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ABSTRACT

Motivation: Many problems in data integration in bioinformatics can

be posed as one common question: Are two sets of observations

generated by the same distribution? We propose a kernel-based

statistical test for this problem, based on the fact that two distributions

aredifferent ifandonly if thereexistsat leastonefunctionhavingdifferent

expectationonthetwodistributions.Consequentlyweusethemaximum

discrepancy between function means as the basis of a test statistic.

The Maximum Mean Discrepancy (MMD) can take advantage of

the kernel trick, which allows us to apply it not only to vectors, but

strings, sequences, graphs, and other common structured data types

arising in molecular biology.

Results: We study the practical feasibility of an MMD-based test

on three central data integration tasks: Testing cross-platform com-

parability of microarray data, cancer diagnosis, and data-content

based schemamatching for two different protein function classification

schemas. In all of these experiments, including high-dimensional ones,

MMD is very accurate in finding samples that were generated from the

same distribution, and outperforms its best competitors.

Conclusions: We have defined a novel statistical test of whether two

samples are from the same distribution, compatible with both multivari-

ate and structured data, that is fast, easy to implement, and works well,

as confirmed by our experiments.

Availability: http://www.dbs.ifi.lmu.de/�borgward/MMD

Contact: kb@dbs.ifi.lmu.de

1 INTRODUCTION

1.1 Data integration in bioinformatics

The ultimate need for bioinformatics is founded on the wealth of

data generated by modern molecular biology. The purpose of bioin-

formatics is to structure and analyze this data. A central prepro-

cessing step is the integration of datasets that were generated by

different laboratories and techniques. If we know how to combine

data produced in different labs, we can exploit the results jointly, not

only individually. In some cases, the larger datasets thus constructed

may support biologically relevant conclusions which were not pos-

sible using the original smaller datasets, a hypothetical example

being the problem of reliable gene selection from high-dimensional

small microarray datasets.

1.2. Distribution testing in data integration

The questions arising in data integration essentially boil down

to the following problem of distribution testing: Were two samples

X andY generated by the same distribution? In data integration terms,

are these two samples part of the same larger dataset, or should these

data be treated as originating from two different sources?

This is a fundamental question when two laboratories are study-

ing the same biological subject. If they use identical techniques

on identical subjects but obtain results that are not generated by

the same distribution, then this might indicate that there is a dif-

ference in the way they generate data, and that their results should

not be integrated directly. If the data were integrated without recal-

ibration, differences or patterns within the joint data might be

caused by experimental discrepancies between laboratories, rather

than by biological processes.

As microarray data are produced by a multitude of different

platforms, techniques and laboratories, they are the most prominent

data source in bioinformatics for which distribution testing is indis-

pensable. Recently, Marshall (2004) gave an extremely negative

picture of cross-platform comparability—and hence the reliability

and reproducibility—of microarray results, due to the various plat-

forms and data analysis methods employed (Shi et al., 2005). It is

therefore crucial for bioinformatics to develop computational meth-

ods that allow us to determine whether results achieved across

platforms are comparable. In this article, we present a novel stat-

istical test to tackle this problem.

Whatdistinguishesbioinformatics is that ithasproducedawealthof

complexdata, fromproteinsequences toprotein interactionnetworks,

i.e. from strings to graphs. Consequently any practically relevant

distribution test needs to be easily applicable in all these cases. To

the best of our knowledge, the statistical test proposed in our paper is

the first method that can handle this wide range of different domains.

To summarize our goals, we will present a novel statistical test

for differences in distribution, based on the Maximum Mean

Discrepancy (MMD). We will show that it can take advantage of

the kernel trick. Hence it is applicable to all data types, from

high-dimensional vectors to strings and graphs, arising in bioin-

formatics. In experiments, we will apply this test to microarray

cross-platform comparability testing and cancer diagnosis. Further-

more, we will show how to perform schema matching on complex

data by considering a data integration problem on two molecular

graph datasets.�To whom correspondence should be addressed.
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Outline of this article In Section 2, we present MMD and its

properties. In Section 3, we test the applicability of MMD in cross-

platform microarray comparability analysis and cancer diagnosis,

and evaluate it on a schema matching problem. We discuss our

findings in Section 4.

2 MMD AND THE TWO-SAMPLE PROBLEM

In statistics, the central question of data integration described above

is often referred to as the two-sample or homogeneity problem. The

principle underlying the maximum mean discrepancy is that we

want to find a function that assumes different expectations on

two different distributions. The hope then is that if we evaluate

this function on empirical samples from the distributions, it will

tell us whether the distributions they have been drawn from are

likely to differ. This leads to the following statistic, which is closely

related to a proposal by [Fortet and Mourier (1953)]. Here and

below, X denotes our input domain and is assumed to be a nonempty

compact set.

DEFINITION 2.1. Let F be a class of functions f:X!R. Let p and
q be Borel probability distributions, and let X ¼ (x1, . . . , xm) and
Y ¼ (y1, . . . , yn) be samples composed of independent and identic-
ally distributed observations drawn from p and q, respectively. We
define the maximum mean discrepancy (MMD) and its empirical
estimate as

MMD½F‚p‚q� :¼ sup
f2F

ðEp½f ðxÞ� � Eq½f ðyÞ�Þ

MMD½F‚X‚Y� :¼ sup
f2F

�
1

m

Xm
i¼1

f ðxiÞ �
1

n

Xn
i¼1

f ðyiÞ
�

Intuitively it is clear that if F is ‘rich enough’, MMD [F, p, q] will

vanish if and only if p ¼ q. Too rich an F, however, will result in a

statistic that differs significantly from zero for most finite samples X,

Y. For instance, if F is the class of all real valued functions on X, and

if X and Y are disjoint, then it is trivial to construct arbitrarily large

values of MMD[F, X, Y], for instance by ensuring that f j X is large

and f j Y ¼ 0. This phenomenon of overfitting can be avoided by

placing restrictions on the function class. That said, these restric-

tions ought not to prevent the MMD from detecting differences

between p and q when these are legitimately to be found. As we

shall see, one way to accomplish this tradeoff is by choosing F to be

the unit ball in a universal reproducing kernel Hilbert space, RKHS

for short.

We will propose a test of p ¼ q, based on an unbiased variant of

MMD [F, X, Y]1 which relies on the asymptotic Gaussianity of this

test statistic and on the guaranteed rapid convergence to this asymp-

totic regime. Thus, the performance guarantees provided by the test

apply in the case of a large sample size. The test has a computational

cost of O((m + n)2), although randomization techniques could be

employed to reduce the cost to essentially linear time-complexity (at

the expense of a somewhat reduced sensitivity).

2.1 MMD for kernel function classes

We now introduce a class of functions for which MMD may easily

be computed, while retaining the ability to detect all discrepancies

between p and q without making any simplifying assumptions. To

this end, let H be a complete inner product space (i.e., a Hilbert

space) of functions f:X ! R, where X is a nonempty compact set.

Then H is termed a reproducing kernel Hilbert space if for all x 2 X,

the linear point evaluation functional mapping f! f(x) exists and is

continuous. In this case, f(x) can be expressed as an inner product via

f ðxÞ ¼ h ffðxÞiH ð1Þ

where f:X ! H is known as the feature space map from x to H.

Moreover, the inner product between two feature maps is called

the (positive definite) kernel, k(x, x0):¼hf(x), f(x0)iH. Of particular

interest are cases where we have an analytic expression for k that can

be computed quickly, despite H being high- or even infinite-

dimensional. An example of an infinite-dimensional H is that cor-

responding to the Gaussian kernel k(x, x0) ¼ exp(�kx � x0k2/(2s2)).

We will consider universal reproducing kernel Hilbert spaces in the

sense defined by Steinwart (2002). Although we do not go into tech-

nical detail here, we are guaranteed that RKHSs based on Gaussian

kernels are universal, as are string kernels (Section 2.3). See also

(Schölkopf et al., 2004) for an extensive list of further kernels.

When F is the unit ball in a universal RKHS, the following

theorem (Smola et al., 2006) guarantees that MMD[F, p, q] will

detect any discrepancy between p and q.

THEOREM 2.2. Let p, q be Borel probability measures on X a
compact subset of a metric space, and let H be a universal repro-
ducing kernel Hilbert space with unit ball F. Then MMD[F, p, q]¼
0 if and only if p ¼ q.

Moreover, denote by mp :¼ Ep[f(x)] the expectation of f(x)
in feature space (assuming that it exists).2 Then one may rewrite
MMD as

MMD½F‚p‚q� ¼ kmp�mqkH:
The main ideas for the proof can be summarized as follows. It is

known from probability theory (Dudley, 2002, Lemma 9.3.2) that

under the stated conditions, a sufficient condition for p¼ q is that for

all continuous functions f, we have
R
f dp¼

R
f dq. Such functions f,

however, can be arbitrarily well approximated using functions in a

universal RKHS (Steinwart, 2002). For the second part of the result,

observe that due to (1), we may rewrite the MMD as

MMD½F‚p‚q� ¼ sup
kf kH�1

Ep½ f ðxÞ� � Eq½ f ðyÞ�

¼ sup
kf kH�1

Ep½hfðxÞ‚ f iH� � Eq½hfðyÞ‚ f iH�

¼ sup
kf kH�1

hmp�mq‚ f iH ¼ kmp�mqkH:

The finite sample computation of MMD is greatly simplified by (2),

as shown in the corollary below:

COROLLARY 2.3. Under the assumptions of theorem 2.2 the fol-
lowing is an unbiased estimator of MMD2[F, p,q]:

MMD2½F‚X‚Y� ¼ 1

mðm � 1Þ
Xm
i6¼j

kðxi‚xjÞ

þ 1

nðn � 1Þ
Xn
i6¼j

kðyi‚yjÞ �
2

mn

Xm‚n

i‚ j¼1

kðxi‚yjÞ:

1Note that MMD[F, X, Y] as defined above is biased: even when p¼ q, it will

tend to give strictly positive results for finite sample sizes.

2A sufficient condition for this is kmpk2
H < 1, which is rearranged as

Ep[k (x, x0)] < 1, where x and x0 are independent random variables

drawn according to p.
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Proof

We compute

MMD2½F‚p‚q� :¼hmp�mq‚mp�mqiH
¼ hmp‚mpiH þ hmq‚mqiH � 2hmp‚mqiH
¼ EphfðxÞ‚fðx0ÞiH þ EqhfðyÞ‚fðy0ÞiH
� 2Ep‚qhfðxÞ‚fðyÞiH‚

where x0 is a random variable independent of x with distribution

p, and y0 is a random variable independent of y with distribution q.

The proof is completed by applying hf(x), f(x0)iH ¼ k(x, x0), and

replacing the expectations with their empirical counterparts.

We illustrate the behavior of MMD in Figure 1 using a

one-dimensional example: the data X and Y are generated from

distributions p and q with equal means and variances, however p
is Gaussian and q is Laplacian. For the application of MMD we pick

H to be an RKHS using the Gaussian kernel. We observe that the

function f that witnesses the MMD (in other words, the function

maximizing the mean discrepancy) is smooth, positive where the

Laplace density exceeds the Gaussian density (at the center and

tails), and negative where the Gaussian density is larger. Moreover,

the magnitude of f is a direct reflection of the amount by which one

density exceeds the other, insofar as the smoothness constraint

permits it.3

Although the expression of MMD2(F, X, Y) in Corollary 2.3

is the minimum variance unbiased estimate (Serfling, 1980), a

more tractable unbiased expression can be found in the case

where m ¼ n, with a slightly higher variance (the distinction is

in practice irrelevant, since the terms that differ decay much

faster than the variance). It is obtained by dropping the cross-

terms i ¼ j from the sum over k(xi, yi):

LEMMA 2.4. Assuming the samples X and Y both have size m,

define zi ¼ (xi, yj), and let

hðzi‚zjÞ :¼ kðxi‚xjÞ þ kðyi‚yjÞ � kðxi‚yjÞ � kðxj‚yiÞ:

An unbiased estimate of MMD2[F, p, q] is given by

MMD2½F‚X‚Y� :¼ 1

mðm � 1Þ
Xm
i6¼j

hðzi‚zjÞ:

Note that with some abuse of notation we used the same symbol as

in Corollary 2.3 for a slightly different estimator. However there

should be no ambiguity in that we use only the present version for

the remainder of the paper.

An important property of the new statistic is that its kernel h(zi, zj)
is a positive definite kernel in its own right, since

hðzi‚zjÞ ¼ hfðxiÞ � fðyiÞ‚fðxjÞ � fðyjÞi:

Thus z ¼ (x, y) ! f(x) � f(y) is a valid feature map for h. This

gives another interpretation of MMD: it is the expected inner pro-

duct between vectors obtained by connecting a point from one

distribution to a point from the other. For detailed discussions of

the problem of defining kernels between distributions and sets, see

(Cuturi et al., 2005; Hein and Bousquet, 2005).

2.2 MMD tests

We now propose a two-sample test based on the asymptotic distri-

bution of an unbiased estimate of MMD2, which applies in the case

where F is a unit ball in a RKHS, and m¼ n. This uses the following

theorem, due to Hoeffding (1948). See also Serfling (1980, Section

5.5.1). For a proof and further details see Smola et al. (2006).

THEOREM 2.5. Let zi and h(zi, zj) be specified as in Definition 2.4
and assume that Ep,q [MMD4[F, X, Y]] <1. Then for m!1, the
statistic MMD2(F, X, Y) converges in distribution to a Gaussian
with mean MMD2[F, p, q] and variance

s2
MMD ¼

22

m
ðEz½ðEz0hðz‚z

0 ÞÞ2� � ½Ez‚ z0 ðhðz‚z
0 ÞÞ�2Þ:

The convergence to the normal occurs rapidly: according to

Serfling (1980, Theorem B,p. 193), the CDF of the U-statistic con-

verges uniformly to the asymptotic CDF at rate1/
ffiffiffiffi
m
p

.

Our goal is to test whether the above normal distribution has zero

mean (the null hypothesis), as opposed to a mean that is positive.

Since we need not concern ourselves with negative deviations from

the mean (MMD[F, p, q] � 0 may never become negative), it

suffices to test whether MMD2[F, X, Y] � « for some threshold

«. Thus, we obtain the two-sample test below as a corollary to

Theorem 2.5, following the principles outlined by Casella and

Berger (2002, Section 10.3.2).
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Fig. 1. Illustration of the function maximizing the mean discrepancy in the

case where a Gaussian is being compared with a Laplace distribution. Both

distributions have zero mean and unit variance. The maximizer of the MMD

has been scaled for plotting purposes, and was computed empirically on the

basis of 2 · 104 samples, using a Gaussian kernel with s ¼ 0.5.

3One may show that the maximizer of MMD[F, p, q] is given by f(x) ¼
hmp � mq, f(x)i. The same holds true for the maximizer of the empirical

quantity, with the means being replaced by empirical means. See (Smola

et al., 2006) for further details and a proof.
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COROLLARY 2.6. A test of the null hypothesis p ¼ q with
asymptotic size4 a, and asymptotic Type II error zero, has the
acceptance region

MMD2½F‚X‚Y� � ŝsMMDza

where

ŝs2
MMD ¼

4

m2ðm�1Þ2
Xm
i¼1

ð
Xm
j6¼i

hðzi‚zjÞÞ2 �
4

m
MMD4½F‚X‚Y�

or any empirical estimate of sMMD that converges in probability.
Here za satisfies Prðz > zaÞ ¼ a when z � N(0,1).

It is also of interest to estimate the p-value of the test. We

first describe a sample-based heuristic. We draw randomly without

replacement from the aggregated data Z ¼ fX‚Yg to get two new

m-samples X� and Y�, and compute the test statistic

MMD2
�ðF‚X�‚Y�Þ between these new samples (bear in mind that

under the null hypothesis p ¼ q, this aggregation is over data drawn

from a single distribution). We repeat this procedure t times to

obtain a set of test statistics under the null hypothesis (conditioned

on the observations). We then add the original statistic MMD2(F, X,

Y) to this set, and sort the set in ascending order. Define as r the rank

of the original test statistic within this ordering. Then our estimated

p-value is p¼ (t + 1� r)/(t + 1). Alternatively, we can find an upper

bound on p using the distribution-free large deviation result of

Hoeffding (1963, p. 25) (see Smola et al., 2006, Section 6),

which is exact at finite sample sizes. This bound is only tight

when m is large, however, and may be too conservative at small

sample sizes.

We give the complete pseudocode for the above MMD-based

test in Algorithm 1. We emphasize that the computational cost is

O(m2), and that the method is easily parallelized (the kernel matrix

can be broken up into submatrices, and the relevant sums computed

independently before being combined). In addition, the kernel

matrix needs never be stored in memory, but only a running sum

must be kept, which makes the analysis of very large data sets

feasible. Randomized methods could also be used to speed up

the double-loop required for evaluating Algorithm 6, by only com-

puting parts of the sum. This procedure would reduce the quality of

the test, however.

Finally, we note that other approaches are also possible in determ-

ining the acceptance region of the test. For instance, Smola et al.
(2006) describe two tests based on large deviation bounds: the first

uses Rademacher averages to obtain a bound that explicitly

accounts for the variation in the test statistic, the second uses a

distribution-independent upper bound on the test statistic variation

due to Hoeffding (1963, p. 25). These approaches have the advant-

age of giving an exact, distribution-free test of level a that holds for

finite samples, and not just in the asymptotic regime. In addition,

they provide a finite sample upper bound on the p-value, which is

again distribution-free. A disadvantage of these approaches is that

they require a larger sample size than the test in Corollary 6 before

they can detect a given disparity between the distributions p and q,

i.e. they have a higher Type II error. For this reason, we do not use

these tests in Section 3.

2.3 Universal kernels for discrete data

While many examples of universal kernels on compact subsets of

R
d are known (Steinwart, 2002), little attention has been given to

finite domains. It turns out that the issue is considerably easier in this

case: the weaker notion of strict positive definiteness (kernels indu-

cing nonsingular Gram matrices (k(xi, xj))ij for arbitrary sets of

distinct points xi) ensures that every function on a discrete domain

x ¼ fx1‚ . . . ‚xng lies in the corresponding RKHS (and hence that

the kernel is universal). To see this, let f 2 R
n be an arbitrary

function on X. Then a ¼ K�1f ensures that the function f ¼
P

j

k(.,xj) satisfies f(xi) ¼ fi for all i.
It turns out that string kernels fall in this class:

THEOREM 2.7. Let X be a finite set of strings, and let #s (x) denote
the number of times substring s occurs in x. Then any string kernel of
the form kðx‚ x

0 Þ ¼
P

s2X ws#sðxÞ#sðx
0 Þ with ws > 0 for all s 2 X is

strictly positive definite.

Proof. We will show that the vectors ffðxÞ j x 2 Xg obtained by

the feature map are linearly independent, implying that all Gram

matrices are nonsingular. The feature map is given by fðxÞ ¼
ð ffiffiffiffiffi

ws
p

#sðxÞ‚
ffiffiffiffiffiffi
ws0
p

#s0 ðxÞ‚ . . . Þ where we assume for the purpose of

the proof that all substrings s are ordered by nondecreasing length.

Now for a given set X of size m consider the matrix with columns

fðx1Þ‚ . . . ‚fðxmÞ, where the entries in X are assumed to be ordered

in the same manner as the substrings (i.e. by nondecreasing length).

By construction, the upper triangle of this matrix is zero, with the

highest nonzero entry of each row being
ffiffiffiffiffi
wx
p

, which implies linear

independence of its rows.

For graphs unfortunately no strictly positive definite kernels exist

which are efficiently computable. Note first that it is necessary for

strict positive definiteness that fðxÞ be injective, for otherwise we

would have fðxÞ ¼ fðx0 Þ for some x 6¼ x
0
, implying that the

kernel matrix obtained from X ¼ fx‚x
0 g is singular. However, as

Gärtner et al. (2003) show, an injective f(x) allows one to match

graphs by computing kfðxÞ � fðx0 Þk2 ¼ kðx‚xÞ þ kðx0 ‚x0 Þ
� 2kðx‚x

0 Þ. Graph matching, however, is NP-hard, hence no such

Algorithm 1 MMD test using asymptotic normality

Input: positive definite kernel k, level of test a2 (0, 1), samples X
and Y of size m drawn from p and q respectively

MMD2  0 and s2  0

for i ¼ 1 to m do

t  0

for j ¼ 1 to m do

if j 6¼ i then
t  t + k(xi, xj) + k(yi, yj) � k(xi, yj) � k(xi, yi)

end if

end for

MMD2  MMD2 + 1
mðm � 1Þ t and s2  s2 + t2

end for

s2  4

ðm2ðm�1Þ2Þs
2 � 4

m ðMMD2Þ2

� 
ffiffiffiffiffi
2�2
p

erfinv ð1�2�Þ
Output: If MMD2 � e return p ¼ q accepted. Otherwise return

p ¼ q rejected.

4 Size and level are defined following Casella and Berger (2002, Section 8.3).
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kernel can exist. That said, there exists a number of useful graph

kernels. See e.g. (Borgwardt et al., 2005) for further details.

2.4 Kernel choice

So far, we have focused on the case of universal kernels. These

kernels have various favorable properties, including that

� universal kernels are strictly positive definite, making the kernel

matrix invertible and avoiding non-uniqueness in the dual

solutions of SVMs,

� Continuous functions on X can be arbitrarily well approxima-

ted (in the k·k1-norm) using an expansion in terms of

universal kernels, and SVMs using universal kernels are

consistent in the sense that (subject to certain conditions)

their solutions converge to the Bayes optimal solution

(Steinwart, 2002).

� MMD using universal kernels is a test for identity of arbitrary

Borel probability distributions.

However, note that for instance in pattern recognition, there

might well be situations where the best kernel for a given problem

is not universal. In fact, the kernel corresponds to the choice of a

prior, and thus using a kernel which does not afford approximations

of arbitrary continuous functions can be very useful—provided that

the functions it does approximate are known to be solutions of the

given problem.

The situation is similar for MMD. Consider the following

example: suppose we knew that the two distributions we are testing

are both Gaussians (with unknown mean vectors and covariance

matrices). Since the empirical means of products of input variables

up to order two are sufficient statistics for the family of Gaussians,

we should thus work in an RKHS spanned by products of order up

to two—any higher order products contain no information about the

underlying Gaussians and can therefore mislead us. It is straight-

forward to see that for c > 0, the polynomial kernel

kðx‚x
0 Þ ¼ ðhx‚x

0 þ cÞ2, with c > 0, does the job: it equals

Xd
i‚ j¼1

xixjx
0
ix
0
j þ 2c

Xd
i¼1

xix
0
i þ c2 ¼ hfðxÞ‚fðx0 Þi‚

where fðxÞ ¼ ðc‚
ffiffiffiffiffi
2c
p

x1‚ . . . ‚±
ffiffiffiffiffi
2c
p

xd‚xixj j i‚ j ¼ 1‚ . . . ‚dÞ>: If we

want to test for differences in higher order moments, we use a higher

order kernel5 kðx‚x
0 Þ ¼ ðhx‚xi þ cÞp.

Note, however, that this does not tell us how to choose c.

With additional prior knowledge, we could further improve the

odds of our test working well on small sample sizes. For instance,

if we knew that the Gaussians differ mainly in their covariance

structures, then we could incorporate this by choosing a small c.

If the available prior knowledge is less specific, we could also sum

up several MMDs by using summed kernels.

2.5 Related methods

Various empirical methods have been proposed to determine

whether two distributions are different. The first test we consider,

and the simplest, is a multivariate generalization of the t-test

(Hotelling, 1951), which assumes both distributions are multivariate

Gaussian with unknown, identical covariance structure. This test is

not model-free in the sense of MMD (and the tests described

below)—indeed, it is easy to construct examples in which it fails

completely (Figure 1).

Two well-established model-free univariate tests are the

Kolmogorov-Smirnov statistic and the Wald-Wolfowitz runs test.

Both tests are powerful in that the distribution of the test statistic is

known independently of p and q for finite sample sizes, under the

null hypothesis p¼ q. A generalization of the Wald-Wolfowitz runs

test to the multivariate domain was proposed by Friedman and

Rafsky (1979). It involves counting the number of edges in the

minimum spanning tree over the aggregated data that connect points

in X to points in Y. The resulting test relies on the asymptotic

normality of the test statistic. The computational cost of this method

using Kruskal’s algorithm is Oððmþ nÞ2logðmþ nÞÞ, although

more modern methods improve on the log(m + n) term. Two

possible generalizations of the Kolmogorov-Smirnov test to the

multivariate case were studied by Bickel (1969); Friedman and

Rafsky (1979). The approach of Friedman and Rafsky in this

case again requires a minimal spanning tree, and thus has a similar

cost to their multivariate runs test.

Hall and Tajvidi (2002) propose to aggregate the data as

Z ¼ fX‚Yg, find the j points in Z closest to each point in X for

all j 2 f1‚ . . . ‚mg, count how many of these are from Y, and

compare this with the number of points expected under the null

hypothesis (the procedure is repeated for each point in Y wrt points

in X). The test statistic is costly to compute; Hall and Tajvidi (2002)

consider only tens of points in their experiments.

Another approach is to use some distance (e.g. L1 or L2)

between estimates of the densities as a test statistic (Anderson

et al., 1994; Biau and Gyorfi, 2005), based on the asymptotic dis-

tribution of this distance given p ¼ q. One problem with the

approach of Biau and Gyorfi (2005), however, is that it requires

the space to be partitioned into a grid of bins, which becomes

difficult or impossible for high dimensional problems (such as

those in Section 3).

We now illustrate these tests with a simple example. In Figure 2,

we compare several alternatives to the MMD-based test in

distinguishing 100 samples taken from each of two normal distri-

butions with unit variance. Results are averaged over a series of

Euclidean distances between the means of both distributions, and

plotted as a function of increasing dimensionality. The t-test has the

highest chance of correctly rejecting the null hypothesis for low

dimensions. However, for high dimensions the estimation of the

sample covariance matrices is poor due to the limited sample sizes.

Note that we do not apply the Biau & Györfi test for high dimen-

sionalities, since memory requirements force the number of parti-

tions per dimension to be too low.

MMD performs very well and outperforms all other model-free

approaches, namely the multivariate Kolmogorov-Smirnov test (FR

Smirnov), the multivariate Wald-Wolfowitz runs test (FR Wolf),

and the Biau & Györfi test (Biau). The comparison becomes harder

for increasing dimensionality, since the sample size is fixed to 100

random vectors per distribution for all dimensions. Moreover,

MMD also yields a very low rejection rate of the null hypothesis,

when it is true (see figure legend).

Finally, we mention that the connection between means in

RKHSs and distributions has, in a less general setting, been

observed before in the field of kernel machines. Schölkopf and

Smola (2002) point out that the empirical mean of a set of points

5 Kernels with infinite-dimensional RKHS can be viewed as a nonparametric

generalization where we have infinitely many sufficient statistics.
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in an RKHS can be viewed as a Parzen windows estimate of the

density underlying the data; and Shawe-Taylor and Cristianini

(2004) propose to use the distance to the mean as a novelty detection

criterion, and provide a statistical analysis.

3 EXPERIMENTS

In this section, we present applications of MMD in data

integration for bioinformatics, namely microarray cross-platform

comparability, cancer (subtype) diagnosis, and schema matching

for enzyme protein structures.

3.1 Microarray cross-platform comparability

Experimental scenario Microarrays as a large-scale gene expres-

sion observation tool offer a unique possibility for molecular bio-

logists to study gene activity at a cellular level. In recent years, there

have been a great number of developments in different microarray

platforms, techniques and protocols, advances in these techniques,

and biological and medical studies making use of these approaches.

As a result, microarray data for a given problem, and the results

derived from it (e.g. marker genes for a certain subtype of cancer),

may vary greatly (Carter et al., 2005), both between labs and plat-

forms. Even for the subsequent step of data processing, e.g. missing

value imputation, a large battery of different techniques is available.

Consequently, despite an avalanche of microarray data being

generated nowadays, it remains to be determined if and how to

combine microarray data from different studies on the same biolo-

gical subject.

Therefore, it is necessary to establish a statistical test of whether

two microarray measurements on the same subject, obtained by two

different labs or on two different platforms, can be regarded as

comparable and can be used for joint data analysis. We define

such a test using MMD as a statistic: if an MMD-based test rejects

the null hypothesis that the microarray measurements are generated

from the same distribution, then we deem them not comparable.

We test this approach on published microarray datasets from two

different platforms. If our criterion is useful in practice and able to

detect the limited cross-platform comparability of microarray data,

then MMD should judge microarray data achieved on different

platforms as being less often comparable than those found on the

same platform.

Data For our first experiment, we obtained 2 datasets from

Warnat et al. (2005), from two studies on breast cancer by Gruvber-

ger et al. (2001) and West et al. (2001). Both comprise gene expres-

sion levels for a common set of 2,166 genes. Different microarray

platforms were used in these studies: while Gruvberger et al. (2001)

achieved their results on a c-DNA platform, West et al. (2001)

utilized oligonucleotide microarrays.

We tried to find out via MMD if there is any statistically signi-

ficant difference between the microarray results achieved on these

different platforms. Samples were scaled to zero mean and unit

variance beforehand, although not for the t-test. We compared
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Fig. 2. Test of samples from two normal distributions with different means and unit variance, based on a significance level a¼ 0.05. The cumulative percentage

of times the null hypothesis was correctly rejected over the set (0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,1,2,5,10,15) of Euclidean distances between the distribution

means, was computed as a function of the dimensionality of the normal distributions. Its average and standard error in 333 repetitions is shown for each of the five

tests employed. The sample size was 100 for each distribution. The MMD used a Gaussian kernel, with kernel sizes obtained by maximizing MMD (fors values

within 0.25 and 20) to get the most conservative test. In case of the t-test, a ridge was added to the covariance estimate, to avoid singularity (the ridge was

incremented in steps of 0.01 until the 2-norm condition number was below 10). For the Biau test, equal partitions per dimension were used, although this becomes

intractable for high dimensions. When samples from distributions with equal mean were compared, the tests wrongly rejected the null hypothesis in the following

number of trials out of 8991 (summed over all dimensions in the plot, with 333 runs each): 112 (MMD), 960 (t-test), 379 (FR Wolf), 441 (FR Smirnov). For the

Biau test: 4 out of 1665 trials.
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the MMD results to the multivariate t-test and the Friedman-Rafsky

multivariate Kolmogorov-Smirnov and Wald-Wolfowitz tests

(denoted Smirnov and Wolf, respectively). The high dimensionality

of this problem, as well as of the experiments below, prevents a

comparison with the Biau-Györfi test.

We chose a ¼ 0.05 as the level of significance for all tests. A

Gaussian kernel was employed for MMD, with s¼ 20. We obtained

an average performance over 100 distribution tests using 50 microar-

ray measurements from different platforms (X being 25 cDNA

measurements and Y being 25 oligonucleotide measurements),

and 100 distribution tests with data from 50 microarray measure-

ments taken from only one of the two platforms. For each test, the

studies were randomly selected without replacement from the rel-

evant measurement pools. We repeated this experiment for MMD

and each of the competing methods.

Results Results are reported in Table 1 , showing the number of

times MMD and the other three methods deemed two samples as

originating from the same distribution, on data from both identical

and dissimilar platforms. In the majority of repetitions, both MMD

and the Friedman-Rafsky tests recognize correctly whether two

samples were generated on the same platform or not. However

MMD is the only test that makes no Type I or Type II errors in

all repeats of the experiment. While the FR Wolf test has no false

negatives when the samples are from different platforms, it finds

occasional false positives when the samples arise from the same

platform. The FR Smirnov test has a slightly reduced Type I error

rate compared with the FR Wolf test, but at the expense of a much

larger Type II rate. Finally, the t-test appears unable to distinguish

differences in platform, which is unsurprising given the high dimen-

sionality of the data. As inter-platform comparability of microarray

data is reported to be modest in many recent publications (van

Ruissen et al., 2005; Carter et al., 2005; Stec et al., 2005),

MMD is very successful in detecting these differences in our experi-

ments. We also note that our sample sizes are relatively small,

which makes problematic the assumption of both the MMD and

Friedman-Rafsky tests that the associated statistic has an asymptotic

distribution (this remark also holds for the experiments in the next

section). That said, this approximation appears reasonable for the

tasks we address, in the light of our results.

3.2 Cancer and tumor subtype diagnosis

Experimental scenario Besides microarray cross-platform com-

parability, it is interesting to examine whether MMD can distinguish

between the gene expression profiles of groups of people who are

respectively healthy or ill, or who suffer from different subtypes of a

particular cancer. Alternatively, as in the previous experiment,

MMD can be employed to determine whether we should integrate

two sets of observations (which might arise from different subtypes

of a cancer) into one joint set, or if we should treat them as distinct

classes.

When using MMD for cancer diagnosis, we test whether the

microarray data at hand contain a significant level of difference

between ill and healthy patients. Conversely, when looking at

cancer (or tumor) subtypes, MMD indicates whether two subtypes

of cancer should be considered independently when designing a

computational predictor of cancer, or if they can be assigned

to one common super-class. In terms of classification methods,

MMD can be used to choose whether binary (cancer/healthy) or

multi-class (healthy, cancer subtype 1, . . . , cancer subtype n) clas-

sification will be more accurate when developing a diagnosis tool.

Data For our second microarray experiment, we obtained data-

sets from two cancer microarray studies. The first, by Singh et al.
(2002), is a dataset of gene expression profiles from 52 prostate

tumor and 50 normal, non-tumor samples. The second, by Monti

et al. (2005), consists of microarray data from diffuse large B-cell

lymphoma samples. In particular, we are interested in cancer dia-

gnosis on the data of Singh et al. (2002), and tumor subtype dia-

gnosis on the data of Monti et al. (2005). We again normalized each

data sample to zero mean and unit variance, besides for the t-test.

Cancer diagnosis

We examine whether MMD can distinguish between normal and

tumor tissues, using the microarray data from the prostate cancer

study by Singh et al. (2002). Again, a was set to 0.05. Randomly

choosing 100 pairs of 25 healthy and 25 cancer patients’ gene

expression profiles, we used MMD to test the null hypothesis

that both samples were generated by the same distribution. We

then did the same test for 100 randomly chosen pairs of samples

of size 25, both drawn from the same tissue type (healthy or tumor).

For all 200 pairs of samples, we compared our results to those of

the multivariate t-test and both Friedman-Rafsky tests (Wolf and

Smirnov).

Results Results are reported in Table 2. Both MMD and the

Friedman-Rafsky tests are in agreement that there is a large differ-

ence between samples from cancer patients and healthy patients,

and little difference within a particular class. We again see that both

MMD and FR Wolf make no Type II errors, but that only MMD

makes no Type I errors; and that FR Smirnov has a much higher

Type II error rate than FR Wolf (while making one fewer Type I

errors).

Table 1. Microarray cross-platform comparability

Platforms H0 MMD t-test FR FR

Wolf Smirnov

Same accepted 100 100 93 95

Same rejected 0 0 7 5

Different accepted 0 95 0 29

Different rejected 100 5 100 71

Cross-platform comparability tests on microarray level for cDNA and oligonucleotide

platforms. Repetitions 100, sample size (each) 25, dimension of sample vectors: 2,116

Table 2. Cancer diagnosis

Health status H0 MMD t-test FR FR

Wolf Smirnov

Same accepted 100 100 97 98

Same rejected 0 0 3 2

Different accepted 0 100 0 38

Different rejected 100 0 100 62

Comparing samples from normal and prostate tumor tissues (Singh et al., 2002). H0 is

hypothesis that p ¼ q. Repetitions 100, sample size (each) 25, dimension of sample

vectors: 12,600
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Tumor subtype diagnosis

We performed the same experiment as above for tumor subtype

diagnosis on data from Monti et al. (2005). We are interested in

whether MMD is able to distinguish betweeen lymphoma of two

subtypes: ‘‘oxidative phosphorylation’’ and ‘‘B-cell receptor/

proliferation’’.

Results We report results in Table 3. As in the previous

experiment, both MMD and the Friedman-Rafsky tests prefer to

reject the null hypothesis that both samples are generated by the

same distribution, when the lymphoma subtypes are different. In

other words, all three tests succeed in finding discrepancies between

samples from different tumor subtypes in this case. This is consist-

ent with previous results by Monti et al. (2005) who discovered

these different lymphoma subtypes by using a combination of sev-

eral clustering algorithms. Hence MMD confirms the existence of

these subtypes in our experiment. Comparing the performance of

the various tests gives results consistent with the previous two

experiments: MMD and FR Wolf do not make any Type II errors,

but only MMD has no Type I errors; and FR Smirnov has a much

worse Type II error rate than FR Wolf, but makes one fewer Type I

errors.

3.3 Schema matching on molecular graph data

Experimental scenario Classifying biological data into ontologies

or taxonomies is the central step in structuring and organizing the

data. However, different studies may use different ontologies, res-

ulting in the need to find correspondences between two ontologies.

We employ MMD to discover matching terms in two ontologies

using the data entries associated with these terms.

We study the following scenario: Two researchers have each

dealt with 300 enzyme protein structures. These two sets of 300

proteins are disjunct, i.e. there is no protein studied by both

researchers. They have assigned the proteins to six different classes

according to their enzyme activity. However, both have used dif-

ferent protein function classification schemas for these six classes,

and are not sure which pairs of classes correspond.

To find corresponding classes, the MMD can be employed. We

obtained 600 proteins modeled as graphs from Borgwardt et al.
(2005), and randomly split these into two subsets A and B of

300 proteins each, such that 50 enzymes in each subset belong

to each one of the six EC top level classes. We then computed

MMD for all pairs of EC classes from subset A and subset B to

check if the null hypothesis is rejected or accepted. To compute the

MMD, we employed the protein random walk kernel for protein

graphs, following Borgwardt et al. (2005). We compared all pairs of

classes via MMD, and repeated the experiment 50 times.

Results For a significance level of a ¼ 0.05, MMD rejected the

null hypothesis that both samples are from the same distribution

whenever enzymes from two different EC classes were compared.

When enzymes from the same EC classes were compared, MMD

accepted the null hypothesis. MMD thus achieves error-free data-

based schema matching here.

We checked whether the same good results were found for a

higher significance level of a ¼ 0.01. We report results in

Table 4. This time, in 7 comparisons out of 1800 comparisons

the null hypothesis is incorrectly accepted, whereas in all other

cases, the correct decision is taken. Hence even for the high signi-

ficance level of a ¼ 0.01 MMD is very accurate.

In addition to these promising results, note that although we

consider the basic case of 1:1 correspondence between classes in

our experiment, the fact that MMD uses the kernel trick allows for

even more powerful approaches to data-content based schema

matching. As kernels are closed under addition and pointwise mul-

tiplication, we can test complex correspondences between different

classes as well, where one class in schema A corresponds to a

combination of classes in schema B. Schema matching for complex

correspondences via MMD is a topic of current research.

4 DISCUSSION AND CONCLUSIONS

In this paper, we have presented, to the best of our knowledge, the

first principled statistical test for distribution testing and data integ-

ration of structured objects, using the Maximum Mean Discrepancy

(MMD) as a test statistic. MMD makes use of kernels, and hence is

not limited to vector data. As a consequence, MMD is not only

applicable to a wide range of problems in molecular biology, but

also to common data types in bioinformatics, such as strings and

graphs. Kernels for biological data, which have previously been

used in classification tasks, can now be employed for distribution

testing. Amongst others, these include kernels on protein sequences,

protein structures, and microarray time series (Schölkopf et al.,
2004).

MMD is easy to implement, memory-efficient, and fast to

compute. In all of our experiments, it outperformed competing

methods (provided the latter were applicable at all, i.e., on vectorial

data). We applied our MMD-based test to microarray cross-platform

comparability, cancer diagnosis, and data-content based schema

matching.

Table 3. Tumor subtype tests

Subtype H0 MMD t-test FR FR

Wolf Smirnov

Same accepted 100 100 95 96

Same rejected 0 0 5 4

Different accepted 0 100 0 22

Different rejected 100 0 100 78

Comparing samples from different and identical tumor subtypes of lymphoma (Monti

et al., 2005). H0 is hypothesis that p ¼ q. Repetitions 100, sample size (each) 25,

dimension of sample vectors: 2,118.

Table 4. Data-content based schema matching

Test EC 1 EC 2 EC 3 EC 4 EC 5 EC 6

EC 1 0 50 45 50 50 50

EC 2 50 0 50 50 50 50

EC 3 48 50 0 50 50 50

EC 4 50 50 50 0 50 50

EC 5 50 50 50 50 0 50

EC 6 50 50 50 50 50 0

Data-content based schema matching for a ¼ 0.01. Numbers indicate how often null

hypothesis (p ¼ q) was rejected.
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We believe that MMD could also be employed to validate

computational simulations of biological processes. If wetlab exp-

eriments and simulations generate results and predictions that

MMD deems comparable, it is likely that the simulator has pro-

duced realistic predictions. This validation procedure will become

increasingly relevant as more model-based simulations of microar-

ray data become available (den Bulcke et al., 2006).

MMD could also be used for keyplayer gene selection from

microarray data. This type of feature selection could be employed

to find genes that are involved in a cancer outbreak when looking at

gene expression profiles from healthy and cancer patients. MMD

would be applied to subsets of genes from two classes of microar-

rays to find the subset that maximizes the probability that the two

classes arise from different distributions. These genes should be

studied experimentally in more detail. If, however, MMD cannot

find any subset of genes that results in significant differences

between healthy and cancer patients, then this might serve as an

indicator that the microarrays did not contain the essential genes

involved in cancer progress.
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