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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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A real-life example: two-sample tests

m Goal: do P and @ differ?
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Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests,
ICML 2020

Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017. 3/59



Training generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @ that look like P

L . |

LSUN bedroom samples P Generated @@, MMD GAN

Training a Generative Adversarial Network

(Binkowski, Sutherland, Arbel, G., ICLR 2018), _ 4/59
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)



A second task: testing goodness of fit

B Given: A model P and samples Q.
m Goal: is P a good fit for Q7

Chicago crime data
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A second task: testing goodness of fit

B Given: A model P and samples Q.

m Goal: is P a good fit for Q7

Chicago crime data

Model is Gaussian mix-
ture with two compo-
nents. Is this a good
model?
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A third task: testing independence

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.
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Outline: these slides

What is a reproducing kernel Hilbert space?

Hilbert space

2 Kernel (lots of examples: e.g. you can build kernels from simpler
kernels)

3 Reproducing property

4 Using kernels to enforce smoothness
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Outline: next slides

The maximum mean discrepancy (MMD)

m ...as a difference in feature means
® ...as an integral probability metric (not just a technicality!)

Statistical testing with the MMD

m How to choose the best kernel

Training GANs with MMD and KL

m Learning kernel features with gradient regularisation
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Reproducing Kernel Hilbert Spaces



Kernels and feature space (1): XOR example

m No linear classifier separates red from blue
m Map points to higher dimensional feature space:

$(z)

m Feature space can be infinite dimensional

|: T1 Ty 1T ] GRS
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Kernels and feature space (2): smoothing
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Kernel methods can control smoothness and avoid
overfitting /underfitting.

Function of infinitely many smooth features
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function (-,-),, : H x H = Ris an
inner product on H if

1 Linear: (o1fi + aafz, 9)gy = a1 (f1, 9)gy + 2 (f2, 9) 9

2 Symmetric: (f, g)3, = (9, f)y
3 (f,f)s > 0and (f,f)y =0if and only if f = 0.
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Norm induced by the inner product: ||f||a = +/{(f,f)y
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Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function (-,-),, : H x H = Ris an
inner product on H if

1 Linear: (o1fi + aafz, 9)gy = a1 (f1, 9)gy + 2 (f2, 9) 9

2 Symmetric: (f, g)3, = (9, f)y
3 (f,f)s > 0and (f,f)y =0if and only if f = 0.

Norm induced by the inner product: ||f||a = +/{(f,f)y

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.
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Kernel
Definition

Let X be a non-empty set. A function £ : X x X — R is a kernel if
there exists an R-Hilbert space and a map ¢ : & — H such that
Ve, z' € X,

® Almost no conditions on X (eg, X itself doesn’t need an inner

product, eg. documents).
m A single kernel can correspond to several possible features. A trivial

example for X := R:

$1(z) ==z and ¢2(z) = l z;g ]
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New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Gwen a >0 and k, k1 and ky all kernels on X, then ak and
ki + ko are kernels on X.

(Proof via positive definiteness: later!) A difference of kernels may
not be a kernel (why?)
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New kernels from old: products

Theorem (Products of kernels are kernels)

Gwen ky on X1 and ky on X5, then ki1 X ky 15 a kernel on X1 X Xs.
If X, =X =X, then k := k1 X ky 1s a kernel on X.

Proof: Main idea only!

‘H1 space of kernels between shapes,

b1(z) = [ 1o ] $1(0) =

Ia

Hz space of kernels between colors,
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New kernels from old: products

“Natural” feature space for colored shapes:

s | 2 1 |- |[e 1] = sl

Im Ia
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New kernels from old: products

“Natural” feature space for colored shapes:

s | 2 1 |- |[e 1] = sl

Im Ia

Kernel is:

k(z,2)= 3 D) @y(2)®y(a) =tr (¢1($)¢2T($)¢2($')¢1T($'))

ie{.,.}jE{D,A} k2(m7x/)

=tr (¢1T($l)¢1($)) ko(z,z') = ki(z, ') ko (2, ')
NEI g

k]_((l),xl)
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Sums and products =— polynomials

Theorem (Polynomial kernels)

Let z,z' € R? for d > 1, and let m > 1 be an integer and ¢ > 0 be
a positive real. Then

k(z,z') := ({(z,2') + )"
18 a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
(z,z') raised to integer powers. These individual terms are valid
kernels by the product rule.
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Infinite sequences

The kernels we’ve seen so far are dot products between finitely many
features. E.g.

k(z,y) = [ sin(z) z3 logz }T [ sin(y) y3 logy ]

3

where ¢(z) = [ sin(z) z° logz ]

Can a kernel be a dot product between infinitely many features?
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Infinite sequences

Definition

The space £; (square summable sequences) comprises all sequences
a := (a;);>1 for which

(o)
2
llall, = Z a[z < 00.
=1
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Infinite sequences

Definition

The space £; (square summable sequences) comprises all sequences
a := (a;);>1 for which

[oe]
2
=1

Definition

Given sequence of functions (¢¢(z))s>1 in £2 where ¢, : X — R is the
1th coordinate of ¢(z). Then

k(z,z') := Z¢l($)¢l($l) (1)
=1
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Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,

D de(z)de(2')
=1

< lg(2)ll, lo(z)),, »

so the sequence defining the inner product converges for all z,z’ € X
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A famous infinite feature space kernel
Exponentiated quadratic kernel,

k(z,z') = exp (—H:B_IIH2> i (\/>€z )(m€£($'))

2072
$o(z) ¢e(z)
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A famous infinite feature space kernel
Exponentiated quadratic kernel,

k(z,z') = exp <_||:z:—a:'||2> i (\/>€e ><me£($l)>

2072
$o(z) ¢e(z)

e,(x) +

— Aot b<1
2 Ve U i @)o%) Hilav/3e),
0 | ]

a, b, c are functions of o,
and H; is £th order Her-

&) \/¥ mite polynomial.
. . ] . . . . 21/59




Positive definite functions

If we are given a function of two arguments, k(z, z'), how can we
determine if it is a valid kernel?

1 Find a feature map?

1 Sometimes this is not obvious (eg if the feature vector is infinite
dimensional, e.g. the exponentiated quadratic kernel in the last slide)
2 The feature map is not unique.

2 A direct property of the function: positive definiteness.
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Positive definite functions

Definition (Positive definite functions)

A symmetric function £ : X x X — R is positive definite if
vn > 1, Y(a,...a,) € R?, V(zy,...,2,) € X7,

Z Z aiajk(:z:i, :IZ]') Z 0.

i=1j=1

The function k(-,-) is strictly positive definite if for mutually
distinct z;, the equality holds only when all the a; are zero.
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Kernels are positive definite

Theorem

Let H be a Hilbert space, X a non-empty set and ¢ : X — H.
Then (¢(x), ¢(y))q, =: k(z,y) s positive definite.

Proof.

n n n n
ZZaiajk(xi,xj) = ZZ (aig(z:), :E])>H
1=17=1 1=17=1
’ 2

> 0.

H

n

> aid(:)

1=1

Reverse also holds: positive definite k(z, z') is inner product in a
unique H (Moore-Aronsajn). O
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Sum of kernels is a kernel

Proof by positive definiteness:

Consider two kernels ki (z, z') and kx(z, z’). Then

n n

SONT aia k(i 7)) + ka(ai, 7))

1=1j5=1
= Z Z aiajkl(:ri, ZIZ]') + Z Z aiajkz(:z:i, :Bj)

i=1j=1 i=1j=1
>0
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Functions of infinitely many features




Functions of finitely many features
Define a linear function of the inputs z;, z», and their product z; zp,
f(z) = iz1 + oz + faza 22

f in a space of functions mapping from X = R? to R. Equivalent
representation for f,

f('):[fl f fs]T-

f(+) or f refers to the function coefficients (a vector in R®)

f(z) € R is function evaluated at a point (a real number).
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Functions of finitely many features
Define a linear function of the inputs z;, z», and their product z; zp,

f(z) = fiz1 + oz + fazy .

f in a space of functions mapping from X = R? to R. Equivalent
representation for f,

-
f('):[fl f fs] :
f(+) or f refers to the function coefficients (a vector in R®)

f(z) € R is function evaluated at a point (a real number).

F(@)=F()T¢(z) = (F(-), $(2))5
Evaluation of f at z is an inner product in feature space (here
standard inner product in R?)

H is a space of functions mapping R? to R.
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Functions of infinitely many features

Function of (infinite) exponentiated quadratic kernel features

fl T ¢1(m) /¥_

[e'e) f2 \/
f@)=(f,0@))y =D frde@)=| 7 | [N
(=1 .

k(z,y) = ¢o(z)de(z)
=

f2)=)_"fube(z)  NfIf, =D f7 < oo
=1 =1
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Expressing the functions with kernels

Function of (infinite) exponentiated quadratic kernel features,

using kernels

) =S fiele)
=1

0.8

0.6
Zo4

0.2
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Expressing the functions with kernels

Function of (infinite) exponentiated quadratic kernel features,
using kernels

)= iﬁzfﬁe(fv) 0
. 056

— Z <Z ai¢[(£L‘i)> ¢l($) Zo4
s 02

T ,

-6 -4 -2 0 2 4 6 8

foi=2"T aide(zi)
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Expressing the functions with kernels

Function of (infinite) exponentiated quadratic kernel features,
using kernels

f(z) =) fipel) s
=1 N
— Z <Z ai¢[(£L‘i)> ¢l($) Zo4
s 02
fe °_s 4 2 0 > . 5 !
= <Z a1¢($z))¢($)> f( = Z;”;l ai¢l($¢)
1=1 2
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Expressing the functions with kernels

Function of (infinite) exponentiated quadratic kernel features,
using kernels

fle) =3 fede(®) o
=1 '
= <Z Oti¢z($i)> pe(z) : ,
=1 \1=1 0.2
Je P
_ <zai¢<mz->, ¢(w>> fo= ST aui()
1=1 H

m

= Z aik(aci, $)
1=1

Function of infinitely many features expressed using m coefficients.
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The feature map ¢(z) is also a function

On previous page,

f(z) = Zaik(xi, z) = (f('),¢(a:))H where f; = Zaicpg(mi).
i=1 i=1

What if m =1 and a7 = 17

30/59



The feature map ¢(z) is also a function

On previous page,

f(z) = Zaik(xi, z) = (f('),¢(a:))H where f; = Zaicpg(mi).
i=1 i=1

What if m =1 and a7 = 17
Then

f(z) = k(z1,2) = <k‘($1,');¢(l’)>
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The feature map ¢(z) is also a function

On previous page,

@) =3 aik(m ) = (), 4y where fi= 3 aude(a).
=1 1=1

What if m =1 and a1 = 17
Then

f(z) = k(z1,2) = <k(931,'),¢($)>
———’
£ H
= (k(z,"), ¢(21))y

....s0 the feature map is a (very simple) function!
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The feature map ¢(z) is also a function

On previous page,

@) =3 aik(m ) = (), 4y where fi= 3 aude(a).
=1 1=1

What if m =1 and a1 = 17
Then

f(il)) = k(xli $) = <k(x17 )1¢("E)>
N—_——
I A
= (k(z,), p(z1)) 9,
....s0 the feature map is a (very simple) function!

We can write without ambiguity
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The reproducing property

This example illustrates the two defining features of an RKHS:

m The reproducing property: (kernel trick)

Vz € X; Vf() € H) (f(): k(') x))?—t = f(fll)
...or use shorter notation (f, ¢(z)),.

m The feature map of every point is a function: k(-,z) = ¢(z) € H for
any z € X, and

k(z, ') = ($(), $())yy = (k(-,2), k(1 2"))
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Understanding smoothness in the RKHS



Constructing an infinite feature space: fourier series

34/59



Constructing an infinite feature space: fourier series

Function on the interval [—, 7] with periodic boundary.
Fourier series:

Z feexp(ulz) Z fo (cos(£z) + 1sin(£z)) .

{=—o00 {=—00

using the orthonormal basis on [—7, 7]

1 /’r — 1 Z=m
— exp(ilz)exp(rmz)dr =
5 | exp(ata)explima) {O i
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Constructing an infinite feature space: fourier series

Function on the interval [—, 7] with periodic boundary.
Fourier series:

Z frexp(ulz) Z fo (cos(£z) + 1sin(£z)) .

{=—o00 {=—00

using the orthonormal basis on [—7, 7]

1 /’r — 1 Z=m
— exp(ilz)exp(rmz)dr =
5 | exp(ata)explima) {O i

Example: “top hat” function,
1 |z| < T,
f(z) =
0 T<|z| <.

ﬂ : sinéiT) f(z) = ZZﬂ: cos({z).

/—0 34/59




Fourier series for top hat function

Top hat Basis function
" 1
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8
1.2F «
/\ ~ 0
1 3
© 05
0.8 ;
— T4 2 0 2 4
% 0.6f 1 t
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0 7— _Y 1 0.2
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r
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Fourier series for top hat function

Top hat Basis function
" 1
1.4}
—~ 05
8
1.2t — <
< 0
| AN |3
\/ © 05
08t ;
— 4 -2 0 2 4
% 0.6f 1 t
Fourier series coefficients
0.4 , 0.6
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‘Iava avall
0
02} 1 ! l
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Fourier series for top hat function

Top hat Basis function
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Fourier series for top hat function

Top hat Basis function
" 1
1.4}
—~ 05
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Fourier series for top hat function

Top hat Basis function
" 1
1.4}
—~ 05
S
1.2t <
~ 0
! ANWNA z
\VARV/ S o5
0.8 ;
— 4 -2 0 2 4
% 0.6f 1 t
Fourier series coefficients
0.4 , 0.6
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Fourier series for top hat function

Top hat Basis function
‘ 1
141
—~ 05
5
1.2} %
~ 0
1 A\ AAA A\ z
v v © 05
0.8 ;
— 4 -2 0 2 4
% 0.6f 1 t
Fourier series coefficients
0.4 ] 06
.4
02 1 0
= 02
0 f\f*r xf\f* 1
020y ? ? 5°°
02} 1 ! l
‘ ‘ 02
-4 2 0 2 4 20 -5 0 5 10
v l
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Fourier series for kernel function

Assume kernel translation invariant,

k(z,y) = k(z — y),

Fourier series representation of &

o—y)= 3 heexp(eble — v)

{=—00

= i [\/fc:exp (’LZ((L‘)] [\/fc:exp(—wy)}

{=—0c0

es(z) ee(y)
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Fourier series for kernel function

Assume kernel translation invariant,

k(z,y) = k(z — y),

Fourier series representation of &

o—y)= 3 heexp(eble — v)

{=—00
= Zioo [\/fc:exp (’LZ((L‘)] [\/f:zeXP (—wy)} .

es(z) ee(y)

Example: Jacobi theta kernel:

1 (z —y) 102 - 1 —o2(?
(e-v) =5, ( or 'om )’ = o P\

9 is Jacobi theta function, close to Gaussian when o2 much narrower than [—, 7).
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Fourier series for Gaussian-spectrum kernel

Jacobi Theta Basis function

1
0.6 < 05
X
~ 0
0.5r 5
=]
© 05
0.4
-1
— -4 -2 0 2 4
% 0.3} 1 t
Fourier series coefficients
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«Z 0.1
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-0.1 L L L 00-60600600 060000600
—4 -2 0 2 4 -10 -5 0 5 10
r
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Fourier series for Gaussian-spectrum kernel

Jacobi Theta
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Fourier series for Gaussian-spectrum kernel

Jacobi Theta

0.6

0.5F
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Basis function

cos(¢ x )
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t

Fourier series coefficients
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RKHS via fourier series

Recall standard dot product in Ls:

= ( 32 hewptea), 35 Grenstore))
L

{=—00 m=—o00 )

= Z Z fedy (exp(ulz), exp(—1mz))
{=—0c0 M=—00
> fede

{=—o0
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RKHS via fourier series
Recall standard dot product in Ls:

(2 9)1, <Zfeexpz€:r zgmxp(m)>
L

{=—00 m=—o00 )

> > Febulexp(ubz), exp(—vma)),

{=——00 M=—c0
st J—
> fede-
{=—c0

Define the dot product in H to have a roughness penalty,

j{: f%gl

{=—o00
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Roughness penalty explained

The squared norm of a function f in ‘H enforces smoothness:

© % 7
1B = (o= 5 2= 5 2L
= kl l=—o00 k:l

If k, decays fast, then so must f; if we want [|f||3, < co.
Recall f(z) = Ez_wﬂ (cos(£z) 4 sin(£z)) .
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Roughness penalty explained

The squared norm of a function f in ‘H enforces smoothness:

2

o] 7 o0 }
118 = (o= o 2= 5 EL
l=—00 kl l=—00 k:l

If k, decays fast, then so must f; if we want [|f||3, < co.
Recall f(z) = Eoo i (cos(£z) -+ vsin(éz)).

{=—c0

Question: is the top hat function in the “Gaussian spectrum”
RKHS?
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Roughness penalty explained

The squared norm of a function f in ‘H enforces smoothness:

2

o] 7 o0 }
1B = (F fp = S 2= 5 B
l=—00 kl l=—00 k:l

If k, decays fast, then so must f; if we want [|f||3, < co.
Recall f(z) = Ez_wﬂ (cos(£z) 4 sin(£z)) .

Question: is the top hat function in the “Gaussian spectrum”
RKHS?

Warning: need stronger conditions on kernel than Ls convergence: Mercer’s theorem.
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Feature map and reproducing property

Reproducing property: define a function

[e e}

g(z) = k(z—2) = Z exp (14z) ky exp (—142)

{=—o00 N
e

Then for a function f(-) € H,
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Feature map and reproducing property

Reproducing property: define a function

[e e}

9(z) == k(z — z) = Z;oo exp (1lz) k expgi—zﬁz)
Then for a function f(-) € H,
VIQRCEINVERVION-IQNY
,3 _z_:oo fo ke ZP(MZ)
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Feature map and reproducing property

Reproducing property: define a function

g(z) = k(z—2) = Zioo exp (1z) ky expﬁ(—zﬁz)
de
Then for a function f(-) € H,
(f( ))k( )z)>H = <f( )19( ))H
&
® Jo kyexp(itz)
l:z—:oo ’;’/3

i ﬁexp(zéz) = f(2).

{=—o00
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Feature map and reproducing property

Reproducing property for the kernel:

You can also show

This is an exercise!
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Feature map and reproducing property

Reproducing property for the kernel:

You can also show

This is an exercise!
Hint: define a second function

[e e}

f@):=k(z—y)= > exp(uz)k exp(—uly)
t=—c0 Y

Je
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Link back to original RKHS function definition

Original form of a function in the RKHS was

(detail: sum now from —oo to co, complex conjugate)

fl@)= ) figelz) = (F(), $(2))-

{=—00
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Link back to original RKHS function definition

Original form of a function in the RKHS was

(detail: sum now from —oo to co, complex conjugate)

= > fial@) = (1) ().

{=—00
We've defined the RKHS dot product as

o, (kyexp(—1l
(Fr )y = z f‘g‘ FO kg = > e (R enp( )
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Link back to original RKHS function definition

Original form of a function in the RKHS was

(detail: sum now from —oo to co, complex conjugate)

= > fial@) = (1) ().

{=—00
We've defined the RKHS dot product as

o, (kyexp(—1l
Frgl= 3 f‘g‘ FO kg = > e (R enp( )

2
l=—00 {=—00 <\/];TZ>
By inspection

fo = Jk 2 po(z) = /by exp(—1tz)

and as before,

O 2. (o)
3= > |7 k= £ /50

{=—o0 {=—00



Main message

Small RKHS norm results in smooth functions.

E.g. kernel ridge regression with exponentiated quadratic kernel:

f* = argmin <Z(yi —{f, ¢(2:))4,)° + AHfll%t) :
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Some reproducing kernel Hilbert space
theory



Reproducing kernel Hilbert space (1)

Definition

‘H a Hilbert space of R-valued functions on non-empty set X. A
function £ : X x X — R is a reproducing kernel of H, and H is a
reproducing kernel Hilbert space, if

mVzeX, k(,z) EH,
mVzc X, VfeH, (f(-),k(-,z))y = f(z) (the reproducing property).

In particular, for any z,y € X,

Original definition: kernel an inner product between feature maps.
Then ¢(z) = k(-, z) a valid feature map.
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Reproducing kernel Hilbert space (2)
Another RKHS definition:

Define §, to be the operator of evaluation at z, i.e.

5. = f(z) VfEM, z€X.

Definition (Reproducing kernel Hilbert space)

H is an RKHS if the evaluation operator d, is bounded: Vz € X
there exists A; > 0 such that for all f € H,

[f(@)] = 102f| < Azllf Il

— two functions identical in RHKS norm agree at every point:
1f(z) = 9(2)] = 16z (f = 9)| < Aollf — gl Vf g €M
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RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded 4, )

H is a reproducing kernel Hilbert space (i.e., its evaluation
operators §, are bounded linear operators), if and only if H has a
reproducing kernel.

Proof: If H has a reproducing kernel —> 9§, bounded

0:[F]] = [ ()]
= [fy k(- 2))ql
< NRC 2)lgy (11l
= k() k()3 [l
= k(z,2)"?|flly
Cauchy-Schwarz in 3rd line . Consequently, d, : F — R bounded
with A, = k(z, z)Y/2.
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RKHS definitions equivalent

Proof: §, bounded — H has a reproducing kernel

We use. ..

Theorem

(Riesz representation) In a Hilbert space H, all bounded linear
functionals are of the form (-, g),,, for some g € H.

If 6 : F — R is a bounded linear functional, by Riesz 3f;, € H such
that

Define k(-, z) = f5,(-), Vz,z' € X. By its definition, both
k(-,z) = f5,(-) € H and (f(-), k(-, z))4, = 0zf = f(z). Thus, k is the
reproducing kernel.
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Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let k: X x X = R be positive definite. There 1s a unique RKHS
H C RY with reproducing kernel k.

Recall feature map is not unique (as we saw earlier):
only kernel is unique.
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Main message

[Reproducing kernels ]<:>[ Positive definite functions ]

g 1

Hilbert function spaces with
bounded point evaluation
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