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1 Question 1
Consider an input variable x mapped to the RKHS H, using the featue map
φ(x) with kernel k(x, x′) = 〈φ(x), φ(x′)〉H . We introduce the notation

Φn :=
[
φ(x1) . . . φ(xn)

]
Φ>n f =

 〈φ(x1), f〉H
...

〈φ(xn), f〉H


(i.e. Φn is a “matrix” where each column is an element in the feature space).
We define the kernel matrix K with i, jth entry k(xi, xj), and where using the
above notation

Kn := Φ>nΦn.

1. [4 points] Consider a set of m feature mapped points φ(z1) . . . φ(zm), and
define

Φm :=
[
φ(z1) . . . φ(zm)

]
, Km = Φ>mΦm.

What is the expression for the projection Pm that takes an RKHS function
f ∈ H and projects it onto a function fm := Pmf in the span of these
points? Assume Km is full rank and invertible. Hints: the projection of
f on the span of Φm should minimize the squared RKHS norm from f to
its projection. For symmetric B ∈ Rm×m and b ∈ Rm,

d

da
a>Ba = 2Ba

d

da
b>a =

d

da
a>b = b.

2. [3 points] Consider the Gram matrix Kn := Φ>nΦn. What form does this
take when we replace each entry φ(xi) in Φn by its projection Pmφ(xi)?
Hint: you’ll use the matrix Knm = Φ>nΦm.

3. [3 points] Recall the definition of the tensor product, (a⊗ b)c = 〈b, c〉H a.
Show that the operator

ΦnΦ>n =

n∑
i=1

φ(xi)⊗ φ(xi) (1)
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is a positive operator, meaning〈
f,
[
ΦnΦ>n

]
f
〉
≥ 0 ∀f ∈ F .

Show that as a consequence, the eigenvalue decomposition

ΦnΦ>n =
∑
i

siui(x)⊗ ui(x)

cannot have negative si (note the symmetry of ΦnΦ>n ).

4. [5 points] In ridge regression, we are given pairs {(xi, yi)}ni=1, and we
minimise the regularised squared loss

f∗ = arg min
f∈H
L(f) := arg min

f∈H

[
n∑
i=1

(yi − 〈f, φ(xi)〉H)
2

+ λ ‖f‖2H

]
(2)

Show that a solution is

f∗ :=
(
ΦnΦ>n + λI

)−1
Φny,

where y =
[
y1 . . . yn

]>
, and recalling the definition in (1). For full

marks, conmment on the existence of an inverse of ΦnΦ>n +λI: you might
argue from the eigenvalue decomposition

ΦnΦ>n + λI =
∑
i

qiui(x)⊗ ui(x),

noting that an inverse of the operator amounts to inverting all the eigen-
values. Hint: after expanding out the first term in the loss (2), define
g :=

(
ΦnΦ>n + λI

)1/2
f where

(
ΦnΦ>n + λI

)1/2
=
∑
i

√
qiui(x) ⊗ ui(x),

thus write f :=
(
ΦnΦ>n + λI

)−1/2
g; then complete the square. You should

not try to take derivatives in the infinite feature space H. Hint 2: the
next two parts of this question are easier, and don’t require you to have
solved this part, so if you get stuck, try the later parts.

5. [2 points] Show that the above solution can also be written

f∗ = Φn (Kn + λI)
−1

y. (3)

Hint: it will be easier not to use the solution of the previous part to
prove this - i.e., what can we say about solutions to problems of the form
(2)? Full marks will be awarded for a correct proof regardless of which
approach was used.

6. [3 points] What happens if we substitute the approximation of Kn from
the second part of this question into (3): assuming m � n, is the new
solution any more computationally efficient? If not, can you propose a
more computationally efficient solution? Hint:

(A+ CBC>)−1 = A−1 −A−1C(B−1 + C>A−1C)−1C>A−1.
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2 Question 2
We define the eigenexpansion of k(x, x′) with respect to a non-negative finite
measure p(x) on X := R,

λiei(x) =

∫
k(x, x′)ei(x

′)p(x′)dx′,

∫
L2(p)

ei(x)ej(x)p(x)dx =

{
1 i = j

0 i 6= j.
(4)

We can write

k(x, x′) =

∞∑
`=1

λ`e`(x)e`(x
′), (5)

We are given two functions f, g in L2(p), expanded in terms of the orthonormal
system {e`}∞`=1,

f(x) =

∞∑
`=1

f̂`e`(x) g(x) =

∞∑
`=1

ĝ`e`(x), (6)

The standard dot product in L2(p) between f, g is

〈f, g〉L2(µ)
=

〈 ∞∑
q=1

f̂qeq(x),

∞∑
r=1

ĝrer(x)

〉
L2(µ)

=

∞∑
`=1

f̂`ĝ`.

We can define the dot product in H to have a roughness penalty, yielding

〈f, g〉H =

∞∑
`=1

f̂`ĝ`
λ`

‖f‖2H =

∞∑
`=1

f̂2`
λ`
.

1. [2 points] We define an operator Cp which takes a function f and maps
it to a new function Cpf, such that evaluating at x gives

[Cpf ] (x) =

∫
k(x, x′)f(x′)p(x′)dx′.

Assume f is in H. Show that

〈g, Cpf〉H =

∫
f(x)g(x)p(x)dx.

In other words, Cp defines an uncentered variance operator.

2. [3 points] Is Cpf smoother than f , or less smooth? Explain your answer
in terms of the representation of f in (6). Assume that there are countably
infinitely many λ` > 0, and that

∑∞
`=1 λ

2
` <∞.
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3. [3 points] We are given i.i.d. samples {x1, . . . , xm} from p. We define the
feature map φ(x) ∈ H such that k(x, x′) = 〈φ(x), φ(x′)〉H. The empirical
centered variance operator is

Ĉp =
1

m

m∑
i=1

φ(xi)⊗ φ(xi)− µ̂p ⊗ µ̂p µ̂p :=
1

m

m∑
j=1

φ(xj),

where (a⊗ b)c = 〈b, c〉H a. Given a function f =
∑m
i=1 αiφ(xi), derive the

expression for the empirical variance of f ,

v̂ar(f) =
〈
f, Ĉpf

〉
H
,

in terms of α and the Gram matrixK with entriesKij = k(xi, xj) (for ease
of use later in the question, it will help to express this in matrix-vector
form).

4. [5 points]We are given a second density q, and i.i.d samples {xm+1, . . . , xm+n}
from q. The kernel Fisher discriminant amounts to solving

f∗ = arg max
f
〈f, [(µ̂p − µ̂q)⊗ (µ̂p − µ̂q)] f〉H subject to

1 ≥
〈
f,
(
mĈp + nĈq

)
f
〉
H

+ γ ‖f‖2H

Write the resulting Lagrangian (simply express this in terms of f , Ĉp, etc:
you should not introduce kernels at this stage). Show, using an argument
that generalizes the proof of the standard representer theorem, that an
optimal solution will take the form

f(x) =

m+n∑
i=1

αik(x, xi). (7)

5. [5 points] Using the Lagrangian in the previous section, show that α is
the solution of a generalized eigenvalue problem in terms of the Gram
matrix

K :=

[
Kpp Kpq

Kqp Kqq

]
across all samples, where Kpp is the Gram matrix between samples from p,
and Kpq is the Gram matrix between samples from p and samples from q.
Hints: start with the answer from the previous part for the quickest way
to obtain the desired result. The primal variables will be α. For concise
notation, it might be helpful to define a vector ζ̂p such that

〈f, µ̂p〉H = α>ζ̂p.

6. [2 points] What quantity does the Fisher discriminant approach when γ
becomes very large?
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3 Question 3
Assume H is a reproducing kernel Hilbert space with a Gaussian kernel,

k(xi, xj) = exp

(
−‖xi − xj‖2

σ

)
= 〈φ(xi), φ(xj)〉H (8)

We have a sample (xi, yi)
m
i=1 drawn independently and identically from some

distribution PXY , where the yi ∈ R. Support vector regression finds a function:

f(x) = 〈w(·), φ(x)〉H + b

which solves the following problem:

minimize
w∈H,ξ,ξ∗∈Rm,b∈R

1

2
‖w‖2H +

C

m

m∑
i=1

(ξi + ξ∗i ), (9)

subject to (〈w(·), φ(xi)〉H + b)− yi ≤ ε+ ξi (10)
yi − (〈w(·), φ(xi)〉H + b) ≤ ε+ ξ∗i (11)
ξi, ξ

∗
i ≥ 0

where C, ε ∈ R++ are parameters of the algorithm (the notation means that
both C and ε are strictly greater than zero).

1. [2 points] Define strong duality in the general setting of an optimiza-
tion problem with equality and inequality constraints. Then describe the
two conditions that hold for the support vector regression problem which
ensure strong duality (hint: the second of these conditions is trivially sat-
isfied here, since there are no equality constraints).

2. [6 points] Write the Lagrangian for the SV regression problem. State the
KKT conditions as they apply to the problem. What is implied about the
maximum of the dual problem when the KKT conditions hold?

3. [6 points] Write the Lagrange dual function for this optimization prob-
lem. In particular, you should obtain a form

w =

m∑
i=1

(α∗i − αi)φ(xi)

due to the two constraints (10) and (11).

4. [6 points] What do the KKT conditions imply about the allowable range
of αi? Where are points with αi = 0 situated relative to the regression
function f(x)? Where are points for which αi attains its upper bound?
Finally, where are those points with αi between the lower and upper bound
(you do not need to obtain the analogous results for α∗i )?
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4 Question 1
1. The projection of f onto the basis set Φm minimises

a∗ := arg min
a∈Rm

‖f − Φma‖2H = 〈f, f〉H − 2 〈f,Φma〉H + a>Φ>mΦma.

Differentiate wrt a and set to zero,

0 = −2Φ>mf + 2Kma

a = K−1m Φ>mf.

Thus the projection of f is

Pmf := ΦmK
−1
m Φ>mf.

2. The Gram matrix of the projected features has i, jth entry

k̃ij = 〈Pmφ(xi), Pmφ(xj)〉H

=

〈
ΦmK

−1
m


...

k(zq, xi)
...

 ,ΦmK−1m


...
k(zr, xj)

...


〉
H

=


...

k(xq, xi)
...


>

K−1m KmK
−1
m


...

k(xr, xj)
...

 ,
where q, r ∈ {1, . . . ,m}. Thus the solution is

K̃ := KnmK
−1
mmKmn.

3. We have 〈
f,
[
ΦnΦ>n

]
f
〉
H =

〈
f,

[
n∑
i=1

φ(xi)⊗ φ(xi)

]
f

〉
H

=

n∑
i=1

〈f, φ(xi)〉2H

≥ 0.

Next imagine we had a negative eigenvalue si for eigenvector ui. Choosing
f = ui, we have〈

ui,

∑
j

sjuj(x)⊗ uj(x)

ui〉
H

= si‖ui‖4H

= si < 0

which contradicts the positivity described above.
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4. Our goal is:

f∗ = arg min
f∈H

n∑
i=1

(yi − 〈f, φ(xi)〉H)
2

+ λ ‖f‖2H

Expanding out the above term, we get

n∑
i=1

(yi − 〈f, φ(xi)〉H)
2

+ λ ‖f‖2H

= y>y − 2y>Φ>n f +

n∑
i=1

(〈f, φ(xi)〉H)
2

+ λ 〈f, f〉H

= y>y − 2y>Φ>n f + λ 〈f, f〉H +

n∑
i=1

〈f, [φ(xi)⊗ φ(xi)] f〉H

= y>y − 2y>Φ>n f +
〈
f,
(
ΦnΦ>n + λI

)
f
〉
H = (∗)

Define g =
(
ΦnΦ>n + λI

)1/2
f , where the square root is well defined since

the operator is positive definite. Even though ΦnΦ>n is not invertible
for infinite dimensional feature spaces, adding λI ensures we can substi-
tute f =

(
ΦnΦ>n + λI

)−1/2
g - the fact that ΦnΦ>n is positive means its

singular values are positive or zero, and thus si + λ > 0. Then

(∗) = y>y − 2y>Φ>n
(
ΦnΦ>n + λI

)−1/2
g + 〈g, g〉H

= y>y +
∥∥∥(ΦnΦ>n + λI

)−1/2
Φny − g

∥∥∥2
H
−
∥∥∥y>Φ>n

(
ΦnΦ>n + λI

)−1/2∥∥∥2
H
,

where we complete the square. This is minimized when

g∗ =
(
ΦnΦ>n + λI

)−1/2
Φny or

f∗ =
(
ΦnΦ>n + λI

)−1
Φny.

5. The representer theorem tells us

f∗ = Φnα
∗.

Thus we want to solve
n∑
i=1

(yi − 〈f, φ(xi)〉H)
2

+ λ‖f‖2H = ‖y −Knα‖2 + λα>Knα

= y>y − 2y>Knα+ α>
(
K2
n + λKn

)
α

Differentiating wrt α and setting this to zero, we get

α∗ = (Kn + λIn)−1y. (12)
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6. If we substitute Kn → KnmK
−1
mmKmn in (12), we get

α∗ = (KnmK
−1
mmKmn + λIn)−1y.

However the cost is still the same: the matrix to be inverted is still n×n.
Using the hint,

a∗ =
[
λ−1I − λ−1Knm

(
K>nmKnm + λKmm

)−1
K>nm

]
y.

In this case, we only need to invert an m×m matrix. and the overall cost
is O(m2n), i.e. linear in n.

4.1 Question 2
1. We start with

Cpf =

∫
k(x, x′)f(x′)p(x′)dx′

=

∫ [ ∞∑
`=1

λ`e`(x)e`(x
′)

] ∞∑
j=1

f̂jej(x)

 p(x′)dx′
=

∞∑
`=1

λ`f̂`e`(x)

Thus we have

〈g, Cpf〉H =

∞∑
`=1

ĝ`

(
λ`f̂`

)
λ`

=

∞∑
`=1

f̂`ĝ`

=

∫
f(x)g(x)p(x)dx.

2. Under the stated assumptions, λ` must decay to zero as `→∞. Therefore
Cpf is smoother than f , since it has the effect of transforming f̂` → f̂`λ`,
hence the high frequency components of f will be shrunk. Aside:

‖Cpf‖2H =
∑
`

λ2` f̂
2
`

λ`
=
∑
`

λ`f̂
2
`

vs

‖f‖2H =
∑
`

f̂2`
λ`
.
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Thus for any given ` for which λ` < 1,

f̂2`
λ`
≥ λ`f̂2`

which again yields an insight that the RKHS norm of f will be greater
than that of Cpf (meaning f is less smooth).

3. Given

Ĉp =
1

m

m∑
i=1

φ(xi)⊗ φ(xi)− µ̂p ⊗ µ̂p µ̂p :=
1

m

m∑
j=1

φ(xj),

and f =
∑m
i=1 αiφ(xi), then

v̂ar(f) =
〈
f, Ĉpf

〉
H

=

〈
f,

(
1

m

m∑
i=1

φ(xi)⊗ φ(xi)

)
f

〉
H

−
(
〈f, µ̂p〉H

)2
=

1

m

m∑
i=1

 m∑
j=1

αjk(xixj)

( m∑
q=1

αqk(xixq)

)
−

 1

m

m∑
i=1

m∑
j=1

k(xixj)αj

2

=
1

m
αK2α− 1

m2

(
α>K1m

)2
=

1

m
α>KHKα,

where here 1m is the m× 1 vector of ones and H = I −m−11m1>m.

4. This result, and that of the next section, are taken from [?]. The con-
strained problem is

f∗ = arg max
f
〈f, [(µ̂p − µ̂q)⊗ (µ̂p − µ̂q)] f〉H

1 ≥
〈
f,
(
mĈp + nĈq

)
f
〉
H

+ γ ‖f‖2H .

The Lagrangian is

f∗ = arg min
f
−〈f, [(µ̂p − µ̂q)⊗ (µ̂p − µ̂q)] f〉H+η

(〈
f,
(
mĈp + nĈq

)
f
〉
H

+ γ ‖f‖2H − 1
)
.

(13)
where η > 0 is the Lagrange multiplier. We now show that a solution f∗
must take the form

f(x) =

m+n∑
i=1

αik(x, xi). (14)
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Assume a solution of the form f = f‖ + f⊥, where f‖ is of the form (14),
and f⊥ is perpendicular to the span of the observed sample. Consider
each term in turn. The first term is

〈f, µ̂p − µ̂q〉2H .

Now 〈f, µ̂p〉H =
〈
f‖, µ̂p

〉
H, and likewise for 〈f, µ̂q〉. Next, consider〈

f, Ĉpf
〉
H

=
1

m

〈
f,

[
m∑
i=1

φ(xi)⊗ φ(xi)

]
f

〉
H

−
(
〈f, µ̂p〉H

)2
.

Note that〈
f,

[
m∑
i=1

φ(xi)⊗ φ(xi)

]
f

〉
H

=

m∑
i=1

〈f, φ(xi)〉2H =

m∑
i=1

〈
f‖, φ(xi)

〉2
H .

Thus, the first two terms in (13) involving f are independent of f⊥. The
final term decomposes as ‖f‖2 =

∥∥f‖∥∥2 + ‖f⊥‖2, and is minimized when
‖f⊥‖2 = 0.

5. We first write the first term of the Lagrangian in kernel form,

〈f, [(µ̂p − µ̂q)⊗ (µ̂p − µ̂q)] f〉H (15)

= 〈f, µ̂p − µ̂q〉2H (16)

= α>
(
ζ̂p − ζ̂q

)(
ζ̂p − ζ̂q

)>
α, (17)

where
ζ̂p :=

1

m

[
Kpp

Kqp

]
1m, ζ̂q =

1

n

[
Kpq

Kqq

]
1n.

The second term is〈
f,
(
mĈp + nĈq

)
f
〉
H

=

〈
f,

(
m∑
i=1

φ(xi)⊗ φ(xi) +

n∑
i=m+1

φ(xi)⊗ φ(xi)

)
f

〉
H

− α>
(
mζ̂pζ̂

>
p + nζ̂q ζ̂

>
q

)
α.

To express the first part using kernels, we write〈
f,

(
m∑
i=1

φ(xi)⊗ φ(xi) +

m+n∑
i=m+1

φ(xi)⊗ φ(xi)

)
f

〉
H

EITHER =

〈
f,

(
m+n∑
i=1

φ(xi)⊗ φ(xi)

)
f

〉
H

OR = α>
[
Kpp

Kqp

] [
Kpp K>qp

]
α+ α>

[
Kpq

Kqq

] [
K>pq Kqq

]
α

= α>K2α.
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(last line from part 3). The third term is

‖f‖2H = α>Kα.

The Lagrangian is

arg max
α

α>
(
ζ̂p − ζ̂q

)(
ζ̂p − ζ̂q

)>
α

+ η
[
1− α>

(
K2 −

(
mζ̂pζ̂

>
p + nζ̂q ζ̂

>
q

)
+ γK

)
α
]

where η ≥ 0. Differentiating wrt α and setting the resulting expression to
zero yields

K

[
m−11m
−n−11n

] [
m−11>m −n−11>n

]
Kα = η

(
K2 −

(
mζ̂pζ̂

>
p + nζ̂q ζ̂

>
q

)
+ γK

)
α,

which is a generalized eigenvalue problem.

6. When γ becomes very large, the variance constraint is reduced in relative
importance, and the discriminant approaches the squared MMD (up to
scaling).

5 Question 3
1. Strong duality: at global optimum, minimum of primal and maximum of

dual are equal. Conditions for strong duality:

(a) Primal problem is convex, i.e. of the form (note affine equality con-
straint, although this can be ignored here since no equality constraint
in problem)

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . , n (18)
Ax = b

for convex f0, . . . , fm, and
(b) Slater’s condition holds: there exists some strictly feasible point1

x̃ ∈ relint(D) such that

fi(x̃) < 0 i = 1, . . . ,m Ax̃ = b.

Since inequality constraints are affine for this problem, however, then
these become trivial, and reduce to the inequality constrints

fi(x) ≤ 0 i = 1, . . . , n

(and there are no equality constraimts).
1We denote by relint(D) the relative interior of the set D. This looks like the interior of

the set, but is non-empty even when the set is a subspace of a larger space.
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2. Recall the optimization problem:

minimize
w∈H,ξ,ξ∗∈Rm,b∈R

1

2
‖w‖2H +

C

m

m∑
i=1

(ξi + ξ∗i ), (19)

subject to (〈w(·), φ(xi)〉H + b)− yi ≤ ε+ ξi

yi − (〈w(·), φ(xi)〉H + b) ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

The Lagrangian is:

L :=
1

2
‖w‖2H +

C

m

m∑
i=1

(ξi + ξ∗i )−
m∑
i=1

(ηiξi + η∗i ξ
∗
i )

+

m∑
i=1

αi(−ε− ξi − yi + 〈w(·), φ(xi)〉H + b)

+

m∑
i=1

α∗i (−ε− ξ∗i + yi − 〈w(·), φ(xi)〉H − b).

The KKT conditions: when strong duality holds and using notation
from (18) (again ignoring absent equality constraint), the KKT conditions
are

fi(x) ≤ 0, i = 1, . . . ,m

λi ≥ 0, i = 1, . . . ,m

λifi(x) = 0, i = 1, . . . ,m (20)

∇f0(x) +

m∑
i=1

λi∇fi(x) = 0

These are necessary and sufficient for optimality under strong dual-
ity. The condition λifi = 0 translates to

0 = ηiξi (21)
0 = η∗i ξ

∗
i

0 = αi(−ε− ξi − yi + 〈w(·), φ(xi)〉H + b) (22)
0 = α∗i (−ε− ξ∗i + yi − 〈w(·), φ(xi)〉H − b)

The dual variables satisfy

αi, α
∗
i , ηi, η

∗
i ≥ 0. (23)

Taking derivatives wrt the primal parameters and setting to zero gives the
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remaining conditions:

∂L

∂w
= w(·) +

m∑
i=1

αiφ(xi)−
m∑
i=1

α∗i φ(xi) = 0 (24)

∂L

∂ξi
=
C

m
− αi − ηi = 0 (25)

∂L

∂ξ∗i
=
C

m
− α∗i − η∗i = 0 (26)

∂L

∂b
=

m∑
i=1

(αi − α∗i ) = 0 (27)

3. We use the minimum Lagrangian wrt the primal parameters, which we can
readily compute since we have the point at which the primal derivatives
are zero. From (24),

w∗(·) =

m∑
i=1

(α∗i − αi)φ(xi).

Substituting the optimal w∗ and the expressions for ηi and η∗i back into
the Lagrangian, we get

L :=
1

2

m∑
i=1

m∑
j=1

(α∗i − αi)(α∗j − αj)k(xixj) +
C

m

m∑
i=1

(ξi + ξ∗i )

−
m∑
i=1

[
ξi

(
C

m
− αi

)
+ ξ∗i

(
C

m
− α∗i

)]

+

m∑
i=1

αi

−ε− ξi − yi +

m∑
j=1

(α∗j − αj)k(xi, xj) + b


+

m∑
i=1

α∗i

−ε− ξ∗i + yi −
m∑
j=1

(α∗j − αj)k(xi, xj)− b

 ,
=− 1

2

m∑
i=1

m∑
j=1

(α∗i − αi)(α∗j − αj)k(xi, xj)

− ε
m∑
i=1

(αi + α∗i ) +

m∑
i=1

yi(α
∗
i − αi)

This is the Lagrange dual function. To get the desired solution, it must
be maximized wrt αi, α∗i .
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4. Solution remark: we can simplify the KKT conditions as follows:

0 = ηiξi =

(
C

m
− αi

)
ξi

0 = η∗i ξ
∗
i =

(
C

m
− α∗i

)
ξ∗i ,

which removes the requirement to discuss ηi, η∗i explicitly. Original solu-
tion: there are three cases:

(a) When ηi = 0 then we have ξi ≥ 0 from (21). From (25), C
m = αi for

these points. From (22), since αi 6= 0, we must have

0 =− ε− ξi − yi + 〈w(·), φ(xi)〉H + b

ε+ ξi =− yi + 〈w(·), φ(xi)〉H + b,

and yi is below the regression function a distance ε+ ξi.

(b) When αi = 0 then ηi = C/m by (25), hence we must have ξi = 0
from (21), and since αi = 0, we have

−ε− yi + 〈w(·), φ(xi)〉H + b ≤ 0

〈w(·), φ(xi)〉H + b− yi ≤ ε,

i.e. yi is not below the regression function by more than ε (it might
still make a large positive error, however).

(c) When αi 6= 0 and ηi 6= 0, we have ξi = 0 from (21) and, from (22),
we have

0 =− ε− yi + 〈w(·), φ(xi)〉H + b

ε =− yi + 〈w(·), φ(xi)〉H + b,

Thus yi is below the regression function by a distance exactly ε. From
(25) and (23), αi ∈ (0, C/m); it can’t attain the upper bound since
ηi 6= 0.
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