Representing and comparing probabilities with kernels: Part 2

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

MLSS Tuebingen, 2020

Comparing two samples

Given: Samples from unknown distributions P and Q.
Goal: do P and Q differ?

Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

A statistical test based on the MMD

Next slides: training generative adversarial networks with MMD
 Gradient regularisation and data adaptivity

Simple example: 2 Gaussians with different meansAnswer: t-test

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $arphi(x)=x^2$

- Gaussian and Laplace distributions
- Same mean *and* same variance
- Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x)\in \mathcal{F}$,

$$arphi(x) = [\dots arphi_i(x) \dots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

 $\varphi(x) =$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x-x'
ight\|^2
ight)$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 7/76

Infinitely many features of *distributions*

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

 $\mu_P = [\dots \mathbf{E}_P [\varphi_i(X)] \dots]$

For positive definite k(x, x'),

$$\langle \mu_P, \mu_Q
angle_{\mathcal{F}} = \mathbf{E}_{P,Q} k(\pmb{x},\pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

Infinitely many features of *distributions*

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P [\varphi_i(X)] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_{P}, \mu_{Q}
angle_{\mathcal{F}} = \mathrm{E}_{P,Q} k(\pmb{x},\pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded. The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(\mathbf{b})}$

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(\mathbf{b})}$

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P, Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(a)} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(a)} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(b)}$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dog_i, dog_j), k(dog_i, fish_j), or k(fish_i, fish_j)

Illustration of MMD

The maximum mean discrepancy:

$$\widehat{MMD}^{2} = \frac{1}{n(n-1)} \sum_{i \neq j} k(\log_{i}, \log_{j}) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\operatorname{fish}_{i}, \operatorname{fish}_{j})$$
$$- \frac{2}{n^{2}} \sum_{i,j} k(\log_{i}, \operatorname{fish}_{j})$$
$$k(\operatorname{dog}_{i}, \operatorname{dog}_{j}) k(\operatorname{dog}_{i}, \operatorname{fish}_{j})$$
$$k(\operatorname{fish}_{j}, \operatorname{dog}_{i}) k(\operatorname{fish}_{i}, \operatorname{fish}_{j})$$

Are P and Q different?

Are P and Q different?

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathbf{E}_{P}f(X)-\mathbf{E}_{Q}f(Y)$

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathbf{E}_{P}f(X)-\mathbf{E}_{Q}f(Y)$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \varphi_1(x) & \uparrow & \uparrow \\ \varphi_2(x) & \uparrow & \uparrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \vdots & \downarrow \end{bmatrix}$$
$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \leq 1$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

16/76

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

For characteristic RKHS \mathcal{F} , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Expectations of functions are linear combinations of expected features

$$\mathrm{E}_{P}(f(X)) = \left\langle f, \mathrm{E}_{P} arphi(X)
ight
angle_{\mathcal{F}} = \left\langle f, \mu_{P}
ight
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

The MMD:

MMD(P, Q; F)

 $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{\mathcal{Q}} f(Y)
ight]$

The MMD:

use

MMD(P, Q; F)

- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathrm{E}_{\mathcal{P}} f(X) \mathrm{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left\langle f, \mu_P \mu_Q
 ight
 angle_{\mathcal{F}}$

 $\mathbf{E}_P f(X) = \langle \boldsymbol{\mu}_P, f \rangle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_{\mathcal{P}} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_{\mathcal{P}} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_{\mathcal{P}} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left\langle f, \mu_P \mu_Q
 ight
 angle_{\mathcal{F}}$

The MMD:

- MMD(P, Q; F)
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathbf{E}_{\mathcal{P}} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$
- $= \| \mu_P \mu_Q \|$

Function view and feature view equivalent

Derivation of empirical witness function

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

Derivation of empirical witness function

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

Derivation of empirical witness function

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, arphi(v)
angle_{\mathcal{F}}$$

Derivation of empirical witness function

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_\mathcal{F} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, arphi(v)
angle_\mathcal{F} \end{aligned}$$

Derivation of empirical witness function

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} &f^*(v) = \langle f^*, arphi(v)
angle_\mathcal{F} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, arphi(v)
angle_\mathcal{F} \ &= rac{1}{n} \sum_{i=1}^n k(\pmb{x_i}, v) - rac{1}{n} \sum_{i=1}^n k(oldsymbol{y_i}, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$ 19/76

Interlude: divergence measures

Divergences

The integral probability metrics

The ϕ -divergences

Divergences

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y_i}, \pmb{y_j}) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{y_j}) \end{aligned}$$

How does this help decide whether P = Q?

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y_i}, \pmb{y_j}) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{y_j}) \end{aligned}$$

Perspective from statistical hypothesis testing:

Null hypothesis H₀ when P = Q
should see MMD² "close to zero".
Alternative hypothesis H₁ when P ≠ Q
should see MMD² "far from zero"

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y_i}, \pmb{y_j}) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{y_j}) \end{aligned}$$

Perspective from statistical hypothesis testing:

Null hypothesis H₀ when P = Q
should see MMD² "close to zero".
Alternative hypothesis H₁ when P ≠ Q
should see MMD² "far from zero"

Want Threshold c_{α} for \widehat{MMD}^2 to get false positive rate α

Draw n = 200 i.i.d samples from P and Q

• Laplace with different y-variance.

 $\sqrt{n} \times \widehat{MMD}^2 = 1.2$

Repeat this 150 times ...

31/76

Repeat this 300 times ...

Repeat this 3000 times

31/76

Asymptotics of \widehat{MMD}^2 when $P \neq Q$

When $P \neq Q$, statistic is asymptotically normal, $\frac{\widehat{\mathrm{MMD}}^2 - \mathrm{MMD}^2(P, Q)}{\sqrt{V_n(P, Q)}} \xrightarrow{D} \mathcal{N}(0, 1),$

where variance $V_n(P,Q) = O(n^{-1})$.

What happens when P and Q are the same?

• Case of $P = Q = \mathcal{N}(0, 1)$

34/76

• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 20

• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 50

• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 100

• Case of $P = Q = \mathcal{N}(0, 1)$

Asymptotics of \widehat{MMD}^2 when P = Q

Where P = Q, statistic has asymptotic distribution

$$n \widehat{ ext{MMD}}^2 \sim \sum_{l=1}^\infty \lambda_l \left[z_l^2 - 2
ight]$$

MMD density under \mathcal{H}_0

where

$$\lambda_i\psi_i(x')=\int_{\mathcal{X}} \underbrace{ ilde{k}(x,x')}_{ ext{centred}}\psi_i(x)dP(x)$$

$$z_l \sim \mathcal{N}(0,2)$$
 i.i.d.

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$X = \begin{bmatrix} & & & \\ & & & \\$$

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x}_i, \pmb{x}_j) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y}_i, \pmb{y}_j) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x}_i, \pmb{y}_j) \end{aligned}$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \llbracket \bigotimes \bigotimes \bigotimes \bigotimes \ldots \rrbracket$$
$$\widetilde{Y} = \llbracket \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \ldots \rrbracket$$

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)}\sum_{i
eq j}k(ilde{x}_i, ilde{x}_j) \ &+rac{1}{n(n-1)}\sum_{i
eq j}k(ilde{\mathbf{y}}_i, ilde{\mathbf{y}}_j) \ &-rac{2}{n^2}\sum_{i,j}k(ilde{x}_i, ilde{\mathbf{y}}_j) \end{aligned}$$

Permutation simulates P = Q

How to choose the best kernel: optimising the kernel parameters

- A test's power depends on k(x, x'), P, and Q (and n)
- With characteristic kernel, MMD test has power → 1 as n → ∞ for any (fixed) problem
 - But, for many P and Q, will have terrible power with reasonable n!

- A test's power depends on k(x, x'), P, and Q (and n)
- With characteristic kernel, MMD test has power → 1 as n → ∞ for any (fixed) problem
 - But, for many P and Q, will have terrible power with reasonable n!
- You *can* choose a good kernel for a given problem
- You *can't* get one kernel that has good finite-sample power for all problems
 - No one test can have all that power

Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

• Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

Characteristic: for any σ: for any P and Q, power → 1 as n → ∞
 But choice of σ is very important for finite n...

Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$ But choice of σ is very important for finite n...

Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$ But choice of σ is very important for finite n...

Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$ But choice of σ is very important for finite n...

Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

Characteristic: for any σ: for any P and Q, power → 1 as n → ∞
 But choice of σ is very important for finite n...

• ... and some problems (e.g. images) might have no good choice for σ

Graphical illustration

Maximising test power same as minimizing false negatives

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_1\left(n\widehat{\mathrm{MMD}}^2 > \hat{c}_{\pmb{lpha}}
ight)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{aligned} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_lpha
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_lpha}{n\sqrt{V_n(P,Q)}}
ight) \end{aligned}$$

where

- Φ is the CDF of the standard normal distribution.
- \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_{1}\left(n\widehat{\mathrm{MMD}}^{2} > \hat{c}_{\alpha}\right) \\ \rightarrow \Phi\left(\underbrace{\frac{\mathrm{MMD}^{2}(P,Q)}{\sqrt{V_{n}(P,Q)}}}_{O(n^{1/2})} - \underbrace{\frac{c_{\alpha}}{n\sqrt{V_{n}(P,Q)}}}_{O(n^{-1/2})}\right)$$

For large n, second term negligible!

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{aligned} & \Pr_1\left(n\widehat{ extsf{MMD}}^2 > \hat{c}_{oldsymbol{lpha}}
ight) \ & o \Phi\left(rac{ extsf{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{oldsymbol{lpha}}}{n\sqrt{V_n(P,Q)}}
ight) \end{aligned}$$

To maximize test power, maximize

$$\frac{\text{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

Data splitting

Learning a kernel helps a lot

Kernel with deep learned features: $k_{\theta}(x, y) = [(1 - \epsilon)\kappa(\Phi_{\theta}(x), \Phi_{\theta}(y)) + \epsilon] q(x, y)$ κ and q are Gaussian kernels

Learning a kernel helps a lot

Kernel with deep learned features: $k_{\theta}(x, y) = [(1 - \epsilon)\kappa(\Phi_{\theta}(x), \Phi_{\theta}(y)) + \epsilon] q(x, y)$ κ and q are Gaussian kernels

■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009) $X \sim P$

CIFAR-10.1 (Recht+ ICML 2019) $Y \sim O$

Learning a kernel helps a lot

Kernel with deep learned features: $k_{\theta}(x, y) = [(1 - \epsilon)\kappa(\Phi_{\theta}(x), \Phi_{\theta}(y)) + \epsilon] q(x, y)$ κ and q are Gaussian kernels

■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning

[Submitted on 21 Feb 2020]

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

Accepted to ICML 2020

Questions?

A brief introduction to RKHS

 Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

• A statistical test based on the MMD

MMD for GAN training

Training implicit generative models

Have: One collection of samples X from unknown distribution P.
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q, MMD GAN Using a critic D(P, Q) to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018), (Arbel, Sutherland, Binkowski, G., NeurIPS 2018)

Visual notation: GAN setting

Visual notation: GAN setting

What I won't cover: the generator

Radford, Metz, Chintala, ICLR 2016

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2})$

 $D_{JS}(P, Q) = \log 2$

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2}\right)$

 $D_{JS}(P, Q) = \log 2$

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL}\left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL}\left(q, \frac{p+q}{2}\right)$

What is done in practice?

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL}\left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL}\left(q, \frac{p+q}{2}\right)$

What is done in practice?

 Use a variational approximation to the critic, alternate generator and critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2}\right)$

What is done in practice?

Use a variational approximation to the critic, alternate generator and critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
 Add "instance noise" to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2}\right)$

What is done in practice?

Use a variational approximation to the critic, alternate generator and critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
 Add "instance noise" to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

 ...or (approx. equivalently) a data-dependent gradient penalty for the variational critic Roth et al [NeurIPS 2017], Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]

Wasserstein distance as critic

Wasserstein distance as critic

A helpful critic witness: $W_1(P, Q) = \sup_{\|f\|_L \le 1} E_P f(X) - E_Q f(Y).$ $\|f\|_L := \sup_{x \ne y} |f(x) - f(y)| / \|x - y\|$ $W_1 = 0.65$

53/76

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)G Peyré, M Cuturi, Computational Optimal Transport (2019)M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

A helpful critic witness: $MMD(P, Q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y).$

MMD=1.8

A helpful critic witness: $MMD(P, Q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y)$

MMD=1.1

An unhelpful critic witness: MMD(P, Q) with a narrow kernel.

MMD=0.64

An unhelpful critic witness: MMD(P, Q) with a narrow kernel.

MMD=0.64

Gradient penalty: the regularisation viewpoint

MMD for GAN critic

Can you use MMD as a critic to train GANs? From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ KSWERSKY@CS.TORONTO.EDU Richard Zemel^{1,2} ¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA ²Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge

Daniel M. Roy University of Toronto

Zoubin Ghahramani University of Cambridge

YUJIALI@CS.TORONTO.EDU

ZEMEL @CS TORONTO EDU

MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

 $\mathfrak{K}(x,y) = {h_\psi}^{ op}(x) {h_\psi}(y)$ where ${h_\psi}(x)$ is a CNN map:

 Wasserstein GAN Arjovsky et al. [ICML 2017]
 WGAN-GP Gulrajani et al. [NeurIPS 2017] $\Re(x, y) = k(h_{\psi}(x), h_{\psi}(y))$ where $h_{\psi}(x)$ is a CNN map, k is e.g. an exponentiated quadratic kernel MMD Li et al., [NeurIPS 2017] Cramer Bellemare et al. [2017] Coulomb Unterthiner et al., [ICLR 2018] Demystifying MMD GANS Binkowski, 57/76

Sutherland, Arbel, G., [ICLR 2018]

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

- $\mathfrak{K}(x,y) = h_{\psi}^{ op}(x)h_{\psi}(y)$ where $h_{\psi}(x)$ is a CNN map:
- Wasserstein GAN Arjovsky et al. [ICML 2017]
- WGAN-GP Gulrajani et al. [NeurIPS 2017]

 $\Re(x, y) = k(h_{\psi}(x), h_{\psi}(y))$ where $h_{\psi}(x)$ is a CNN map, k is e.g. an exponentiated quadratic kernel MMD Li et al., [NeurIPS 2017] Cramer Bellemare et al. [2017] Coulomb Unterthiner et al., [ICLR 2018] Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018] Witness function, kernels on deep features

Reminder: witness function,

k(x, y) is exponentiated quadratic

Witness function, kernels on deep features

Reminder: witness function,

 $k(h_{\psi}(x), h_{\psi}(y))$ with nonlinear h_{ψ} and exp. quadratic k

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Relation with test power?

If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Relation with test power?

If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?

A simple 2-D example

Samples from target P and model Q

A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(x, y)

A simple 2-D example

What the kernels k(x, y) look like

A data-adaptive gradient penalty: NeurIPS 2018

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Gatsby Computational Neuroscience Unit University College London michael.n.arbel@gmail.com

Mikołaj Bińkowski

Department of Mathematics Imperial College London mikbinkowski@gmail.com Dougal J. Sutherland Gatsby Computational Neuroscience Unit University College London dougal@gmail.com

Arthur Gretton

Gatsby Computational Neuroscience Unit University College London arthur.gretton@gmail.com

A data-adaptive gradient penalty: NeurIPS 2018

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

 $SMMD(P, \lambda) = \sigma_{P, \lambda} MMD$

where

$$\sigma^2_{P,\lambda} = \lambda + \int k(h_\psi(x),h_\psi(x)) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(h_\psi(x),h_\psi(x)) \; dP(x)$$

A data-adaptive gradient penalty: NeurIPS 2018

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

$$SMMD(P,\lambda) = \sigma_{P,\lambda} \ MMD$$

where

$$\sigma^2_{P,\lambda} = \lambda + \int k(h_\psi(x),h_\psi(x)) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(h_\psi(x),h_\psi(x)) \; dP(x)$$

Idea: rather than regularise the critic or witness function, regularise features directly

Simple 2-D example revisited

Samples from target P and model Q

Use kernels $k(h_{\psi}(x), h_{\psi}(y))$ with features

$$h_{\psi}(x) = L_3 \left(\left[egin{array}{c} x \ L_2(L_1(x)) \end{array}
ight]
ight)$$

where L_1, L_2, L_3 are fully connected with quadratic nonlinearity.

Simple 2-D example revisited

Witness gradient, maximise $SMMD(P, \lambda)$ to learn $h_{\psi}(x)$ for $k(h_{\psi}(x), h_{\psi}(y))$

vector field movie, use Acrobat Reader to play 63/76

Simple 2-D example revisited

What the kenels $k(h_{\psi}(x), h_{\psi}(y))$ look like

isolines movie, use Acrobat Reader to play

Our empirical observations

Data-adaptive critic loss:

• Witness function class for $SMMD(P, \lambda)$ depends on P.

- Without data-dependent regularisation, maximising MMD over features h_{ψ} of kernel $k(h_{\psi}(x), h_{\psi}(y))$ can be unhelpful.
- WGAN-GP is a pretty good data-dependent regularisation strategy

Similar regularisation strategies apply to variational form in f-GANs

Roth et al [NeurIPS 2017, eq. 19 and 20]

Our empirical observations

Data-adaptive critic loss:

• Witness function class for $SMMD(P, \lambda)$ depends on P.

- Without data-dependent regularisation, maximising MMD over features h_{ψ} of kernel $k(h_{\psi}(x), h_{\psi}(y))$ can be unhelpful.
- WGAN-GP is a pretty good data-dependent regularisation strategy
- Similar regularisation strategies apply to variational form in f-GANs Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

- Weaker critics can give better signals to poor (early stage) generators.
- Incomplete training of the critic is also a regularisation strategy

Don't just use gradient regularizers!

Spectral norm regularizer (effectively smooths critic class; ICLR 2018):

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³ {miyato, kataoka}@preferred.jp

haryaco, kataokajepteteried, jp koyama.masanori@gmail.com yyoshida@nii.ac.jp ¹Preferred Networks, Inc. ²Ritsumeikan University ³National Institute of Informatics

Entropic regularizer (avoid mode collapse):

Evaluation and experiments

Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³

(miyato, kataoka)@preferred.jp cyanat masanori@gmail.com yoot i.ac.jp works, Inc. ²Ritsumeikan University ³National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*

combine with scaled

> Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit Univ College London , michael.n.arbel, arthur.gretton}@gmail.com

SOBOLEV GAN

Youssef Wrouch', Chun-Liang Li^{*}, Tom Sercu^{1,*}, Ananf Raj^{0,*} & Yu Cheng¹ 1 BM Research Ad o Cannegie Mellon University Ø Max Pianek Institute for Intellignet Systems «centes Equal Contribution (mrouch, chengyul@is.im.com, chunlial@cs.cmu.edu, tom.sercui@im.com,anant.raj@tuebingen.mpg.de

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hjelm* MILA, University of Montréal, IVADO erroneus@gmail.com

Tong Che MILA, University of Montréal tong.che@umontreal.ca

Kyunghyun Cho New York University, CIFAR Azrieli Global Scholar kyunghyun, cho@nyu, edu Athul Paul Jacob* MILA, MSR, University of Waterloo apjacob@edu.uwaterloo.ca

Adam Trischler MSR adam.trischler@microsoft.com

Yoshua Bengio MILA, University of Montréal, CIFAR, IVADO yoshua.bengio@umontreal.ca

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

SN-GAN: 44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

SN-GAN: 44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

SN-GAN:

44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.

Summary

GAN critics rely on two sources of regularisation

- Regularisation by incomplete training
- Data-dependent gradient regulariser
- Some advantages of hybrid kernel/neural features:
 - MMD loss still a valid critic when features not optimal (unlike WGAN-GP)
 - Kernel features do some of the "work", so simpler h_{ψ} features possible.

"Demystifying MMD GANs," including KID score, ICLR 2018: https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:

https://github.com/MichaelArbel/Scaled-MMD-GAN

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning

[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]

Generalized Energy Based Models

Michael Arbel, Liang Zhou, Arthur Gretton

https://github.com/MichaelArbel/GeneralizedEBM

Linear vs nonlinear kenels

Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

 $k(h_{\psi}(\boldsymbol{x}), h_{\psi}(\boldsymbol{y})), f = 64,$ KID=3

 $h_{\psi}^{ op}(x)h_{\psi}(y), f=64, \operatorname*{KID}_{71/76}$

Linear vs nonlinear kenels

Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

 $k(h_{\psi}(x),h_{\psi}(y)), f=16,$ KID=9

 $h_{\psi}^{ op}(x)h_{\psi}(y), f = 16, ext{KID}=37$ 71/76

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X) || P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X) || P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, \boldsymbol{Q}) = \| \mu_P - \mu_{\boldsymbol{Q}} \|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_{\boldsymbol{Q}}) - 2\operatorname{tr}\left((\Sigma_P \Sigma_{\boldsymbol{Q}})^{rac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P \Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

 Bias demo, CIFAR-10 train vs test

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

$$oldsymbol{P}_1\sim\mathcal{N}(0,(1-m^{-1})^2) \qquad oldsymbol{P}_2\sim\mathcal{N}(0,1) \qquad oldsymbol{Q}\sim\mathcal{N}(0,1).$$

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, \mathcal{Q}) < FID(\widehat{P_2}, \mathcal{Q}).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, Q) = rac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, \mathcal{Q}) < FID(\widehat{P_2}, \mathcal{Q}).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, \boldsymbol{Q}) = \frac{1}{m^2} > FID(P_2, \boldsymbol{Q}) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, \mathcal{Q}) < FID(\widehat{P_2}, \mathcal{Q}).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, \boldsymbol{Q}) = \frac{1}{m^2} > FID(P_2, \boldsymbol{Q}) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, Q) < FID(\widehat{P_2}, Q).$

The FID can give the wrong answer in practice.

Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C. ^{75/76}

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C. ^{75/76}

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} C C^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C. ^{75/76}

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$

With $m = 50\,000$ samples,

 $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

Checks match for feature means, variances, skewness

 Unbiased : eg CIFAR-10 train/test

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3$$

 Checks match for feature means, variances, skewness

Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if $KID(\hat{P}_{t+1}, Q)$ not significantly better than $KID(\hat{P}_t, Q)$ then reduce learning rate. [Bounliphone et al. ICLR 2016]

Related: "An empirical study on evaluation metrics of generative adversarial networks", Xu et al. [arxiv, June 2018]