
Kernel assignment: advanced topics in machine
learning

Arthur Gretton, Steffen Grunewalder

January 23, 2013

The assignment must be handed in to Steffen Grunewalder (S.Grunewalder@cs.ucl.ac.uk)
on Friday March 22 by 5pm. The code must be emailed to Steffen in a text
file; the proofs and plots can be submitted either on paper or electronically. A
penalty of 10% per day will apply to late assignments (any email timestamp af-
ter 5pm counts as a full day, and both the code and the proofs must be received
for the assignment not to count as late).

The final component of the assignment involves teaming up with either one
or two additional students, generating a dataset, and running your software on
the dataset generated by another team (Section 3). Your datasets for kernel
CCA must be emailed to Steffen by 5pm on Friday March 29 (i.e. he needs
to receive by email the Matlab code to generate the data, and the plots of the
canonical projection functions). A 100% penalty will apply if this component is
not submitted on time (since this dataset will be used by other students in the
second part of the assignment). Your assessment of the dataset from another
team is due on Friday April 12th (after easter closure), with a 10% per day
penalty if late.

Please contact Steffen Grunewalder with any questions on the assignment.

1 Feature spaces (30%)
1. Describe a simple (finite dimensional) feature space that allows error-

free linear classification for the datasets in Figure 1 (the feature space
coordinates will be functions of the input space coordinates x1 and x2).

2. Consider the case in which the input space X contains a finite numberm of
elements. You are given the inner product matrix K between the feature
space mapping of every pair of elements xi, xj in X , where the i, jth entry
in K is written k(xi, xj) = 〈φ(xi), φ(xj)〉H = (K)ij . Derive the feature
space representation of each element xi ∈ X , i ∈ {1 . . .m}. Hint: K is
positive semidefinite and symmetric - what is its eigendecomposition?
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Figure 1: Ring dataset

−10 −5 0 5 10
−10

−5

0

5

10

x
1

x
2

2 Kernel dependence detection

2.1 Incomplete Cholesky for efficient COCO (20%)
We observe pairs (xi, yi) which we arrange in the matrices

X =
[
φ( x1) . . . φ(xn)

]
Y =

[
ψ( y1) . . . ψ(yn)

]
,

where xi ∈ X , φ(x) ∈ F , F is an RKHS with kernel k(x, x′); and yi ∈ Y, ψ(y) ∈
G, G is an RKHS with kernel l(x, x′). Define the Gram matrices K and L such
that k(xi, xj) = 〈φ(xi), φ(xj)〉F = (K)ij and l(yi, yj) = 〈ψ(yi), ψ(yj)〉G = (L)ij .
The empirical covariance in feature space is

ĈXY =
1

n

n∑
i=1

(φ(xi)− µ̂x)⊗ (ψ(yi)− µ̂y)

=
1

n
XHY >, (1)

where

µ̂x =
1

n

n∑
i=1

φ(xi) µ̂y =
1

n

n∑
i=1

ψ(yi).

Recall from the lecture notes that the solution to

COCO :=max
f,g

〈
f, ĈXY g

〉
G

subject to ‖f‖F = 1 (2)
‖g‖G = 1, (3)

is written [
0 1

nK̃L̃
1
n L̃K̃ 0

] [
α
β

]
= γ

[
K̃ 0

0 L̃

] [
α
β

]
.
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Here

f =

n∑
i=1

αi [φ(xi)− µ̂x] = XHα g =

n∑
j=1

βi [ψ(yi)− µ̂y] = Y Hβ,

and
K̃ = HKH L̃ = HLH, (4)

where H = I − n−11n, and 1n is an n× n matrix of ones.1
Using the attached extract on incomplete Cholesky, taken from [1, Section

5.2], implement a more computationally efficient estimate of COCO (the esti-
mate will not be exact). Compare the computational cost of COCO computed
exactly, and approximated via incomplete Cholesky (give the number of oper-
ations, not just Matlab runtimes). Implement the incomplete Cholesky-based
COCO in Matlab using Gaussian kernels, and test it on the following data (see
Figure 2).

x = sin(t) + n1

y = cos(t) + n2

n1, n2 ∼ N (0, 0.012)

t ∼ U([0, 2π])

where N (µ, σ2) is a Gaussian random variable with mean µ and variance σ2,
and U([a, b]) is a uniform random variable on the interval [a, b]. The random
variables t, n1, n2 are to be mutually independent. Plot f and g when a Gaussian
kernel is used. Plot the mapping of (x, y) via these projections, and compute
the correlation of the mapped variables.

2.2 Kernel CCA (20%)
The canonical correlation is defined as

argmax
f,g

(cov[f(x), g(y)]) =
〈
f, ĈXY g

〉
G
, (5)

subject to the constraints

var(f(x)) =
〈
f, ĈXXf

〉
F

= 1, (6)

var(g(y)) =
〈
g, ĈY Y g

〉
G

= 1, (7)

where ĈXY is given in (1), and

ĈXX = n−1XHX> ĈY Y = n−1Y HY >.

1You can use that H = HH, and that XH is a matrix from which each column has had
its mean subtracted: these are simple results, so you do not need to show working for them.
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Figure 2: Data to be used for kernel CCA.

Write a kernelized solution to the canonical correlation problem (5) in terms of
the Gram matrices K̃ and L̃ defined in (4), as a generalized eigenvalue problem
Uai = λiV ai (U and V are matrices, ai is the eigenvector, λi is the eigenvalue).
Hints: (1) you may assume that

f =

n∑
i=1

αi [φ(xi)− µ̂x] = XHα g =

n∑
j=1

βi [ψ(yi)− µ̂y] = Y Hβ.

(2) don’t forget to keep track of the centring matrices H. Assume a Gaussian
kernel, and that the points are also non-pathologically distributed so that K
and L have full rank. What went wrong? By adding suitable regularizing terms
to (6) and (7), show you can obtain the solution[

0 1
nK̃L̃

1
n L̃K̃ 0

] [
α
β

]
= λ

[
K̃2 + κK̃ 0

0 L̃2 + κL̃

][
α
β

]
, (8)

where K̃ and L̃ are defined in (4). Implement kernel CCA as above in Matlab,
using Gaussian kernels, and test it on the dataset in Figure 2. Compare functions
f and g to those you got with COCO.

3 Dataset design for kernel CCA (15% for your
dataset, 15% for results on other dataset)

Teaming up with either one or two other students, design a dataset for kernel
CCA. Create variables (perhaps in more than one dimension) which have a
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nonlinear relationship, and plot the largest kernel canonical projections. You
are encouraged to be creative in the choice of domain, even if this means that one
of the canonical correlation functions f, g can’t be plotted (though at least one
projection function must be plottable, hence defined on < or <2). For instance,
one of the domains might contain strings, or vectors of dimensionality greater
than two. Due Friday March 29.

Finally, we will assign your team a dataset generated by another team of
students. Find and plot the largest canonical projection directions in this case.
Due Friday April 12th.
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