## Lecture 1: Introduction to RKHS MLSS Tübingen, 2015

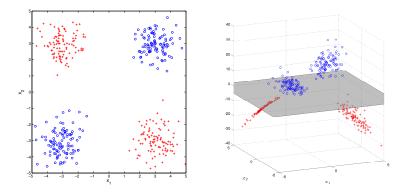
Gatsby Unit, CSML, UCL

July 22, 2015

Lecture 1: Introduction to RKHS

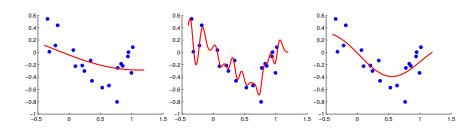
・ 同 ト ・ 三 ト ・

### Kernels and feature space (1): XOR example



- No linear classifier separates red from blue
- Map points to higher dimensional feature space:  $\phi(x) = \begin{bmatrix} x_1 & x_2 & x_1x_2 \end{bmatrix} \in \mathbb{R}^3$

## Kernels and feature space (2): smoothing



Kernel methods can control **smoothness** and **avoid overfitting/underfitting**.

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Outline: reproducing kernel Hilbert space

We will describe in order:

- Hilbert space
- Kernel (lots of examples: e.g. you can build kernels from simpler kernels)
- 8 Reproducing property

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Hilbert space

#### Definition (Inner product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is an inner product on  $\mathcal{H}$  if

- $\textbf{ linear: } \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- **2** Symmetric:  $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$
- $\ \, {\bf 0} \ \, \langle f,f\rangle_{\mathcal H}\geq 0 \ \, {\rm and} \ \, \langle f,f\rangle_{\mathcal H}=0 \ \, {\rm if \ and \ only \ if \ f=0.}$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Hilbert space

### Definition (Inner product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is an inner product on  $\mathcal{H}$  if

 $\textbf{ linear: } \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$ 

$$(f, f)_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$$

Norm induced by the inner product:  $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$ 

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Hilbert space

### Definition (Inner product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is an inner product on  $\mathcal{H}$  if

- $\textbf{ linear: } \langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- 2 Symmetric:  $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$

$$(f, f)_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$$

Norm induced by the inner product:  $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$ 

#### Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Kernel

### Definition

Let  $\mathcal{X}$  be a non-empty set. A function  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a kernel if there exists an  $\mathbb{R}$ -Hilbert space and a map  $\phi : \mathcal{X} \to \mathcal{H}$  such that  $\forall x, x' \in \mathcal{X}$ ,

$$k(\mathbf{x},\mathbf{x}') := \left\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \right\rangle_{\mathcal{H}}.$$

- Almost no conditions on  $\mathcal{X}$  (eg,  $\mathcal{X}$  itself doesn't need an inner product, eg. documents).
- A single kernel can correspond to several possible features. A trivial example for X := ℝ:

$$\phi_1(x) = x$$
 and  $\phi_2(x) = \begin{bmatrix} x/\sqrt{2} \\ x/\sqrt{2} \end{bmatrix}$ 

• □ ▶ • • □ ▶ • • □ ▶ •

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### New kernels from old: sums, transformations

#### Theorem (Sums of kernels are kernels)

Given  $\alpha > 0$  and k,  $k_1$  and  $k_2$  all kernels on  $\mathcal{X}$ , then  $\alpha k$  and  $k_1 + k_2$  are kernels on  $\mathcal{X}$ .

(Proof via positive definiteness: later!) A difference of kernels may not be a kernel (why?)

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### New kernels from old: sums, transformations

### Theorem (Sums of kernels are kernels)

Given  $\alpha > 0$  and k,  $k_1$  and  $k_2$  all kernels on  $\mathcal{X}$ , then  $\alpha k$  and  $k_1 + k_2$  are kernels on  $\mathcal{X}$ .

(Proof via positive definiteness: later!) A difference of kernels may not be a kernel (why?)

#### Theorem (Mappings between spaces)

Let  $\mathcal{X}$  and  $\widetilde{\mathcal{X}}$  be sets, and define a map  $A : \mathcal{X} \to \widetilde{\mathcal{X}}$ . Define the kernel k on  $\widetilde{\mathcal{X}}$ . Then the kernel k(A(x), A(x')) is a kernel on  $\mathcal{X}$ .

Example:  $k(x, x') = x^2 (x')^2$ .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## New kernels from old: products

Theorem (Products of kernels are kernels)

Given  $k_1$  on  $\mathcal{X}_1$  and  $k_2$  on  $\mathcal{X}_2$ , then  $k_1 \times k_2$  is a kernel on  $\mathcal{X}_1 \times \mathcal{X}_2$ . If  $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}$ , then  $k := k_1 \times k_2$  is a kernel on  $\mathcal{X}$ .

**Proof:** Main idea only!  $\mathcal{H}_1$  space of kernels between **shapes**,

$$\phi_1(x) = \left[ egin{array}{c} \mathbb{I}_{\Box} \ \mathbb{I}_{\bigtriangleup} \end{array} 
ight] \qquad \phi_1(\Box) = \left[ egin{array}{c} 1 \ 0 \end{array} 
ight], \qquad k_1(\Box, \bigtriangleup) = 0.$$

 $\mathcal{H}_2$  space of kernels between colors,

$$\phi_2(x) = \begin{bmatrix} \mathbb{I}_{\bullet} \\ \mathbb{I}_{\bullet} \end{bmatrix} \qquad \phi_2(\bullet) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad k_2(\bullet, \bullet) = 1.$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### New kernels from old: products

"Natural" feature space for colored shapes:

$$\Phi(x) = \begin{bmatrix} \mathbb{I}_{\Box} & \mathbb{I}_{\triangle} \\ \mathbb{I}_{\Box} & \mathbb{I}_{\triangle} \end{bmatrix} = \begin{bmatrix} \mathbb{I}_{\bullet} \\ \mathbb{I}_{\bullet} \end{bmatrix} \begin{bmatrix} \mathbb{I}_{\Box} & \mathbb{I}_{\triangle} \end{bmatrix} = \phi_2(x)\phi_1^{\top}(x)$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### New kernels from old: products

"Natural" feature space for colored shapes:

$$\Phi(x) = \begin{bmatrix} \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\ \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \end{bmatrix} = \begin{bmatrix} \mathbb{I}_{\bullet} \\ \mathbb{I}_{\bullet} \end{bmatrix} \begin{bmatrix} \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \end{bmatrix} = \phi_2(x)\phi_1^{\top}(x)$$

Kernel is:  

$$k(x, x') = \sum_{i \in \{\bullet, \bullet\}} \sum_{j \in \{\Box, \triangle\}} \Phi_{ij}(x) \Phi_{ij}(x') = \operatorname{tr} \left( \phi_1(x) \underbrace{\phi_2^\top(x) \phi_2(x')}_{k_2(x, x')} \phi_1^\top(x') \right)$$

$$= \operatorname{tr} \left( \underbrace{\phi_1^\top(x') \phi_1(x)}_{k_1(x, x')} \right) k_2(x, x') = k_1(x, x') k_2(x, x')$$

▶ ∢ ≣ ▶

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Sums and products $\implies$ polynomials

### Theorem (Polynomial kernels)

Let  $x, x' \in \mathbb{R}^d$  for  $d \ge 1$ , and let  $m \ge 1$  be an integer and  $c \ge 0$  be a positive real. Then

$$k(x,x') := (\langle x,x' \rangle + c)^m$$

is a valid kernel.

**To prove**: expand into a sum (with non-negative scalars) of kernels  $\langle x, x' \rangle$  raised to integer powers. These individual terms are valid kernels by the product rule.

### Infinite sequences

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

The kernels we've seen so far are dot products between finitely many features. E.g.

$$k(x, y) = \begin{bmatrix} \sin(x) & x^3 & \log x \end{bmatrix}^{\top} \begin{bmatrix} \sin(y) & y^3 & \log y \end{bmatrix}$$
  
where  $\phi(x) = \begin{bmatrix} \sin(x) & x^3 & \log x \end{bmatrix}$   
Can a kernel be a dot product between infinitely many features?

-

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Infinite sequences

### Definition

The space  $\ell_2$  (square summable sequences) comprises all sequences  $a := (a_i)_{i \ge 1}$  for which

$$\|\boldsymbol{a}\|_{\ell_2}^2 = \sum_{i=1}^\infty \boldsymbol{a}_i^2 < \infty.$$

3.5

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Infinite sequences

### Definition

The space  $\ell_2$  (square summable sequences) comprises all sequences  $a := (a_i)_{i \ge 1}$  for which

$$\|\boldsymbol{a}\|_{\ell_2}^2 = \sum_{i=1}^\infty a_i^2 < \infty.$$

### Definition

Given sequence of functions  $(\phi_i(x))_{i\geq 1}$  in  $\ell_2$  where  $\phi_i : \mathcal{X} \to \mathbb{R}$  is the *i*th coordinate of  $\phi(x)$ . Then

$$k(x,x') := \sum_{i=1}^{\infty} \phi_i(x)\phi_i(x') \tag{1}$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Infinite sequences (proof)

### Why square summable? By Cauchy-Schwarz,

$$\left|\sum_{i=1}^{\infty}\phi_i(x)\phi_i(x')\right| \leq \left\|\phi(x)\right\|_{\ell_2} \left\|\phi(x')\right\|_{\ell_2},$$

so the sequence defining the inner product converges for all  $x,x'\in\mathcal{X}$ 

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Taylor series kernels

### Definition (Taylor series kernel)

For  $r \in (0,\infty]$ , with  $a_n \ge 0$  for all  $n \ge 0$ 

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad |z| < r, \ z \in \mathbb{R},$$

Define  $\mathcal{X}$  to be the  $\sqrt{r}$ -ball in  $\mathbb{R}^d$ , so $||x|| < \sqrt{r}$ ,

$$k(x,x') = f\left(\langle x,x'\rangle\right) = \sum_{n=0}^{\infty} a_n \langle x,x'\rangle^n.$$

Example (Exponential kernel)

$$k(x,x') := \exp\left(\langle x,x' \rangle\right).$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Taylor series kernel (proof)

**Proof**: Non-negative weighted sums of kernels are kernels, and products of kernels are kernels, so the following is a kernel **if it converges**:

$$k(x,x') = \sum_{n=0}^{\infty} a_n \left( \langle x,x' \rangle \right)^n$$

By Cauchy-Schwarz,

$$\left|\left\langle x, x'\right\rangle\right| \leq \|x\| \|x'\| < r,$$

so the sum converges.

### Gaussian kernel

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Example (Gaussian kernel)

The Gaussian kernel on  $\mathbb{R}^d$  is defined as

$$k(x, x') := \exp\left(-\gamma^{-2} \left\|x - x'\right\|^2\right).$$

**Proof**: an exercise! Use product rule, mapping rule, exponential kernel.

• □ ▶ • • □ ▶ • • □ ▶ •

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Positive definite functions

If we are given a function of two arguments, k(x, x'), how can we determine if it is a valid kernel?

- Find a feature map?
  - Sometimes this is not obvious (eg if the feature vector is infinite dimensional, e.g. the Gaussian kernel in the last slide)
  - 2 The feature map is not unique.
- A direct property of the function: positive definiteness.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Positive definite functions

### Definition (Positive definite functions)

A symmetric function  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is positive definite if  $\forall n \ge 1, \ \forall (a_1, \dots, a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$ ,

$$\sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)\geq 0.$$

The function  $k(\cdot, \cdot)$  is strictly positive definite if for mutually distinct  $x_i$ , the equality holds only when all the  $a_i$  are zero.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Kernels are positive definite

#### Theorem

Let  $\mathcal{H}$  be a Hilbert space,  $\mathcal{X}$  a non-empty set and  $\phi : \mathcal{X} \to \mathcal{H}$ . Then  $\langle \phi(x), \phi(y) \rangle_{\mathcal{H}} =: k(x, y)$  is positive definite.

### Proof.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \phi(x_i), a_j \phi(x_j) \rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} a_i \phi(x_i) \right\|_{\mathcal{H}}^2 \ge 0.$$

Reverse also holds: positive definite k(x, x') is inner product in a unique  $\mathcal{H}$  (Moore-Aronsajn: coming later!).

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Sum of kernels is a kernel

Consider two kernels  $k_1(x, x')$  and  $k_2(x, x')$ . Then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j} [k_{1}(x_{i}, x_{j}) + k_{2}(x_{i}, x_{j})]$$
  
= 
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}k_{1}(x_{i}, x_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}k_{2}(x_{i}, x_{j})$$
  
\ge 0

Lecture 1: Introduction to RKHS

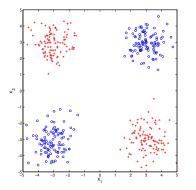
# The reproducing kernel Hilbert space

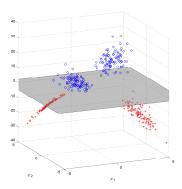
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### First example: finite space, polynomial features

### Reminder: XOR example:





What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### First example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \phi(x) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix},$$

with kernel

$$k(x,y) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}^\top \begin{bmatrix} y_1 \\ y_2 \\ y_1y_2 \end{bmatrix}$$

(the standard inner product in  $\mathbb{R}^3$  between features). Denote this feature space by  $\mathcal{H}$ .

## First example: finite space, polynomial features

Define a linear function of the inputs  $x_1, x_2$ , and their product  $x_1x_2$ ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from  $\mathcal{X} = \mathbb{R}^2$  to  $\mathbb{R}$ . Equivalent representation for f,

$$f(\cdot) = \begin{bmatrix} f_1 & f_2 & f_3 \end{bmatrix}^\top$$
.

 $f(\cdot)$  refers to the function as an object (here as a vector in  $\mathbb{R}^3$ )  $f(x) \in \mathbb{R}$  is function evaluated at a point (a real number).

## First example: finite space, polynomial features

Define a linear function of the inputs  $x_1, x_2$ , and their product  $x_1x_2$ ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from  $\mathcal{X} = \mathbb{R}^2$  to  $\mathbb{R}$ . Equivalent representation for f,

$$f(\cdot) = \begin{bmatrix} f_1 & f_2 & f_3 \end{bmatrix}^\top$$
.

 $f(\cdot)$  refers to the function as an object (here as a vector in  $\mathbb{R}^3$ )  $f(x) \in \mathbb{R}$  is function evaluated at a point (a real number).

$$f(x) = f(\cdot)^{\top} \phi(x) = \langle f(\cdot), \phi(x) \rangle_{\mathcal{H}}$$

Evaluation of f at x is an inner product in feature space (here standard inner product in  $\mathbb{R}^3$ )  $\mathcal{H}$  is a space of functions mapping  $\mathbb{R}^2$  to  $\mathbb{R}$ .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### First example: finite space, polynomial features

I give you a vector:

$$g(\cdot) = [\begin{array}{ccc} 1 & -1 & -1 \end{array}]$$

Is this a function? Or is it a feature map  $\phi(y) = \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}$ ?

### First example: finite space, polynomial features

I give you a vector:

$$g(\cdot) = \left[ egin{array}{cccc} 1 & -1 & -1 \end{array} 
ight]$$

Is this a function? Or is it a feature map  $\phi(y) = \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}$ ? Both! All feature maps are also functions.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### First example: finite space, polynomial features

I give you a vector:

$$g(\cdot) = \left[ egin{array}{cccc} 1 & -1 & -1 \end{array} 
ight]$$

Is this a function? Or is it a feature map  $\phi(y) = \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}$ ? Both! All feature maps are also functions. I give you a vector:

$$h(\cdot) = \left[ egin{array}{cccc} 1 & -1 & 2 \end{array} 
ight]$$

Is this a function or a feature map?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### First example: finite space, polynomial features

I give you a vector:

$$g(\cdot) = \left[ egin{array}{cccc} 1 & -1 & -1 \end{array} 
ight]$$

Is this a function? Or is it a feature map  $\phi(y) = \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}$ ? Both! All feature maps are also functions. I give you a vector:

$$h(\cdot) = \left[ egin{array}{ccc} 1 & -1 & 2 \end{array} 
ight]$$

Is this a function or a feature map? It is a function but not a feature map.

## First example: finite space, polynomial features

I give you a vector:

$$g(\cdot) = \left[ egin{array}{cccc} 1 & -1 & -1 \end{array} 
ight]$$

Is this a function? Or is it a feature map  $\phi(y) = \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}$ ? Both! All feature maps are also functions. I give you a vector:

$$h(\cdot) = \left[ egin{array}{ccc} 1 & -1 & 2 \end{array} 
ight]$$

Is this a function or a feature map? It is a function but not a feature map. All feature maps are also functions. But the space of functions is larger: some functions are not feature maps.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### First example: finite space, polynomial features

 $\phi(y)$  is a mapping from  $\mathbb{R}^2$  to  $\mathbb{R}^3$ ... ...which also parametrizes a function mapping  $\mathbb{R}^2$  to  $\mathbb{R}$ .

$$k(\cdot, \mathbf{y}) := \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}^{\top} = \phi(\mathbf{y}),$$

We can *evaluate* this function at x

$$\langle k(\cdot, y), \phi(x) \rangle_{\mathcal{H}} = ax_1 + bx_2 + cx_1x_2,$$

where  $a = y_1$ ,  $b = y_2$ , and  $c = y_1y_2$ 

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## First example: finite space, polynomial features

 $\phi(y)$  is a mapping from  $\mathbb{R}^2$  to  $\mathbb{R}^3$ ... ...which also parametrizes a function mapping  $\mathbb{R}^2$  to  $\mathbb{R}$ .

$$k(\cdot, \mathbf{y}) := \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}^{\top} = \phi(\mathbf{y}),$$

We can *evaluate* this function at x

$$\langle k(\cdot, y), \phi(x) \rangle_{\mathcal{H}} = ax_1 + bx_2 + cx_1x_2,$$

where  $a = y_1$ ,  $b = y_2$ , and  $c = y_1y_2$ ...but due to symmetry,

$$\langle k(\cdot, x), \phi(y) \rangle = uy_1 + vy_2 + wy_1y_2$$
  
=  $k(x, y).$ 

We can write  $\phi(x) = k(\cdot, x)$  and  $\phi(y) = k(\cdot, y)$  without ambiguity: canonical feature map

The kernel trick

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

# Statistics Professors HATE Him!



Doctor's discovery revealed the secret to learning any problem with just 10 training samples. Watch this shocking video and learn how rapidly you can find a solution to your learning problems using this one sneaky kernel trick! Free from overfitting! http://www.oneweirdkerneltrick.com

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## The kernel trick

This example illustrates the two defining features of an RKHS:

• The reproducing property: (kernel trick)  $\forall x \in \mathcal{X}, \forall f(\cdot) \in \mathcal{H}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ ...or use shorter notation  $\langle f, \phi(x) \rangle_{\mathcal{H}}$ .

• In particular, for any  $x, y \in \mathcal{X}$ ,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}.$$

Note: the feature map of every point is in the feature space:  $\forall x \in \mathcal{X}, k(\cdot, x) = \phi(x) \in \mathcal{H}$ ,

イロト イ得ト イヨト イヨト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## First example: finite space, polynomial features

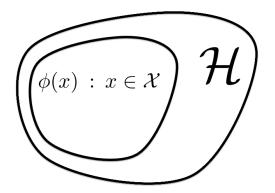
Another, more subtle point:  $\mathcal{H}$  can be larger than all  $\phi(x)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## First example: finite space, polynomial features

Another, more subtle point:  $\mathcal{H}$  can be larger than all  $\phi(x)$ .



E.g.  $f = [11 - 1] \in \mathcal{H}$  cannot be obtained by  $\phi(x) = [x_1 x_2 (x_1 x_2)]$ .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Second example: infinite feature space

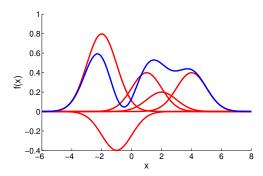
Lecture 1: Introduction to RKHS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Second example: infinite feature space

Reproducing property for function with Gaussian kernel:  $f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \left\langle \sum_{i=1}^{m} \alpha_i \phi(x_i), \phi(x) \right\rangle_{\mathcal{H}}.$ 

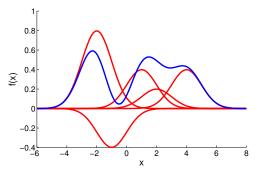


< /i>

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Second example: infinite feature space

Reproducing property for function with Gaussian kernel:  $f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \left\langle \sum_{i=1}^{m} \alpha_i \phi(x_i), \phi(x) \right\rangle_{\mathcal{H}}.$ 



- What do the features φ(x) look like (warning: there are infinitely many of them!)
- What do these features have to do with smoothness?

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Second example: infinite feature space

Under certain conditions (Mercer's theorem and extensions), we can write  $% \left( {{\left[ {{{\rm{CP}}} \right]}_{\rm{TP}}}} \right)$ 

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x'), \qquad \int_{\mathcal{X}} e_i(x) e_j(x) d\mu(x) = \begin{cases} 1 & i=j \\ 0 & i\neq j. \end{cases}$$

where this sum is guaranteed to converge whatever the x and x'.

Infinite dimensional feature map:

$$\phi(\mathbf{x}) = \begin{bmatrix} \vdots \\ \sqrt{\lambda_i} \mathbf{e}_i(\mathbf{x}) \\ \vdots \end{bmatrix} \in \ell_2.$$

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Second example: infinite feature space

Under certain conditions (Mercer's theorem and extensions), we can write

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i e_i(x) e_i(x'), \qquad \int_{\mathcal{X}} e_i(x) e_j(x) d\mu(x) = \begin{cases} 1 & i=j \\ 0 & i\neq j. \end{cases}$$

where this sum is guaranteed to converge whatever the x and x'.

Infinite dimensional feature map:  $\phi(x) = \begin{vmatrix} \vdots \\ \sqrt{\lambda_i} e_i(x) \\ \vdots \end{vmatrix} \in \ell_2.$ 

Define  $\mathcal{H}$  to be the space of functions: for  $\{f_i\}_{i=1}^{\infty} \in \ell_2$ ,

$$f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} f_i \sqrt{\lambda_i} e_i(x).$$

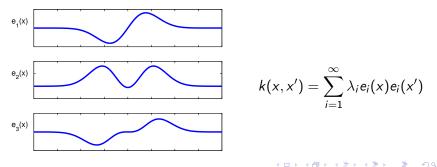
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Second example: infinite feature space

Gaussian kernel, 
$$k(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$$
,

$$\lambda_k \propto b^k \quad b < 1$$
  
 $e_k(x) \propto \exp(-(c-a)x^2)H_k(x\sqrt{2c}),$ 

a, b, c are functions of  $\sigma$ , and  $H_k$  is kth order Hermite polynomial.



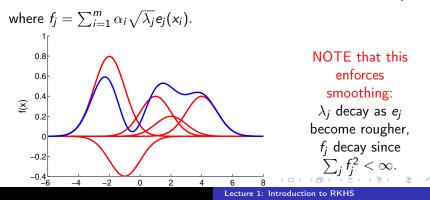
Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Second example: infinite feature space

Example RKHS function, Gaussian kernel:

$$f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \sum_{i=1}^{m} \alpha_i \left[ \sum_{j=1}^{\infty} \lambda_j e_j(x_i) e_j(x) \right] = \sum_{j=1}^{\infty} f_j \underbrace{\left[ \sqrt{\lambda_j} e_j(x) \right]}_{\phi_j(x)}$$



What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Third (infinite) example: fourier series

Lecture 1: Introduction to RKHS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Third (infinite) example: fourier series

Function on the torus  $\mathbb{T} := [-\pi, \pi]$  with periodic boundary. Fourier series:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x) = \sum_{l=-\infty}^{\infty} \hat{f}_{\ell} \left( \cos(\ell x) + \imath \sin(\ell x) \right).$$

Example: "top hat" function,

$$f(x) = egin{cases} 1 & |x| < T, \ 0 & T \leq |x| < \pi. \end{cases}$$

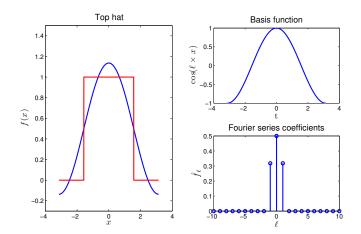
Fourier series:

$$\hat{f}_\ell := rac{\sin(\ell T)}{\ell \pi} \qquad f(x) = \sum_{\ell=0}^\infty 2\hat{f}_\ell \cos(\ell x).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

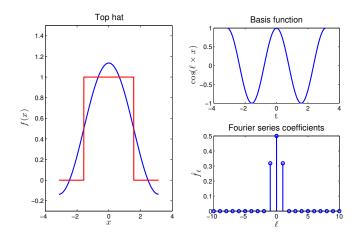
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

#### Fourier series for top hat function



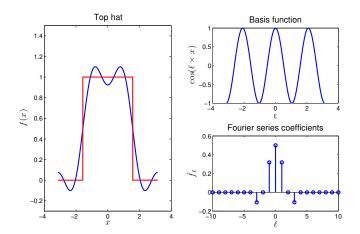
What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

#### Fourier series for top hat function



What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

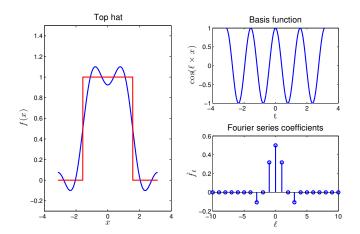
#### Fourier series for top hat function



(日) (同) (三) (三)

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

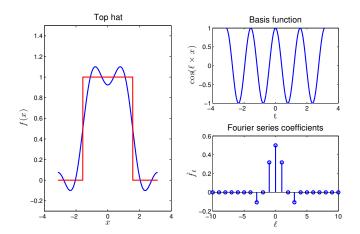
#### Fourier series for top hat function



< ロ > < 同 > < 回 > < 回 >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

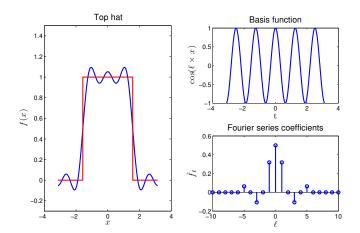
#### Fourier series for top hat function



< ロ > < 同 > < 回 > < 回 >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

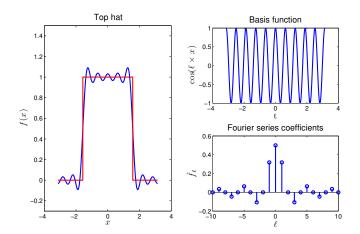
#### Fourier series for top hat function



(日) (同) (三) (三)

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

#### Fourier series for top hat function



(日)

< ∃→

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Fourier series for kernel function

Kernel takes a single argument,

$$k(x,y)=k(x-y),$$

Define the Fourier series representation of k

$$k(x) = \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp(\imath \ell x),$$

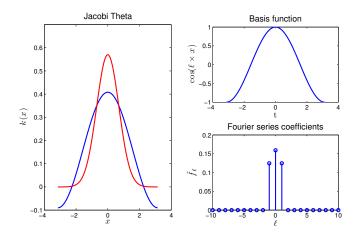
k and its Fourier transform are real and symmetric. E.g.,

$$k(x) = rac{1}{2\pi} artheta \left(rac{x}{2\pi}, rac{\imath \sigma^2}{2\pi}
ight), \qquad \hat{k}_\ell = rac{1}{2\pi} \exp\left(rac{-\sigma^2 \ell^2}{2}
ight).$$

 $\vartheta$  is the Jacobi theta function, close to Gaussian when  $\sigma^2$  sufficiently narrower than  $[-\pi,\pi].$ 

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

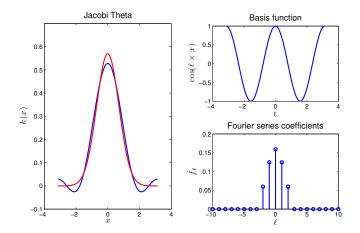
#### Fourier series for Gaussian-spectrum kernel



イロト イポト イヨト イヨト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

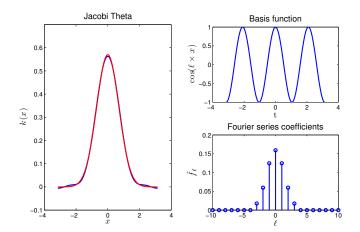
#### Fourier series for Gaussian-spectrum kernel



イロト イポト イヨト イヨト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

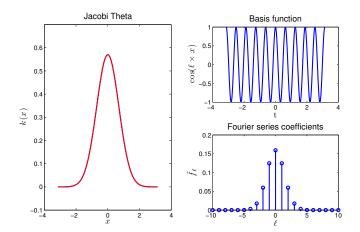
#### Fourier series for Gaussian-spectrum kernel



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

#### Fourier series for Gaussian-spectrum kernel



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Feature space via fourier series

Define  ${\mathcal H}$  to be the space of functions with (infinite) feature space representation

$$f(\cdot) = \left[ \begin{array}{cc} \dots & \hat{f}_{\ell} / \sqrt{\hat{k}_{\ell}} & \dots \end{array} 
ight]^{ op}.$$

Lecture 1: Introduction to RKHS

< □ > < 同 > < 回 > <</p>

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

Feature space via fourier series

Define  ${\mathcal H}$  to be the space of functions with (infinite) feature space representation

$$f(\cdot) = \left[ \begin{array}{ccc} \ldots & \hat{f}_{\ell} / \sqrt{\hat{k}_{\ell}} & \ldots \end{array} 
ight]^{ op}.$$

Define the feature map

$$k(\cdot, x) = \phi(x) = \begin{bmatrix} \dots & \sqrt{\hat{k}_{\ell}} \exp(-i\ell x) & \dots \end{bmatrix}^{+}$$

Lecture 1: Introduction to RKHS

< ∃ >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Feature space via fourier series

The reproducing theorem holds,

$$egin{aligned} &\langle f(\cdot),k(\cdot,x)
angle_{\mathcal{H}} &= \sum_{\ell=-\infty}^{\infty}\left(rac{\hat{f}_{\ell}}{\sqrt{\hat{k}_{\ell}}}
ight)\overline{\sqrt{\hat{k}_{\ell}}\exp(-\imath\ell x)} \ &= \sum_{\ell=-\infty}^{\infty}\hat{f}_{\ell}\exp(\imath\ell x) = f(x), \end{aligned}$$

Lecture 1: Introduction to RKHS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Feature space via fourier series

The reproducing theorem holds,

$$egin{aligned} &\langle f(\cdot),k(\cdot,x)
angle_{\mathcal{H}} &= \sum_{\ell=-\infty}^{\infty}\left(rac{\hat{f}_{\ell}}{\sqrt{\hat{k}_{\ell}}}
ight)\overline{\sqrt{\hat{k}_{\ell}}\exp(-\imath\ell x)} \ &= \sum_{\ell=-\infty}^{\infty}\hat{f}_{\ell}\exp(\imath\ell x) = f(x), \end{aligned}$$

...including for the kernel itself,

$$\begin{split} \langle k(\cdot,x),k(\cdot,y)\rangle_{\mathcal{H}} &= \sum_{\ell=-\infty}^{\infty} \left(\sqrt{\hat{k}_{\ell}}\exp(-\imath\ell x)\right) \left(\overline{\sqrt{\hat{k}_{\ell}}\exp(-\imath\ell y)}\right) \\ &= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell}\exp(\imath\ell(y-x)) = k(x-y). \end{split}$$

Lecture 1: Introduction to RKHS

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Fourier series and smoothness

The squared norm of a function f in  $\mathcal{H}$  is:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{I=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}.$$

If  $\hat{k}_{\ell}$  decays fast, then so must  $\hat{f}_{\ell}$  if we want  $\|f\|_{\mathcal{H}}^2 < \infty$ .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Fourier series and smoothness

The squared norm of a function f in  $\mathcal{H}$  is:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{I=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}.$$

If  $\hat{k}_{\ell}$  decays fast, then so must  $\hat{f}_{\ell}$  if we want  $\|f\|_{\mathcal{H}}^2 < \infty$ . Recall

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left( \cos(\ell x) + \imath \sin(\ell x) \right).$$

Enforces smoothness.

< /i>

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Fourier series and smoothness

The squared norm of a function f in  $\mathcal{H}$  is:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{I=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}.$$

If  $\hat{k}_{\ell}$  decays fast, then so must  $\hat{f}_{\ell}$  if we want  $\|f\|_{\mathcal{H}}^2 < \infty$ . Recall

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left( \cos(\ell x) + \imath \sin(\ell x) \right).$$

Enforces smoothness.

Question: is the top hat function in the Gaussian-spectrum RKHS?

# Some reproducing kernel Hilbert space theory



What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Reproducing kernel Hilbert space (1)

#### Definition

 $\mathcal{H}$  a Hilbert space of  $\mathbb{R}$ -valued functions on non-empty set  $\mathcal{X}$ . A function  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a reproducing kernel of  $\mathcal{H}$ , and  $\mathcal{H}$  is a reproducing kernel Hilbert space, if

• 
$$\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H},$$

•  $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$  (the reproducing property).

In particular, for any  $x, y \in \mathcal{X}$ ,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}.$$
 (2)

Original definition: kernel an inner product between feature maps. Then  $\phi(x) = k(\cdot, x)$  a valid feature map.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

## Reproducing kernel Hilbert space (2)

Another RKHS definition:

Define  $\delta_x$  to be the operator of evaluation at x, i.e.

$$\delta_x f = f(x) \quad \forall f \in \mathcal{H}, \ x \in \mathcal{X}.$$

#### Definition (Reproducing kernel Hilbert space)

 $\mathcal{H}$  is an RKHS if the evaluation operator  $\delta_x$  is bounded:  $\forall x \in \mathcal{X}$  there exists  $\lambda_x \geq 0$  such that for all  $f \in \mathcal{H}$ ,

$$|f(x)| = |\delta_x f| \le \lambda_x ||f||_{\mathcal{H}}$$

 $\implies$  two functions identical in RHKS norm agree at every point:

$$|f(x) - g(x)| = |\delta_x (f - g)| \le \lambda_x \|f - g\|_{\mathcal{H}} \quad \forall f, g \in \mathcal{H}.$$

イロト イポト イヨト イヨト

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

# RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded  $\delta_{\chi}$  )

 $\mathcal{H}$  is a reproducing kernel Hilbert space (i.e., its evaluation operators  $\delta_x$  are bounded linear operators), if and only if  $\mathcal{H}$  has a reproducing kernel.

**Proof**: If  $\mathcal{H}$  has a reproducing kernel  $\implies \delta_x$  bounded

$$\begin{split} \delta_{x}[f]| &= |f(x)| \\ &= |\langle f, k(\cdot, x) \rangle_{\mathcal{H}}| \\ &\leq \|k(\cdot, x)\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \\ &= \langle k(\cdot, x), k(\cdot, x) \rangle_{\mathcal{H}}^{1/2} \|f\|_{\mathcal{H}} \\ &= k(x, x)^{1/2} \|f\|_{\mathcal{H}} \end{split}$$

Cauchy-Schwarz in 3rd line . Consequently,  $\delta_x : \mathcal{F} \to \mathbb{R}$  bounded with  $\lambda_x = k(x,x)^{1/2}$ .

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### **RKHS** definitions equivalent

Proof:  $\delta_x$  bounded  $\implies \mathcal{H}$  has a reproducing kernel We use...

#### Theorem

(Riesz representation) In a Hilbert space  $\mathcal{H}$ , all bounded linear functionals are of the form  $\langle \cdot, g \rangle_{\mathcal{H}}$ , for some  $g \in \mathcal{H}$ .

If  $\delta_x : \mathcal{F} \to \mathbb{R}$  is a bounded linear functional, by Riesz  $\exists f_{\delta_x} \in \mathcal{H}$  such that

$$\delta_{x}f = \langle f, f_{\delta_{x}} \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H}.$$

Define  $k(x', x) = f_{\delta_x}(x')$ ,  $\forall x, x' \in \mathcal{X}$ . By its definition, both  $k(\cdot, x) = f_{\delta_x} \in \mathcal{H}$  and  $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = \delta_x f = f(x)$ . Thus, k is the reproducing kernel.

< ロ > < 同 > < 回 > < 回 > < 回 > <

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Moore-Aronszajn Theorem

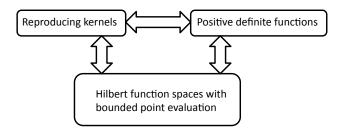
#### Theorem (Moore-Aronszajn)

Let  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  be positive definite. There is a **unique RKHS**  $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$  with reproducing kernel k.

Recall feature map is not unique (as we saw earlier): only kernel is.

What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Main message #1

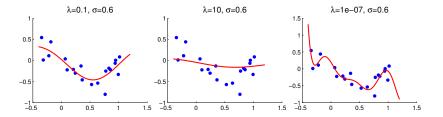


What is a kernel? Constructing new kernels Positive definite functions Reproducing kernel Hilbert space

### Main message #2

#### Small RKHS norm results in smooth functions. E.g. kernel ridge regression with Gaussian kernel:

$$f^* = \arg \min_{f \in \mathcal{H}} \left( \sum_{i=1}^n (y_i - \langle f, \phi(\mathbf{x}_i) \rangle_{\mathcal{H}})^2 + \lambda \|f\|_{\mathcal{H}}^2 \right).$$



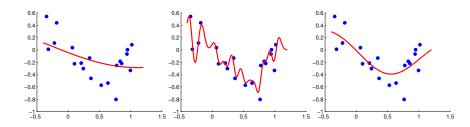
Lecture 1: Introduction to RKHS

э

# Kernel Ridge Regression



### Kernel ridge regression



Very simple to implement, works well when no outliers.

Lecture 1: Introduction to RKHS

### Kernel ridge regression

Use features of  $\phi(x_i)$  in the place of  $x_i$ :

$$f^* = \arg \min_{f \in \mathcal{H}} \left( \sum_{i=1}^n (y_i - \langle f, \phi(x_i) \rangle_{\mathcal{H}})^2 + \lambda \|f\|_{\mathcal{H}}^2 \right).$$

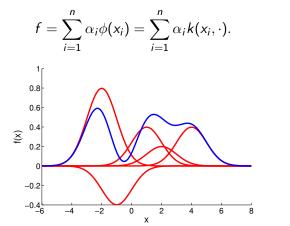
E.g. for finite dimensional feature spaces,

$$\phi_{p}(x) = \begin{bmatrix} x \\ x^{2} \\ \vdots \\ x^{\ell} \end{bmatrix} \qquad \phi_{s}(x) = \begin{bmatrix} \sin x \\ \cos x \\ \sin 2x \\ \vdots \\ \cos \ell x \end{bmatrix}$$

*a* is a vector of length  $\ell$  giving weight to each of these features so as to find the mapping between *x* and *y*. Feature vectors can also have *infinite* length (more soon).

## Kernel ridge regression

Solution easy if we already know f is a linear combination of feature space mappings of points: representer theorem.



Lecture 1: Introduction to RKHS

### Representer theorem

Given a set of paired observations  $(x_1, y_1), \ldots, (x_n, y_n)$  (regression or classification).

Find the function  $f^*$  in the RKHS  $\mathcal{H}$  which satisfies

$$J(f^*) = \min_{f \in \mathcal{H}} J(f), \tag{3}$$

where

$$J(f) = L_{y}(f(x_{1}), \ldots, f(x_{n})) + \Omega\left( \|f\|_{\mathcal{H}}^{2} \right),$$

 $\Omega$  is non-decreasing, and y is the vector of  $y_i$ .

- Classification:  $L_y(f(x_1), \ldots, f(x_n)) = \sum_{i=1}^n \mathbb{I}_{y_i f(x_i) \le 0}$
- Regression:  $L_y(f(x_1), ..., f(x_n)) = \sum_{i=1}^n (y_i f(x_i))^2$

### Representer theorem

The representer theorem: (simple version) solution to

$$\min_{f\in\mathcal{H}}\left[L_{y}(f(x_{1}),\ldots,f(x_{n}))+\Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right)\right]$$

takes the form

$$f^* = \sum_{i=1}^n \alpha_i k(x_i, \cdot).$$

If  $\Omega$  is strictly increasing, all solutions have this form.

### Representer theorem: proof

#### **Proof:** Denote $f_s$ projection of f onto the subspace

$$\operatorname{span}\left\{k(x_{i},\cdot):\ 1\leq i\leq n\right\}, \tag{4}$$

such that

$$f = f_s + f_\perp,$$

where  $f_s = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot)$ . Regularizer:

$$\|f\|_{\mathcal{H}}^2 = \|f_s\|_{\mathcal{H}}^2 + \|f_{\perp}\|_{\mathcal{H}}^2 \ge \|f_s\|_{\mathcal{H}}^2,$$

then

$$\Omega\left(\|f\|_{\mathcal{H}}^{2}\right) \geq \Omega\left(\|f_{s}\|_{\mathcal{H}}^{2}\right),$$

so this term is minimized for  $f = f_s$ .

### Representer theorem: proof

**Proof (cont.):** Individual terms  $f(x_i)$  in the loss:

$$f(x_i) = \langle f, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_s + f_{\perp}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_s, k(x_i, \cdot) \rangle_{\mathcal{H}},$$

SO

$$L_y(f(x_1),\ldots,f(x_n))=L_y(f_s(x_1),\ldots,f_s(x_n)).$$

Hence

- Loss *L*(...) only depends on the component of *f* in the data subspace,
- Regularizer  $\Omega(\ldots)$  minimized when  $f = f_s$ .
- If  $\Omega$  is strictly non-decreasing, then  $\|f_{\perp}\|_{\mathcal{H}} = 0$  is required at the minimum.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Kernel ridge regression: proof

We *begin* knowing f is a linear combination of feature space mappings of points (representer theorem)

$$f=\sum_{i=1}^n \alpha_i \phi(x_i).$$

Then

$$\sum_{i=1}^{n} (y_i - \langle f, \phi(x_i) \rangle_{\mathcal{H}})^2 + \lambda \|f\|_{\mathcal{H}}^2 = \|y - K\alpha\|^2 + \lambda \alpha^{\top} K\alpha$$

Differentiating wrt  $\alpha$  and setting this to zero, we get

$$\alpha^* = (K + \lambda I_n)^{-1} y.$$

### Reminder: smoothness

What does  $||a||_{\mathcal{H}}$  have to do with smoothing? Example 1: The Fourier series representation on torus  $\mathbb{T}$ :

$$f(x) = \sum_{l=-\infty}^{\infty} \hat{f}_l \exp(\imath l x),$$

and

$$\langle f,g \rangle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} \frac{\hat{f}_l \overline{\hat{g}}_l}{\hat{k}_l}.$$

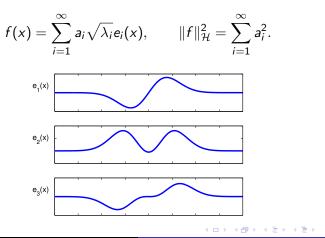
Thus,

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_l\right|^2}{\hat{k}_l}.$$

• • • • • • • •

### Reminder: smoothness

What does  $||a||_{\mathcal{H}}$  have to do with smoothing? Example 2: The Gaussian kernel on  $\mathbb{R}$ . Recall



Lecture 1: Introduction to RKHS

### Parameter selection for KRR

Given the objective

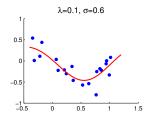
$$f^* = \arg \min_{f \in \mathcal{H}} \left( \sum_{i=1}^n \left( y_i - \langle f, \phi(x_i) \rangle_{\mathcal{H}} \right)^2 + \lambda \|f\|_{\mathcal{H}}^2 \right).$$

How do we choose

- The regularization parameter  $\lambda$ ?
- The kernel parameter: for Gaussian kernel,  $\sigma$  in

$$k(x,y) = \exp\left(\frac{-\|x-y\|^2}{\sigma}\right).$$

## Choice of $\lambda$

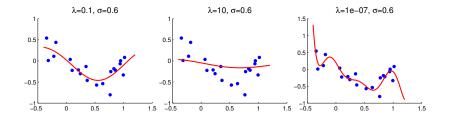


Lecture 1: Introduction to RKHS

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

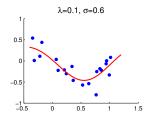
## Choice of $\lambda$



Lecture 1: Introduction to RKHS

◆□ > ◆□ > ◆豆 > ◆豆 >

### Choice of $\sigma$

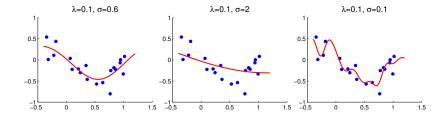


Lecture 1: Introduction to RKHS

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

### Choice of $\sigma$



Lecture 1: Introduction to RKHS

◆□ > ◆□ > ◆豆 > ◆豆 >

æ