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Comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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Outline

Maximum Mean Discrepancy (MMD)...
• ...as a difference in feature means
• ...as an integral probability metric (not just a technicality!)

A statistical test based on the MMD

Next slides: training generative adversarial networks with MMD
• Gradient regularisation and data adaptivity
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Feature mean difference

Simple example: 2 Gaussians with different means

Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Gaussian and Laplace distributions
Same mean and same variance
Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
(
� kx � x 0k2

)

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 7/76



Infinitely many features of distributions

Given P a Borel probability measure on X , define feature map of
probability P ,

�P = [: : :EP ['i (X )] : : :]

For positive definite k(x ; x 0),

h�P ; �QiF = EP ;Qk(x ; y)

for x � P and y � Q .

Fine print: feature map '(x) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)︸ ︷︷ ︸

(a)

+ EQk(Y ;Y 0)︸ ︷︷ ︸
(a)

� 2EP ;Qk(X ;Y )︸ ︷︷ ︸
(b)
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)︸ ︷︷ ︸

(a)

+ EQk(Y ;Y 0)︸ ︷︷ ︸
(a)

� 2EP ;Qk(X ;Y )︸ ︷︷ ︸
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )
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Illustration of MMD
The maximum mean discrepancy:

\MMD
2
=

1
n(n � 1)

∑
i 6=j

k(dogi ;dogj ) +
1

n(n � 1)

∑
i 6=j

k(fishi ;fishj )

�

2
n2

∑
i ;j

k(dogi ;fishj )
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf kF�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)
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Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf kF�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Functions are linear combinations of features:

kf k2F :=
∑1

i=1 fi 2 � 1
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf kF�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf kF�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations
of expected features

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )�EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF

= k�P � �Qk

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = fx1; : : : ; xng � P

Observe Y = fy1; : : : ; yng � Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness(v)︸ ︷︷ ︸
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

�̂P :=
1
n

n∑
i=1

'(xi )
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

�̂P :=
1
n

n∑
i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ h�̂P � �̂Q ; '(v)iF
=

1
n

n∑
i=1

k(xi ; v)� 1
n

n∑
i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
[

f �1 f �2 : : :
]
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Interlude: divergence measures
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Divergences
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Divergences
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The integral probability metrics
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The �-divergences
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Divergences
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)
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Two-Sample Testing with MMD
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A statistical test using MMD
The empirical MMD:

\MMD
2
=

1
n(n � 1)

∑
i 6=j

k(xi ; xj ) +
1

n(n � 1)

∑
i 6=j

k(yi ; yj )

�

2
n2

∑
i ;j

k(xi ; yj )

How does this help decide whether P = Q?

Perspective from statistical hypothesis testing:

Null hypothesis H0 when P = Q
• should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
• should see\MMD

2
“far from zero”

Want Threshold c� for\MMD
2
to get false positive rate �
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 i.i.d samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:2
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p
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 new samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:5
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Behaviour of\MMD
2
when P 6= Q

Repeat this 150 times : : :
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Behaviour of\MMD
2
when P 6= Q

Repeat this 3000 times : : :
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Asymptotics of\MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

\MMD
2 �MMD2(P ;Q)√

Vn(P ;Q)

D�! N (0; 1);

where variance Vn(P ;Q) = O
(
n�1) .
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Behaviour of\MMD
2
when P = Q

What happens when P and Q are the same?
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Behaviour of\MMD
2
when P = Q

Case of P = Q = N (0; 1)
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Asymptotics of\MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1∑
l=1

�l
[
z 2
l � 2

]
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�i i (x 0) =
∫
X

~k(x ; x 0)︸ ︷︷ ︸
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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A statistical test

A summary of the asymptotics:
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A statistical test
Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)
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How do we get test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

∑
i 6=j

k(xi ; xj )

+
1

n(n � 1)

∑
i 6=j

k(yi ; yj )

�

2
n2

∑
i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c�?

Permuted dog and fish samples (merdogs):
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

∑
i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

∑
i 6=j

k(~yi ;~yj )

�

2
n2

∑
i ;j

k(~xi ;~yj )

Permutation simulates
P = Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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How to choose the best kernel:
optimising the kernel parameters
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The best test for the job

A test’s power depends on k(x ; x 0); P ; and Q (and n)
With characteristic kernel, MMD test has power ! 1 as n !1 for
any (fixed) problem

• But, for many P and Q , will have terrible power with reasonable n !

You can choose a good kernel for a given problem
You can’t get one kernel that has good finite-sample power for all
problems

• No one test can have all that power

40/76



The best test for the job

A test’s power depends on k(x ; x 0); P ; and Q (and n)
With characteristic kernel, MMD test has power ! 1 as n !1 for
any (fixed) problem

• But, for many P and Q , will have terrible power with reasonable n !

You can choose a good kernel for a given problem
You can’t get one kernel that has good finite-sample power for all
problems

• No one test can have all that power

40/76



Choosing a kernel for the test

Simple choice: exponentiated quadratic

k(x ; y) = exp
(
� 1
2�2

kx � yk2
)

Characteristic: for any �: for any P and Q , power ! 1 as n !1

But choice of � is very important for finite n . . .
. . . and some problems (e.g. images) might have no good choice for �
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Graphical illustration

Maximising test power same as minimizing false negatives
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
(
n\MMD

2
> ĉ�

)
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
(
n\MMD

2
> ĉ�

)
! �

(
MMD2(P ;Q)√
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n
√
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)

where

� is the CDF of the standard normal distribution.

ĉ� is an estimate of c� test threshold.
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n\MMD

2
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O(n1=2)
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n
√
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)

For large n , second term negligible!
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
(
n\MMD

2
> ĉ�

)
! �

(
MMD2(P ;Q)√

Vn(P ;Q)
� c�

n
√

Vn(P ;Q)

)

To maximize test power, maximize

MMD2(P ;Q)√
Vn(P ;Q)
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Data splitting

X � P Y � Q

Choose a kernel k

maximizing \MMD
2p

V̂n (P ;Q)

Use chosen k for MMD test
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Learning a kernel helps a lot
Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time
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Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

X � P
CIFAR-10.1 (Recht+ ICML 2019)

Y � Q
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Learning a kernel helps a lot

Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

Accepted to ICML 2020
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Questions?

A brief introduction to RKHS

Maximum Mean Discrepancy
(MMD)...

• ...as a difference in feature means
• ...as an integral probability metric

(not just a technicality!)

A statistical test based on the MMD
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MMD for GAN training
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Training implicit generative models

Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using a critic D(P ;Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)̄
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Visual notation: GAN setting
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Visual notation: GAN setting

49/76



Critic functions
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What I won’t cover: the generator
Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

Radford, Metz, Chintala, ICLR 2016
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F-divergence as critic
An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

DJS (P ;Q) = 1
2DKL

(
p; p+q

2

)
+ 1

2DKL
(
q ; p+q

2

)
DJS (P ;Q) = log 2

Use a variational approximation to the critic, alternate generator and
critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]

Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

• ...or (approx. equivalently) a data-dependent gradient penalty for the
variational critic Roth et al [NeurIPS 2017], Nagarajan and Kolter [NeurIPS

2017], Mescheder et al. [ICML 2018]
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Wasserstein distance as critic
A helpful critic witness:
W1(P ;Q) = supkf kL�1 EP f (X )� EQ f (Y ).
kf kL := supx 6=y jf (x )� f (y)j =kx � yk

W1=0.88

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)
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Wasserstein distance as critic
A helpful critic witness:
W1(P ;Q) = supkf kL�1 EP f (X )� EQ f (Y ).
kf kL := supx 6=y jf (x )� f (y)j =kx � yk

W1=0.65

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)
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MMD as critic
A helpful critic witness:
MMD(P ;Q) = supkf kF�1 EP f (X )� EQ f (Y ).

MMD=1.8
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MMD as critic
A helpful critic witness:
MMD(P ;Q) = supkf kF�1 EP f (X )� EQ f (Y )

MMD=1.1
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MMD as critic

An unhelpful critic witness:
MMD(P ;Q) with a narrow kernel.

MMD=0.64
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MMD as critic

An unhelpful critic witness:
MMD(P ;Q) with a narrow kernel.

MMD=0.64
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Gradient penalty:
the regularisation viewpoint
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
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CNN features for IPM witness functions

Add convolutional features!
The critic (teacher) also needs to be trained.

K(x ; y) = h >(x )h (y)
where h (x ) is a CNN map:

Wasserstein GAN Arjovsky
et al. [ICML 2017]

WGAN-GP Gulrajani et al.
[NeurIPS 2017]

K(x ; y) = k(h (x ); h (y))
where h (x ) is a CNN map,
k is e.g. an exponentiated quadratic
kernel
MMD Li et al., [NeurIPS 2017]
Cramer Bellemare et al. [2017]
Coulomb Unterthiner et al., [ICLR 2018]
Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018] 57/76
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Witness function, kernels on deep features
Reminder: witness function,
k(x ; y) is exponentiated quadratic
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Witness function, kernels on deep features
Reminder: witness function,
k(h (x ); h (y)) with nonlinear h and exp. quadratic k
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Challenges for learned critic features
Learned critic features:
MMD with kernel k(h (x ); h (y)) must give useful gradient to
generator.

Relation with test power?
If the MMD with kernel k(h (x ); h (y)) gives a powerful test, will it
be a good critic?
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A simple 2-D example

Samples from target P and model Q

target
model
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(x ; y)
MMD Gaussian

target
model
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A simple 2-D example

What the kernels k(x ; y) look like

MMD Gaussian
target
model
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A data-adaptive gradient penalty: NeurIPS 2018
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel
Gatsby Computational Neuroscience Unit

University College London
michael.n.arbel@gmail.com

Dougal J. Sutherland
Gatsby Computational Neuroscience Unit

University College London
dougal@gmail.com

Mikołaj Bińkowski
Department of Mathematics

Imperial College London
mikbinkowski@gmail.com

Arthur Gretton
Gatsby Computational Neuroscience Unit

University College London
arthur.gretton@gmail.com

Abstract

We propose a principled method for gradient-based regularization of the critic of
GAN-like models trained by adversarially optimizing the kernel of a Maximum
Mean Discrepancy (MMD). We show that controlling the gradient of the critic
is vital to having a sensible loss function, and devise a method to enforce exact,
analytical gradient constraints at no additional cost compared to existing approxi-
mate techniques based on additive regularizers. The new loss function is provably
continuous, and experiments show that it stabilizes and accelerates training, giving
image generation models that outperform state-of-the art methods on 160 ⇥ 160
CelebA and 64 ⇥ 64 unconditional ImageNet.

1 Introduction

There has been an explosion of interest in implicit generative models (IGMs) over the last few years,
especially after the introduction of generative adversarial networks (GANs) [16]. These models
allow approximate samples from a complex high-dimensional target distribution P, using a model
distribution Q✓, where estimation of likelihoods, exact inference, and so on are not tractable. GAN-
type IGMs have yielded very impressive empirical results, particularly for image generation, far
beyond the quality of samples seen from most earlier generative models [e.g. 18, 21, 22, 23, 37].

These excellent results, however, have depended on adding a variety of methods of regularization and
other tricks to stabilize the notoriously difficult optimization problem of GANs [37, 41]. Some of
this difficulty is perhaps because when a GAN is viewed as minimizing a discrepancy DGAN(P, Q✓),
its gradient r✓ DGAN(P, Q✓) does not provide useful signal to the generator if the target and model
distributions are not absolutely continuous, as is nearly always the case [2].

An alternative set of losses are the integral probability metrics (IPMs) [35], which can give credit to
models Q✓ “near” to the target distribution P [3, 8, Section 4 of 15]. IPMs are defined in terms of a
critic function: a “well behaved” function with large amplitude where P and Q✓ differ most. The IPM
is the difference in the expected critic under P and Q✓, and is zero when the distributions agree. The
Wasserstein IPMs, whose critics are made smooth via a Lipschitz constraint, have been particularly
successful in IGMs [3, 14, 18]. But the Lipschitz constraint must hold uniformly, which can be hard
to enforce. A popular approximation has been to apply a gradient constraint only in expectation [18]:
the critic’s gradient norm is constrained to be small on points chosen uniformly between P and Q.

Another class of IPMs used as IGM losses are the Maximum Mean Discrepancies (MMDs) [17],
as in [13, 27]. Here the critic function is a member of a reproducing kernel Hilbert space (except
in [49], who learn a deep approximation to an RKHS critic). Better performance can be obtained,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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A data-adaptive gradient penalty: NeurIPS 2018

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

SMMD(P ; �) = �P ;� MMD

where

�2P ;� = �+

∫
k(h (x ); h (x ))dP(x )+

d∑
i=1

∫
@i@i+dk(h (x ); h (x )) dP(x )
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A data-adaptive gradient penalty: NeurIPS 2018

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

SMMD(P ; �) = �P ;� MMD

where

�2P ;� = �+

∫
k(h (x ); h (x ))dP(x )+

d∑
i=1

∫
@i@i+dk(h (x ); h (x )) dP(x )

Idea: rather than regularise the critic or witness function, regularise
features directly

62/76



Simple 2-D example revisited

Samples from target P and model Q

target
model
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Simple 2-D example revisited

Use kernels k(h (x ); h (y)) with features

h (x ) = L3

([
x

L2(L1(x ))

])
where L1;L2;L3 are fully connected with quadratic nonlinearity.
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P ; �)

to learn h (x ) for k(h (x ); h (y))

vector field movie, use Acrobat Reader to play 63/76



Simple 2-D example revisited

What the kenels k(h (x ); h (y)) look like

isolines movie, use Acrobat Reader to play
63/76



Our empirical observations

Data-adaptive critic loss:
Witness function class for SMMD(P ; �) depends on P .

• Without data-dependent regularisation, maximising MMD over
features h of kernel k(h (x ); h (y)) can be unhelpful.

• WGAN-GP is a pretty good data-dependent regularisation strategy

Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

Weaker critics can give better signals to poor (early stage) generators.
Incomplete training of the critic is also a regularisation strategy
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Don’t just use gradient regularizers!
Spectral norm regularizer (effectively smooths critic class; ICLR 2018):

Entropic regularizer (avoid mode collapse):
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Evaluation and experiments
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Benchmarks for comparison (all from ICLR 2018)
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Results: unconditional imagenet 64�64

KID scores:

BGAN:
47

SN-GAN:
44

SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 × 64. 1000
classes.
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Summary

GAN critics rely on two sources of regularisation
• Regularisation by incomplete training
• Data-dependent gradient regulariser

Some advantages of hybrid kernel/neural features:
• MMD loss still a valid critic when features not optimal (unlike

WGAN-GP)
• Kernel features do some of the “work”, so simpler h features possible.

“Demystifying MMD GANs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Post-credit scene: Generalised Energy-Based Models

https://github.com/MichaelArbel/GeneralizedEBM
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Linear vs nonlinear kenels

Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

k(h (x ); h (y)), f = 64,
KID=3

h >(x )h (y), f = 64, KID=4
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Linear vs nonlinear kenels

Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

k(h (x ); h (y)), f = 16,
KID=9

h >(x )h (y), f = 16, KID=37
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Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).
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Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk2 + tr(�P ) + tr(�Q)� 2tr
(
(�P�Q)

1
2

)
where �P and �P are the feature mean and covariance of P
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Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk2 + tr(�P ) + tr(�Q)� 2tr
(
(�P�Q)

1
2

)
where �P and �P are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.

Bias demo,
CIFAR-10 train vs
test 0 2000 4000 6000 8000 10000

n

0

10

20

30

40

50

FI
D
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Evaluation of GANs
The FID can give the wrong answer in theory.
Assume m samples from P and n !1 samples from Q .
Given two alternatives:

P1 � N (0; (1�m�1)2) P2 � N (0; 1) Q � N (0; 1):

Clearly,

FID(P1;Q) =
1

m2 > FID(P2;Q) = 0

Given m samples from P1 and P2,

FID(P̂1;Q) < FID(P̂2;Q):
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Evaluation of GANs
The FID can give the wrong answer in practice.
Let d = 2048, and define

P1 = relu(N (0; Id)) P2 = relu(N (1; :8�+:2Id)) Q = relu(N (1; Id))

where � = 4
d CCT , with C a d � d matrix with iid standard normal

entries.
For a random draw of C :

FID(P1;Q) � 1123:0 > 1114:8 � FID(P2;Q)

With m = 50 000 samples,

FID(P̂1;Q) � 1133:7 < 1136:2 � FID(P̂2;Q)

At m = 100 000 samples, the ordering of the estimates is correct.
This behavior is similar for other random draws of C . 75/76
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
(
1
d
x>y + 1

)3

:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

K
ID
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...“but isn’t KID is computationally costly?”
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...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper
(or use Tensorflow implementation)!
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Also used for automatic learning rate adjustment: if KID(P̂ t+1;Q)

not significantly better than KID(P̂ t ;Q) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [arxiv,
June 2018]
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