Representing and comparing probabilities with kernels: Part 2

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

MLSS Tuebingen, 2020

Comparing two samples

■ Given: Samples from unknown distributions P and Q.
\square Goal: do P and Q differ?

Outline

■ Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

■ A statistical test based on the MMD

■ Next slides: training generative adversarial networks with MMD

- Gradient regularisation and data adaptivity

Feature mean difference

■ Simple example: 2 Gaussians with different means

- Answer: t-test

Feature mean difference

■ Two Gaussians with same means, different variance
■ Idea: look at difference in means of features of the RVs

- In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

■ Two Gaussians with same means, different variance
■ Idea: look at difference in means of features of the RVs
■ In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

- Gaussian and Laplace distributions
- Same mean and same variance
- Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathbf{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathbf{E}_{P, Q} k(x, y)
$$

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered Always true if kernel bounded.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathbf{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathbf{E}_{P, Q} k(x, y)
$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
M M D^{2}(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathbb{E P}_{P} k\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathbb{E}_{Q} k\left(Y, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathrm{E}_{P, Q} k(X, Y)}_{\text {(b) }}
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathbf{E}_{P} k\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathbf{E}_{Q} k\left(Y, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathbf{E}_{P, Q} k(X, Y)}_{\text {(b) }}
\end{aligned}
$$

$(a)=$ within distrib. similarity, $(b)=$ cross-distrib. similarity.

Illustration of MMD

- Dogs $(=P)$ and fish $(=Q)$ example revisited

■ Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}\right.$, fish $\left._{j}\right)$, or $k\left(\right.$ fish $\left._{i}, \mathrm{fish}_{j}\right)$

Illustration of MMD

The maximum mean discrepancy:

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right) \\
& \\
& k\left(\mathrm{fish}_{j}, \operatorname{dog}_{i}\right) \\
& k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right)
\end{aligned}
$$

MMD as an integral probability metric

Are P and Q different?
Samples from P and Q

MMD as an integral probability metric

Are P and Q different?
Samples from P and Q

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Functions are linear combinations of features:

16/76

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

For characteristic RKHS $\mathcal{F}, M M D(P, Q ; F)=0$ iff $P=Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

■ Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Expectations of functions are linear combinations of expected features

$$
\mathbf{E}_{P}(f(X))=\left\langle f, \mathbf{E}_{P} \varphi(X)\right\rangle_{\mathcal{F}}=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

(always true if kernel is bounded)

Integral prob. metric vs feature difference

The MMD:

$M M D(P, Q ; F)$
$=\sup _{\|f\|_{\mathcal{F} \leq 1}}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right]$

Integral prob. metric vs feature difference

The MMD:
use
$M M D(P, Q ; F)$
$=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right]$
$\mathbf{E}_{P} f(X)=\left\langle\mu_{P}, f\right\rangle_{\mathcal{F}}$
$=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}$

Integral prob. metric vs feature difference

The MMD:
$M M D(P, Q ; F)$

$$
\begin{aligned}
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F} \leq 1}}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:
$M M D(P, Q ; F)$

$$
\begin{aligned}
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F} \leq 1}}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature difference

The MMD:

$M M D(P, Q ; F)$

$$
\begin{aligned}
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

$$
f^{*}=\frac{\mu_{P}-\mu_{Q}}{\left\|\mu_{P}-\mu_{Q}\right\|}
$$

Integral prob. metric vs feature difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathbf{E}_{P} f(X)-\mathbf{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\|\mu_{P}-\mu_{Q}\right\|
\end{aligned}
$$

Function view and feature view equivalent

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe $\mathrm{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\} \sim P$

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
f^{*}(v)=\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& =\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, v\right)-\frac{1}{n} \sum_{i=1}^{n} k\left(\mathrm{y}_{i}, v\right)
\end{aligned}
$$

Don't need explicit feature coefficients $f^{*}:=\left[\begin{array}{lll}f_{1}^{*} & f_{2}^{*} & \ldots\end{array}\right]$

Interlude: divergence measures

Divergences

Divergences

The integral probability metrics

The ϕ-divergences

Divergences

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

How does this help decide whether $P=Q$?

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".

■ Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$

- should see $\widehat{M M D}^{2}$ "far from zero"

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".

■ Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$

- should see $\widehat{M M D}^{2}$ "far from zero"

Want Threshold c_{α} for $\widehat{M M D}^{2}$ to get false positive rate α

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ i.i.d samples from P and Q

- Laplace with different y -variance.
- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ i.i.d samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.2$

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Draw $n=200$ new samples from P and Q
■ Laplace with different y -variance.

- $\sqrt{n} \times \widehat{M M D}^{2}=1.5$

Number of MMDs: 2

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 150 times ...

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$
Repeat this 300 times ...
Number of MMDs: 300

Behaviour of $\widehat{M M D}^{2}$ when $P \neq Q$

Repeat this 3000 times ...

Asymptotics of $\widehat{M M D}^{2}$ when $P \neq Q$
When $P \neq Q$, statistic is asymptotically normal,

$$
\frac{\widehat{\mathrm{MMD}}^{2}-\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}} \xrightarrow{D} \mathcal{N}(0,1)
$$

where variance $V_{n}(P, Q)=O\left(n^{-1}\right)$.

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

What happens when P and Q are the same?

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 10

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 20

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 50

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 100

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

- Case of $P=Q=\mathcal{N}(0,1)$

Number of MMDs: 1000

Asymptotics of $\widehat{M M D}^{2}$ when $P=Q$
Where $P=Q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}}^{2} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

A statistical test

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
\operatorname{lon} & \ldots
\end{array}\right] \\
& Y=\left[\begin{array}{ll}
\log
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=\left[\begin{array}{ll}
\operatorname{lom} & \ldots
\end{array}\right] \\
& \tilde{Y}=\left[\begin{array}{ll}
\operatorname{lom}
\end{array}\right]
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
\tilde{X}= & {\left[\begin{array}{l}
\tilde{Y}= \\
\widehat{M M D}^{2}= \\
\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \\
\\
\\
+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{y}_{i}, \tilde{y}_{j}\right) \\
\\
\\
-\frac{2}{n^{2}} \sum_{i, j} k\left(\tilde{x}_{i}, \tilde{\mathrm{y}}_{j}\right)
\end{array}\right.}
\end{aligned}
$$

Permutation simulates
$P=Q$

How to choose the best kernel: optimising the kernel parameters

The best test for the job

- A test's power depends on $k\left(x, x^{\prime}\right), P$, and $Q($ and $n)$

■ With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem

- But, for many P and Q, will have terrible power with reasonable n !

The best test for the job

- A test's power depends on $k\left(x, x^{\prime}\right), P$, and Q (and n)

■ With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem

- But, for many P and Q, will have terrible power with reasonable n !

■ You can choose a good kernel for a given problem

- You can't get one kernel that has good finite-sample power for all problems
- No one test can have all that power

Choosing a kernel for the test

■ Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

Choosing a kernel for the test

■ Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

■ Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

■ Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n .$.
■ ... and some problems (e.g. images) might have no good choice for σ

Graphical illustration

■ Maximising test power same as minimizing false negatives

Optimizing kernel for test power

The power of our test (Pr_{1} denotes probability under $P \neq Q$):

$$
\operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

where
$■ \Phi$ is the CDF of the standard normal distribution.
$\square \hat{c}_{\alpha}$ is an estimate of c_{α} test threshold.

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}(n{\left.\widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)}^{\rightarrow \Phi(\underbrace{\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}}_{O\left(n^{1 / 2}\right)}-\underbrace{\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}}_{O\left(n^{-1 / 2}\right)})} \text {) }
\end{aligned}
$$

For large n, second term negligible!

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

To maximize test power, maximize

$$
\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}
$$

Data splitting

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels
■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

$$
X \sim P
$$

CIFAR-10.1 (Recht+ ICML 2019)

$$
Y \sim Q
$$

Learning a kernel helps a lot

Kernel with deep learned features: $k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$ κ and q are Gaussian kernels

■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

```
arXiv.org > stat > arXiv:2002.09116
Statistics > Machine Learning
[Submitted on 21 Feb 2020]
Learning Deep Kernels for Non-Parametric Two-Sample Tests
```

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland
Accepted to ICML 2020

Questions?

- A brief introduction to RKHS

■ Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)
- A statistical test based on the MMD

MMD for GAN training

Training implicit generative models

■ Have: One collection of samples X from unknown distribution P.
■ Goal: generate samples Q that look like P

LSUN bedroom samples P
Generated Q, MMD GAN

Using a critic $D(P, Q)$ to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018),

Visual notation: GAN setting

Visual notation: GAN setting

Critic functions

What I won't cover: the generator

Radford, Metz, Chintala, ICLR 2016

F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]
$D_{J S}(P, Q)=\frac{1}{2} D_{K L}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q, \frac{p+q}{2}\right)$

$$
D_{J S}(P, Q)=\log 2
$$

F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]
$D_{J S}(P, Q)=\frac{1}{2} D_{K L}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q, \frac{p+q}{2}\right)$

$$
D_{J S}(P, Q)=\log 2
$$

F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{J S}(P, Q)=\frac{1}{2} D_{K L}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q, \frac{p+q}{2}\right)$

What is done in practice?

F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

$$
D_{J S}(P, Q)=\frac{1}{2} D_{K L}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q, \frac{p+q}{2}\right)
$$

What is done in practice?

■ Use a variational approximation to the critic, alternate generator and critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]

F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]
$D_{J S}(P, Q)=\frac{1}{2} D_{K L}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q, \frac{p+q}{2}\right)$

What is done in practice?

■ Use a variational approximation to the critic, alternate generator and critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
■ Add "instance noise" to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]
$D_{J S}(P, Q)=\frac{1}{2} D_{K L}\left(p, \frac{p+q}{2}\right)+\frac{1}{2} D_{K L}\left(q, \frac{p+q}{2}\right)$

What is done in practice?

■ Use a variational approximation to the critic, alternate generator and critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
■ Add "instance noise" to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

- ...or (approx. equivalently) a data-dependent gradient penalty for the variational critic Roth et al [NeurIPS 2017], Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]

Wasserstein distance as critic

A helpful critic witness:

$$
\begin{aligned}
& W_{1}(P, Q)=\sup _{\|f\|_{L} \leq 1} E_{P} f(X)-E_{Q} f(Y) . \\
& \|f\|_{L}:=\sup _{x \neq y}|f(x)-f(y)| /\|x-y\|
\end{aligned}
$$

$$
W_{1}=0.88
$$

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

Wasserstein distance as critic

A helpful critic witness:

$$
\begin{aligned}
& W_{1}(P, Q)=\sup _{\|f\|_{L} \leq 1} E_{P} f(X)-E_{Q} f(Y) . \\
& \|f\|_{L}:=\sup _{x \neq y}|f(x)-f(y)| /\|x-y\|
\end{aligned}
$$

$$
W_{1}=0.65
$$

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

MMD as critic

A helpful critic witness:

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F} \leq 1}} E_{P} f(X)-E_{Q} f(Y)
$$

$M M D=1.8$

MMD as critic

A helpful critic witness:

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F}} \leq 1} E_{P} f(X)-E_{Q} f(Y)
$$

$\mathrm{MMD}=1.1$

MMD as critic

An unhelpful critic witness:
$M M D(P, Q)$ with a narrow kernel.
$\mathrm{MMD}=0.64$

MMD as critic

An unhelpful critic witness:
$M M D(P, Q)$ with a narrow kernel.

$$
\mathrm{MMD}=0.64
$$

Gradient penalty:
 the regularisation viewpoint

MMD for GAN critic

Can you use MMD as a critic to train GANs?

From ICML 2015:

Generative Moment Matching Networks

Yujia Li ${ }^{1}$
Kevin Swersky ${ }^{1}$
Richard Zemel ${ }^{1,2}$
${ }^{1}$ Department of Computer Science, University of Toronto, Toronto, ON, CANADA
${ }^{2}$ Canadian Institute for Advanced Research, Toronto, ON, CANADA

YUJIALI@CS.TORONTO.EDU
KSWERSKY@CS.TORONTO.EDU
ZEMEL@CS.TORONTO.EDU

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

University of Cambridge

Daniel M. Roy

University of Toronto

Zoubin Ghahramani
University of Cambridge

MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

$\mathfrak{K}(x, y)=h_{\psi}{ }^{\top}(x) h_{\psi}(y)$ where $h_{\psi}(x)$ is a CNN map:

■ Wasserstein GAN Arjovsky et al. [ICML 2017]
■ WGAN-GP Gulrajani et al. [NeurIPS 2017]
$\mathfrak{K}(x, y)=k\left(h_{\psi}(x), h_{\psi}(y)\right)$ where $h_{\psi}(x)$ is a CNN map,
k is e.g. an exponentiated quadratic kernel
MMD Li et al., [NeurIPS 2017]
Cramer Bellemare et al. [2017]
Coulomb Unterthiner et al., [ICLR 2018]
Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018]

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

$\mathfrak{K}(x, y)=h_{\psi}{ }^{\top}(x) h_{\psi}(y)$ where $h_{\psi}(x)$ is a CNN map:
- Wasserstein GAN Arjovsky et al. [ICML 2017]
■ WGAN-GP Gulrajani et al.
[NeurIPS 2017]
$\mathfrak{K}(x, y)=k\left(h_{\psi}(x), h_{\psi}(y)\right)$ where $h_{\psi}(x)$ is a CNN map,
k is e.g. an exponentiated quadratic kernel
MMD Li et al., [NeurIPS 2017]
Cramer Bellemare et al. [2017]
Coulomb Unterthiner et al., [ICLR 2018]
Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018]

Witness function, kernels on deep features

Reminder: witness function, $k(x, y)$ is exponentiated quadratic

Witness function, kernels on deep features

Reminder: witness function, $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ with nonlinear h_{ψ} and exp. quadratic k

Challenges for learned critic features

Learned critic features:
MMD with kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ must give useful gradient to generator.

Challenges for learned critic features

Learned critic features:
MMD with kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ must give useful gradient to generator.

Relation with test power?
If the MMD with kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ gives a powerful test, will it be a good critic?

Challenges for learned critic features

Learned critic features:
MMD with kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ must give useful gradient to generator.

Relation with test power?
If the MMD with kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ gives a powerful test, will it be a good critic?

A simple 2-D example

Samples from target P and model Q

A simple 2-D example

Witness gradient, MMD with exp. quad. kernel $k(x, y)$
MMD Gaussian

A simple 2-D example

What the kernels $k(x, y)$ look like

A data-adaptive gradient penalty: NeurIPS 2018

■ New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018] ■ Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel
Gatsby Computational Neuroscience Unit
University College London
michael.n.arbel@gmail.com

Mikołaj Bińkowski
Department of Mathematics
Imperial College London
mikbinkowski@gmail.com

Dougal J. Sutherland
Gatsby Computational Neuroscience Unit
University College London
dougal@gmail.com
Arthur Gretton
Gatsby Computational Neuroscience Unit
University College London
arthur.gretton@gmail.com

A data-adaptive gradient penalty: NeurIPS 2018

■ New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
■ Also related to Sobolev GAN Mroueh et al. [ICLR 2018]
Maximise scaled MMD over critic features:

$$
S M M D(P, \lambda)=\sigma_{P, \lambda} M M D
$$

where
$\sigma_{P, \lambda}^{2}=\lambda+\int k\left(h_{\psi}(x), h_{\psi}(x)\right) d P(x)+\sum_{i=1}^{d} \int \partial_{i} \partial_{i+d} k\left(h_{\psi}(x), h_{\psi}(x)\right) d P(x)$

A data-adaptive gradient penalty: NeurIPS 2018

■ New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

- Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

$$
S M M D(P, \lambda)=\sigma_{P, \lambda} M M D
$$

where
$\sigma_{P, \lambda}^{2}=\lambda+\int k\left(h_{\psi}(x), h_{\psi}(x)\right) d P(x)+\sum_{i=1}^{d} \int \partial_{i} \partial_{i+d} k\left(h_{\psi}(x), h_{\psi}(x)\right) d P(x)$

Idea: rather than regularise the critic or witness function, regularise features directly

Simple 2-D example revisited

Samples from target P and model Q

Simple 2-D example revisited

Use kernels $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ with features

$$
h_{\psi}(x)=L_{3}\left(\left[\begin{array}{c}
x \\
L_{2}\left(L_{1}(x)\right)
\end{array}\right]\right)
$$

where L_{1}, L_{2}, L_{3} are fully connected with quadratic nonlinearity.

Simple 2-D example revisited

Witness gradient, maximise $\operatorname{SMMD}(P, \lambda)$ to learn $h_{\psi}(x)$ for $k\left(h_{\psi}(x), h_{\psi}(y)\right)$

Simple 2-D example revisited

What the kenels $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ look like
isolines movie, use Acrobat Reader to play

Our empirical observations

Data-adaptive critic loss:
■ Witness function class for $\operatorname{SMMD}(P, \lambda)$ depends on P.

- Without data-dependent regularisation, maximising MMD over features h_{ψ} of kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ can be unhelpful.
- WGAN-GP is a pretty good data-dependent regularisation strategy
- Similar regularisation strategies apply to variational form in f-GANs Roth et al [NeurIPS 2017, eq. 19 and 20]

Our empirical observations

Data-adaptive critic loss:
■ Witness function class for $\operatorname{SMMD}(P, \lambda)$ depends on P.

- Without data-dependent regularisation, maximising MMD over features h_{ψ} of kernel $k\left(h_{\psi}(x), h_{\psi}(y)\right)$ can be unhelpful.
- WGAN-GP is a pretty good data-dependent regularisation strategy
- Similar regularisation strategies apply to variational form in f-GANs Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

- Weaker critics can give better signals to poor (early stage) generators.
- Incomplete training of the critic is also a regularisation strategy

Don't just use gradient regularizers!

Spectral norm regularizer (effectively smooths critic class; ICLR 2018):

Spectral Normalization for Generative Adversarial Networks

```
Takeru Miyato ', Toshiki Kataoka', Masanori Koyama }\mp@subsup{}{}{2}\mathrm{ , Yuichi Yoshida }\mp@subsup{}{}{\mathbf{3}
{miyato, kataoka}@preferred.jp
koyama.masanori@gmail.com
yyoshida@nii.ac.jp
\mp@subsup{}{}{1}Preferred Networks, Inc. ' 2Ritsumeikan University }\mp@subsup{}{}{3}\mathrm{ National Institute of Informatics
```

Entropic regularizer (avoid mode collapse):

```
arXiv.org > stat > arXiv:1910.04302
```

Statistics > Machine Learning
[Submitted on 9 Oct 2019]

Prescribed Generative Adversarial Networks

Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei, Michalis K. Titsias

Evaluation and experiments

Benchmarks for comparison (all from ICLR 2018)

Spectral Normalization
 for Generative Adversarial Networks

BOUNDARY-SEEKING
Generative Adversarial Networks

R Devon Hjelm*
MILA, University of Montréal, IVADO erroneus3gmail.com

Tong Che

MILA, University of Montróal
tong, che?umontreal.ca

Kyunghyun Cho
New York University,
CIFAR Azrieli Global Scholar
kyunghyun.chosmyu.edu

Athul Paul Jacob ${ }^{-}$
MILA, MSR, University of Waterloo
apjacob?edu. uxaterloo.ca

Adam Trischler

MSR
adam.trischleramicrosoft.com

Yoshua Bengio
MILA, University of Montretal, CIFAR, IVADO
yoshua.bengio8umont real.ca

Results: unconditional imagenet 64×64

KID scores:

- BGAN:

47

- SN-GAN: 44
- SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1281167 images, resized to 64×64.1000 classes.

Results: unconditional imagenet 64×64

KID scores:

- BGAN:

47

- SN-GAN:

44

- SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1281167 images, resized to 64×64.1000 classes.

Results: unconditional imagenet 64×64

KID scores:

- BGAN:

47

- SN-GAN:

$$
44
$$

■ SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1281167 images, resized to 64×64. 1000 classes.

Summary

- GAN critics rely on two sources of regularisation
- Regularisation by incomplete training
- Data-dependent gradient regulariser

■ Some advantages of hybrid kernel/neural features:

- MMD loss still a valid critic when features not optimal (unlike WGAN-GP)
- Kernel features do some of the "work", so simpler h_{ψ} features possible.
"Demystifying MMD GANs," including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN
Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN

Post-credit scene: Generalised Energy-Based Models

```
arXiv.org > stat > arXiv:2003.05033
    Statistics > Machine Learning
    [Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]
    Generalized Energy Based Models
```

 Michael Arbel, Liang Zhou, Arthur Gretton
 https://github.com/MichaelArbel/GeneralizedEBM

Linear vs nonlinear kenels

- Critic features from DCGAN: an f-filter critic has $f, 2 f, 4 f$ and $8 f$ convolutional filters in layers $1-4$. LSUN 64×64.

$$
\begin{gathered}
k\left(h_{\psi}(x), h_{\psi}(y)\right), f=64, \\
\operatorname{KID}=3
\end{gathered}
$$

$$
h_{\psi}^{\top}(x) h_{\psi}(y), f=64, \underset{\mathbf{7 1 / 7 6}}{ }
$$

Linear vs nonlinear kenels

- Critic features from DCGAN: an f-filter critic has $f, 2 f, 4 f$ and $8 f$ convolutional filters in layers $1-4$. LSUN 64×64.

$$
\begin{gathered}
k\left(h_{\psi}(x), h_{\psi}(y)\right), f=16, \\
\text { KID }=9
\end{gathered}
$$

$$
h_{\psi}^{\top}(x) h_{\psi}(y), f=16, \underset{\mathbf{K I D}}{\mathbf{7 1} / \mathbf{7 6}} \mathbf{= 3 7}
$$

Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]
Based on the classification output $p(y \mid x)$ of the inception model szegedy et al. [ICLR 2014],

$$
E_{X} \exp K L(P(y \mid X) \| P(y))
$$

High when:

- predictive label distribution $P(y \mid x)$ has low entropy (good quality images)
■ label entropy $P(y)$ is high (good variety).

Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]
Based on the classification output $p(y \mid x)$ of the inception model szegedy
et al. [ICLR 2014],

$$
E_{X} \exp K L(P(y \mid X) \| P(y))
$$

High when:

- predictive label distribution $P(y \mid x)$ has low entropy (good quality images)
■ label entropy $P(y)$ is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

Evaluation of GANs

The Frechet inception distance? Heusel et al. [NeurIPS 2017]
Fits Gaussians to features in the inception architecture (pool3 layer):

$$
F I D(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|^{2}+\operatorname{tr}\left(\Sigma_{P}\right)+\operatorname{tr}\left(\Sigma_{Q}\right)-2 \operatorname{tr}\left(\left(\Sigma_{P} \Sigma_{Q}\right)^{\frac{1}{2}}\right)
$$

where μ_{P} and Σ_{P} are the feature mean and covariance of P

Evaluation of GANs

The Frechet inception distance? Heusel et al. [NeuriPs 2017]
Fits Gaussians to features in the inception architecture (pool3 layer):

$$
F I D(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|^{2}+\operatorname{tr}\left(\Sigma_{P}\right)+\operatorname{tr}\left(\Sigma_{Q}\right)-2 \operatorname{tr}\left(\left(\Sigma_{P} \Sigma_{Q}\right)^{\frac{1}{2}}\right)
$$

where μ_{P} and Σ_{P} are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

- Bias demo, CIFAR-10 train vs test

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

$$
\operatorname{FID}\left(P_{1}, Q\right)=\frac{1}{m^{2}}>\operatorname{FID}\left(P_{2}, Q\right)=0
$$

Given m samples from P_{1} and P_{2},

$$
F I D\left(\widehat{P_{1}}, Q\right)<F I D\left(\widehat{P_{2}}, Q\right) .
$$

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

Given m samples from P_{1} and P_{2},

$$
F I D\left(\widehat{P_{1}}, Q\right)<F I D\left(\widehat{P_{2}}, Q\right)
$$

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

$$
\operatorname{FID}\left(P_{1}, Q\right)=\frac{1}{m^{2}}>\operatorname{FID}\left(P_{2}, Q\right)=0
$$

Given m samples from P_{1} and P_{2},
$\operatorname{FID}\left(\widehat{P_{1}}, Q\right)<\operatorname{FID}\left(\widehat{P_{2}}, Q\right)$.

Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and $n \rightarrow \infty$ samples from Q.
Given two alternatives:

$$
P_{1} \sim \mathcal{N}\left(0,\left(1-m^{-1}\right)^{2}\right) \quad P_{2} \sim \mathcal{N}(0,1) \quad Q \sim \mathcal{N}(0,1) .
$$

Clearly,

$$
\operatorname{FID}\left(P_{1}, Q\right)=\frac{1}{m^{2}}>\operatorname{FID}\left(P_{2}, Q\right)=0
$$

Given m samples from P_{1} and P_{2},

$$
F I D\left(\widehat{P_{1}}, Q\right)<F I D\left(\widehat{P_{2}}, Q\right)
$$

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$
where $\Gamma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal
entries.
For a random draw of C :

$$
F I D\left(P_{1}, Q\right) \approx 1123.0>1114.8 \approx F I D\left(P_{2}, Q\right)
$$

With $m=50000$ samples,

$$
F I D\left(\widehat{P_{1}}, Q\right) \approx 1133.7<1136.2 \approx \operatorname{FID}\left(\widehat{P_{2}}, Q\right)
$$

At $m=100000$ samples, the ordering of the estimates is correct.

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$
where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C :

With $m=50000$ samples,

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$
where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal entries.
For a random draw of C :

$$
F I D\left(P_{1}, Q\right) \approx 1123.0>1114.8 \approx F I D\left(P_{2}, Q\right)
$$

With $m=50000$ samples,

$$
F I D\left(\widehat{P_{1}}, Q\right) \approx 1133.7<1136.2 \approx F I D\left(\widehat{P_{2}}, Q\right)
$$

Evaluation of GANs

The FID can give the wrong answer in practice.
Let $d=2048$, and define
$P_{1}=\operatorname{relu}\left(\mathcal{N}\left(0, I_{d}\right)\right) \quad P_{2}=\operatorname{relu}\left(\mathcal{N}\left(1, .8 \Sigma+.2 I_{d}\right)\right) \quad Q=\operatorname{relu}\left(\mathcal{N}\left(1, I_{d}\right)\right)$ where $\Sigma=\frac{4}{d} C C^{T}$, with C a $d \times d$ matrix with iid standard normal entries.
For a random draw of C :

$$
F I D\left(P_{1}, Q\right) \approx 1123.0>1114.8 \approx F I D\left(P_{2}, Q\right)
$$

With $m=50000$ samples,

$$
F I D\left(\widehat{P_{1}}, Q\right) \approx 1133.7<1136.2 \approx F I D\left(\widehat{P_{2}}, Q\right)
$$

At $m=100000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3}
$$

■ Checks match for feature means, variances, skewness

- Unbiased : eg CIFAR-10 train/test

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples' representations in the inception architecture (pool3 layer)
MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3}
$$

■ Checks match for feature means, variances, skewness

■ Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples' representations in the inception architecture (pool3 layer)
MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3}
$$

- Checks match for feature means, variances, skewness

■ Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"
"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer)
MMD with kernel

$$
k(x, y)=\left(\frac{1}{d} x^{\top} y+1\right)^{3}
$$

- Checks match for feature means, variances, skewness

■ Unbiased : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if $K I D\left(\widehat{P}_{t+1}, Q\right)$ not significantly better than $K I D\left(\widehat{P}_{t}, Q\right)$ then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: "An empirical study on evaluation metrics of generative adversarial networks", Xu et al. [arxiv, June 2018]

