e > 0 and f € C(X) dg € F

Hf o gHoo S €.

We next make the expansion

[Epf(x) —Eqf(y)| < |Epf(x) — Epg(x)|+|Epg(x) — Eqg(y)|+|Eqg(y) — Eqf(y)|-

The first and third terms satisty

Epf(x) — Epg(x)| < Ep[f(x) —g(x)[ <



Characteristic Kernels (via universality)

Proof (continued):

Next, write
Epg(x) —Eqg(y) = (9(-), np — pa)z =0,
since MMD {P, Q; F'} = 0 implies up = uq. Hence
Epf(x) —Eq/f(y)| < 2e

for all f € C'(X) and € > 0, which implies P = Q.
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