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Observation vs intervention
Conditioning from observation: E[Y jA = a ] =

P
x E[Y ja ; x ]p(x ja)Hidden context observed

X

A Y

8/9

or

or

From our observations of historical hospital data:

P(Y = curedjA = pills) = 0:85
P(Y = curedjA = surgery) = 0:72

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality
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Observation vs intervention
Average causal effect (intervention): E[Y (a)] =

P
x E[Y ja ; x ]p(x )

Hidden context observed, do(a), SWIG

X

A

a
Y a

9/9

or

or

From our intervention (making all patients take a treatment):

P(Y (pills) = cured) = 0:64
P(Y (surgery) = cured) = 0:75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality 2/38



Questions we will solve

X

A

a
Y (a)
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Outline

Causal effect estimation, observed covariates:

Average treatment effect (ATE), conditional average treatment effect
(CATE)

Causal effect estimation, hidden covariates:

... instrumental variables, proxy variables

What’s new? What is it good for?

Treatment A, covariates X , etc can be multivariate, complicated...

...by using kernel or adaptive neural net feature representations
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Model assumption: linear functions of features
All learned functions will take the form:

(x ) = >'(x ) = h; '(x )iH

Option 1: Finite dictionaries of learned neural net features '�(x )
(linear final layer )

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

h'(xi ); '(x )iH = k(xi ; x )

Kernel is feature dot product.
Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika, 2023)
Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Model fitting: ridge regression
Learn 0(x ) := E[Y jX = x ] from features '(xi ) with outcomes yi :

̂ = argmin
2H

 nX
i=1

(yi � h; '(xi )iH)
2 + �kk2H

!
:

Kernel solution at x
(as weighted sum of y)

̂(x ) =
nX

i=1

yi�i (x )

�(x ) = (KXX + �I )�1kXx

(KXX )ij = k(xi ; xj ) = h'(xi ); '(xj )iH
(kXx )i = k(xi ; x )
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!
:

Neural net solution at x :
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CYX =
1
n
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>]
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n
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Observed covariates: (conditional) ATE

Kernels (Biometrika 2023): NN features (ICLR 2023):

Code for NN and kernel causal estimation with observed covariates:
https://github.com/liyuan9988/DeepFrontBackDoor/

7/38

https://github.com/liyuan9988/DeepFrontBackDoor/


Observed covariates: (conditional) ATE

Kernels (Biometrika 2023): NN features (ICLR 2023):

Code for NN and kernel causal estimation with observed covariates:
https://github.com/liyuan9988/DeepFrontBackDoor/ 8/38

https://github.com/liyuan9988/DeepFrontBackDoor/


Average treatment effect
Potential outcome (intervention):

E[Y (a)] =

Z
E[Y ja ; x ]dp(x )

(the average structural function; in epidemiology, for continuous a ,
the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y (a) ?? AjX : (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

A: treatment (training hours)

Y : outcome (percentage
employment)

X : covariates (age, education,
marital status, ...)

X

A

a
Y (a)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

0(a ; x ) := E[Y ja ; x ]

Assume we have:

covariate features '(x ) with
kernel k(x ; x 0)

treatment features '(a) with
kernel k(a ; a 0)

(argument of kernel/feature map indicates
feature space)

X

A

a
Y (a)

We use outer product of features ( =) product of kernels):

�(x ; a) = '(a)
 '(x ) K([a ; x ]; [a 0; x 0]) = k(a ; a 0)k(x ; x 0)

Ridge regression solution:

̂(x ; a) =
nX

i=1

yi�i (a ; x ); �(a ; x ) = [KAA �KXX + �I ]�1 KAa �KXx
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ATE (dose-response curve)

Well-specified setting:

E[Y ja ; x ] =: 0(a ; x ) = h0; '(a)
 '(x )i

ATE as feature space dot product:

ATE(a) = E[0(a ;X )]

= E [h0; '(a)
 '(X )i]

=


0; '(a)
 �X|{z}

E['(X )]

�

X

A

a
Y (a)
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= E [h0; '(a)
 '(X )i]

=


0; '(a)
 �X|{z}

E['(X )]

�

X

A

a
Y (a)

Feature map of probability P(X ),

�X = [: : :E ['i (X )] : : :]
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ATE: example
US job corps: training for dis-
advantaged youths:

X : covariate/context (age,
education, marital status, ...)

A: treatment (training hours)

Y : outcome (percent
employment)

X

A

a
Y (a)

Empirical ATE:

[ATE(a) = bE �
̂0; '(X )
 '(a)
��

=
1
n

nX
i=1

Y >(KAA �KXX + n�I )�1(KAa �KXxi )

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study.
Singh, Xu, G (2022a).
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ATE: results

0 500 1000 1500 2000
Class-hours

35

40

45

Pe
rc

en
t e

m
pl

oy
m

en
t

RKHS
DML2

First 12.5 weeks of classes confer employment gain: from 35% to 47%.
[RKHS] is our[ATE(a).
[DML2] Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.

Singh, Xu, G (2022a)
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Conditional average treatment effect

Well-specified setting:

E[Y ja ; x ; v ] =: 0(a ; x ; v)

= h0; '(a)
 '(x )
 '(v)i :

Conditional ATE

CATE(a ; v)

= E
h
Y (a)jV = v

i

= E [h0; '(a)
 '(X )
 '(V )i jV = v ]

X

A

a
Y (a)

V

Learn conditional mean embedding: �X jV=v := EX ['(X )jV = v ]
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Well-specified setting:

E[Y ja ; x ; v ] =: 0(a ; x ; v)

= h0; '(a)
 '(x )
 '(v)i :

Conditional ATE

CATE(a ; v)

= E
h
Y (a)jV = v

i
= E [h0; '(a)
 '(X )
 '(V )i jV = v ]

= :::?

X

A

a
Y (a)

V

How to take conditional expectation?
Density estimation for p(X jV = v)? Sample from p(X jV = v)?

Learn conditional mean embedding: �X jV=v := EX ['(X )jV = v ]
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Conditional average treatment effect

Well-specified setting:
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�

X
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V
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Regressing from feature space to feature space
Our goal: an operator F0 : HV !HX such that

F0'(v) = �X jV=v

Assume

F0 2 span f'(x )
 '(v)g () F0 2 HS(HV ;HX )

Implied smoothness assumption:

E[h(X )jV = v ] 2 HV 8h 2 HX

Kernel ridge regression from '(v) to infinite features '(x ):

bF = argmin
F2HS

nX
`=1

k'(x`)� F'(v`)k2HX
+ �2kFk2HS

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning 15/38
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E[h(X )jV = v ] 2 HV 8h 2 HX

Kernel ridge regression from '(v) to infinite features '(x ):

bF = argmin
F2HS

nX
`=1

k'(x`)� F'(v`)k2HX
+ �2kFk2HS

Ridge regression solution:

�X jV=v := E['(X )jV = v ] � bF'(v) =
nX

`=1

'(x`)�`(v)

�(v) = [KVV + �2I ]�1 kVv
15/38



Conditional ATE: example
US job corps:

X : confounder/context
(education, marital
status, ...)

A: treatment (training
hours)

Y : outcome (percent
employed)

V : age

X

A

a
Y (a)

V

Empirical CATE:

\CATE(a ; v) =


̂0; '(a)
 bF'(v)| {z }bE['(X )jV=v ]


 '(v)
�

(with consistency guarantees: see paper!)
Singh, Xu, G (2022a) 16/38



Conditional ATE: results

500 1000 1500
Class-hours

16

18

20

22

24

Ag
e

36.0

36.0

40.0

40.0 40.044.0

44.048.0

52.0
56.0

Average percentage employment Y (a) for class hours a , conditioned
on age v . Given around 12-14 weeks of classes:

16 y/o: employment increases from 28% to at most 36%.
22 y/o: percent employment increases from 40% to 56%.

Singh, Xu, G (2022a)
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...dynamic treatment effect...
Dynamic treatment effect: sequence A1;A2 of treatments.

X1 X2

A1 A2 Y

potential outcomes Y (a1);Y (a2);Y (a1;a2);

counterfactuals E
h
Y (a 0

1;a
0
2)jA1 = a1;A2 = a2

i
...

(c.f. the Robins G-formula)
Singh, Xu, G. (Bernoulli 2024) Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
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What if there are hidden confounders?

19/38



Illustration: ticket prices for air travel
Ticket price A, seats sold Y .

What is the effect on seats sold Y (a) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible
Approach for Counterfactual Prediction.
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Illustration: ticket prices for air travel
Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

Desire for travel:
X � N (�; 0:01)
� � U

n
�1

2 ; 0;
1
2

o

Price:
A = X + Z ;

Seats sold:
Y = 10�A + 2X

Z is an instrument (cost of fuel). Condition on Z,

E[Y jZ ] = 10� E[AjZ ] + 2E[X jZ ]| {z }
=0

Regressing from E[AjZ ] to E[Y jZ ] recovers causal relation!
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Instrumental variable regression
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Instrumental variable regression with NN features
Definitions:

X : unobserved
confounder.

A: treatment

Y : outcome

Z : instrument

Assumptions
E[X jZ ] = 0

Z 6?? A

(Y ?? Z jA)G�A

Y = >��(A) + X

X

A YZ

Average treatment effect:

ATE(a) =
Z
E(Y jX ; a)dp(X ) = >��(a)

IV regression: Condition both sides on Z ,

E[Y jZ ] = >E[��(A)jZ ] + E[X jZ ]| {z }
=0

Newey, Powell (2003): Instrumental variable estimation of nonparametric models.

23/38



Instrumental variable regression with NN features
Definitions:

X : unobserved
confounder.

A: treatment

Y : outcome

Z : instrument

Assumptions
E[X jZ ] = 0

Z 6?? A

(Y ?? Z jA)G�A

Y = >��(A) + X

X

A

a
YZ

Average treatment effect:

ATE(a) =
Z
E(Y jX ; a)dp(X ) = >��(a)

IV regression: Condition both sides on Z ,

E[Y jZ ] = >E[��(A)jZ ] + E[X jZ ]| {z }
=0

Newey, Powell (2003): Instrumental variable estimation of nonparametric models.

23/38



Instrumental variable regression with NN features
Definitions:

X : unobserved
confounder.

A: treatment

Y : outcome

Z : instrument

Assumptions
E[X jZ ] = 0

Z 6?? A

(Y ?? Z jA)G�A

Y = >��(A) + X

X

A YZ

Average treatment effect:

ATE(a) =
Z
E(Y jX ; a)dp(X ) = >��(a)

IV regression: Condition both sides on Z ,

E[Y jZ ] = >E[��(A)jZ ] + E[X jZ ]| {z }
=0

Newey, Powell (2003): Instrumental variable estimation of nonparametric models.

23/38



Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeatureIV/ 24/38
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IV using neural net features
Stage 2 regression (IV): learn NN features ��(A) and linear layer  to
obtain Y with RR loss:

EYZ

h
(Y � >E[��(A)jZ ])2

i
+ �2kk

2

Stage 1 regression: learn NN features ��(Z ) and linear layer F :

E[��(A)jZ ] � F��(Z )

with RR loss
Ek��(A)� F��(Z )k2 + �1kFk2HS

Challenge: how to learn �?
From Stage 2 regression?
...which requires E[��(A)jZ ] from Stage 1 regression
...which requires ��(A)... which requires �...

Use the linear final layers! (i.e.  and F )

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
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Stage 2: IV regression
Stage 2 regression (IV): learn NN features ��(A) and linear layer  to
obtain Y with RR loss:

L2(; �) = EYZ

h
(Y � >E[��(A)jZ ])2

i
+ �2kk

2

̂� in closed form wrt ��:

̂� := fCYAjZ (fCAAjZ + �2I )�1 fCYAjZ = E
h
Y [F̂ �;�'�(Z )]>

i
fCAAjZ = E

h
[F̂ �;�'�(Z )] [F̂ �;�'�(Z )]>

i

From linear final layers in Stages 1,2:
Learn ��(A) by plugging ̂� into S2 loss, taking gradient steps for �
....but � changes with �

...so alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 28/38
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Neural IV in reinforcement learning

Policy evaluation: want Q-value:

Q�(s ; a) = E

"
1X
t=0

tRt

�����S0 = s ;A0 = a

#
for policy �(AjS = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite
Tassa et al. (2020). dm_control:Software and tasks for continuous control.
https://github.com/deepmind/dm_control
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Application of IV: reinforcement learning
Q value is a minimizer of Bellman loss

LBellman = ESAR

h�
R + [E

�
Q�(S 0;A0)

��S ;A��Q�(S ;A)
�2i

:

Corresponds to “IV-like” problem

LBellman = EYZ

h
(Y � E[f (X )jZ ])2

i
with

Y = R;

X = (S 0;A0;S ;A)

Z = (S ;A);

f0(X )= Q�(s ; a)� Q�(s 0; a 0)

RL experiments and data:
https://github.com/liyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regression for
Deep Offline Policy Evaluation.
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Results on mountain car problem

Good performance compared with FQE.
Warning: IV assumption can fail when regression underfits. See
papers for details.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regression for
Deep Offline Policy Evaluation.
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What if there are hidden confounders (II)?
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The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A;Y
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

If X were observed (which it
isn’t),

E[Y (a)] =

Z
E[Y jX ; a ]dp(X )

X

A Y

Structural assumption:

W ?? (Z ;A)jX

Y ?? Z j(A;X )

=) Can recover E(Y (a)) from observational data!
Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):

Code for NN and kernel proxy methods:
https://github.com/liyuan9988/DeepFeatureProxyVariable/ 34/38
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Conclusions
Neural net and kernel solutions:

...for ATE, CATE, dynamic treatment effects

...even for unobserved covariates/confounders (IV and proxy
methods)
...with treatment A, covariates X ;V , proxies (W ;Z ) multivariate,
“complicated”
Convergence guarantees for kernels and NN

Not in this talk:

Elasticities
Regression to potential outcome distributions overY (not just
E(Y (a)j : : :))

Code available for all methods
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Questions?
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Counterfactual: average treatment on treated
Conditional mean:

E[Y ja ; x ] = 0(a ; x )

= h0; '(a)
 '(x )i

Average treatment on treated:

�ATT (a ; a 0)

= E[y (a 0)jA = a ]

= EP
�

0; '(a 0)
 '(X )

�
jA = a

�
=


0; '(a 0)
 EP ['(X )jA = a ]| {z }

�X jA=a

�

X

A

a
Y (a)

Empirical ATT:

�̂ATT(a ; a 0)

= Y >(KAA �KXX + n�I )�1(KAa 0 �KXX (KAA + n�1I )�1KAa| {z }
from �̂X jA=a

)
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