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Abstract

The ability to detect online abnormal events in signals is essential in many real-world signal processing applications.

Previous algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt

changes. Corresponding implementation relies on maximum likelihood or on Bayes estimation theory with generally

excellent performance. However, there are numerous cases where a robust and tractable model cannot be obtained, and

model-free approaches need to be considered. In this paper, we investigate a machine learning, descriptor-based approach

that does not require an explicit descriptors statistical model, based on support vector novelty detection. A sequential

optimization algorithm is introduced. Theoretical considerations as well as simulations on real signals demonstrate its

practical efficiency.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Online anomaly detection in signals or systems is
a general framework which includes many specia-
lized applications such as industrial monitoring
(motor fault detection [1,2], gas turbine monitoring
[3], etc.) or audio restoration [4]. Among the many
possible approaches, some rely on an explicit signal
e front matter r 2005 Elsevier B.V. All rights reserved
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model together with probabilistic assumptions.
These techniques are usually extremely powerful
insofar as an accurate and tractable model exists. In
this paper, we consider another class of approaches
in which no signal model is required. Some signal
features (also referred to as descriptors or vectors)
are extracted from the signal and processed
sequentially. Techniques based on such descriptors
are useful when a good signal model cannot be
found. More precisely, consider vectors2 xt

(t ¼ 1; 2; . . .) taking values in X. At time t, the
problem we propose to solve is that of deciding
.

2We assume at this step that these descriptors are conveniently

extracted from the signal of interest, and that they carry relevant

information for abnormal events detection.
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between hypotheses

H0 : xt0�p0; t0 ¼ t0; . . . ; t, (1)

H1 : xt0�p0; t0 ¼ t0; . . . ; t� 1 and xtfp0, (2)

where p0 is a probability density function (pdf) in X
w.r.t. Lebesgue measure, denoted m. The symbol �
(resp. f) stands for ‘‘distributed according to’’ (resp.
‘‘not distributed according to’’). A general solution
consists of finding a decision region R such thatZ
R

p0ðxÞdx ¼ 1� r with mðRÞ minimum, (3)

where 0prp1 is a given rate of true positives (i.e., H1

decided whereas H1 is true). The decision function f is
built as f ðxÞX0 iff x 2 R, and the decision rule is

f ðxÞw
H0

H1

0. (4)

Depending on the amount of available prior
information, there are different approaches to
estimate R. The following cases are often met in
applications:
�
 The pdf p0 is known and R ¼ fx 2 X s.t.
p0ðxÞ4Zrg. In this case, f ðxÞ ¼ p0ðxÞ � Zr where
Zr is a threshold. In practice, tuning Zr according
to r may be difficult. Moreover, p0 is generally
unknown in applications.

�
 The pdf p0 is unknown but its shape is given (e.g.,

Gaussian). The distribution parameters (e.g.,
mean and covariance matrix) are unknown. A
training set x ¼ fx1; . . . ;xmg is the used so as to
learn the parameters. The previous detection rule
can be applied. This approach is efficient only if
the number of training samples is large enough,
when compared to the dimension of X [5].

�
 The pdf p0 is unknown. Its shape is estimated

from the training set using Parzen windows [5] or
using any other density estimation technique [6].
Here, again, tuning Zr is a problem. Moreover,
the Parzen windows approach does not allow that
some abnormal vectors may be in the training set.

�
 The pdf p0 is unknown. The shape of R is directly

estimated from a training set that may contain
abnormal vectors. There is no threshold to tune
(more precisely, a threshold is automatically
tuned for a given r).

The last item in the above list is the scenario we
investigate in this paper, using kernel-based techni-
ques. Kernel-based techniques [7–11] form a general
class of algorithms that fulfill our requirements.
First, they do not require the definition of an
explicit statistical model p0 for xt (t ¼ 1; 2; . . .).
Second, they provide computationally efficient
decision functions whose good properties are
established theoretically [7,8,10,12] and practi-
cally [10,13–15]. Third, kernels enable process-
ing of very-large dimensional vectors (in fact, they
are almost insensitive to the dimension of the
vectors), and to non-numeric data such as text
strings, DNA sequences, etc. The approach we
propose in this paper is based on a specific kernel
procedure: support vector novelty detection
(SVND).

1.1. SV novelty detection

SVND [10,14,16] addresses the following pro-
blem: given a set of vectors x ¼ fx1; . . . ; xmg in Xm

such that fx1; . . . ; xmg �
i:i:d:

p0 (with p0 unknown), is

the new vector x 2 X distributed according to p0

(hypothesis H0, x is then said ‘normal’ or ‘non-
novel’), or not (hypothesis H1, x is said ‘abnormal’
or ‘novel’)? In SVND, this problem is addressed
through designing a decision function f xðxÞ over a
region R in X and a real number b such that
f xðxÞ � bX0, if x 2 R and f xðxÞ � bo0 otherwise.
The decision function f xðxÞ is designed under two
constraints: firstly, most of the training vectors x ¼
fx1; . . . ;xmg should be in R (except for a small
fraction of abnormal vectors, called outliers) and
secondly, it must be such that R in X has minimum
volume. In order to estimate R (or equivalently,
f xðxÞ and b), we reduce the space of possible
functions f xðxÞ to a reproducing kernel Hilbert
space (RKHS) with kernel function kð�; �Þ. The
RKHSF can be implicitly selected by first choosing
a positive definite kernel function kð�; �Þ from X�X
to R. The kernel kð�; �Þ is positive definite iff for all
x ¼ fx1; . . . ;xmg 2 Rmand all m41, the matrix with
entries kðxi; xjÞ ði; jÞ ¼ 1; . . . ;m is positive definite. A
common choice is the Gaussian RBF kernel (where
k � kX denotes the norm in X)

kðx1;x2Þ ¼ exp
�1

2s2
kx1 � x2k

2
X

� �
. (5)

A positive define kernel kð�; �Þ induces a RKHS, i.e.,
a linear space F of functions endowed with a dot
product denoted h�; �iF. The canonical norm is
kf ð�Þk2F ¼ hf ð�Þ; f ð�ÞiF, and F is complete for this
norm. For all x 2 X, the function kðx; �Þ : X! R
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belongs to F. Moreover, for any f ð�Þ 2F, the
reproducing property holds: hkðx; �Þ; f ð�ÞiF ¼ f ðxÞ.

Given a positive definite kernel kð�; �Þ and the
corresponding RKHS F, the n-SVND approach
yields f xð�Þ as the solution of the following convex
optimization problem (where 0ono1):

max
f ð�Þ2F;xi ;b

�
1

2
kf ð�Þk2F �

1

nm

Xm

i¼1

xi þ b;

subject to f ðxiÞ � bX� xi; xiX0:

(6)

The slack variables xi together with the constraints
f ðxiÞXb� xi with xiX0 ensure that the function
f xð�Þ selected fits the training set: almost all xi’s
verify f ðxiÞ � bX0 (i.e., xi ¼ 0), and are located
inside R. Some xi’s, however, are such that
0Xf ðxiÞ � bX� xi with xi40, these are the out-
liers. The number of outliers is kept low by
minimizing the term

Pm
i¼1 xi. Moreover, the term

kf ð�Þk2F ensures that f xð�Þ has minimum norm,
which results in minimum volume for R, as can be
seen in the following geometrical interpretation.

The optimization problem (6) admits a simple
geometrical interpretation in F. For simplicity,
assume that kð�; �Þ is such that kkðx; �Þk2F ¼ hkðx; �Þ;
kðx; �Þi ¼ kðx;xÞ ¼ 1. This means that, in F, all
functions kðx; �Þ have norm one: they are located on
a hypersphere S of possibly infinite dimension,
centered in the origin of F (denoted 0) with radius
1. Fig. 1 depicts the geometrical interpretation: f xð�Þ

and b define a hyperplane W orthogonal to f xð�Þ in
F. W separates the kðxi; �Þ’s from the sphere center
0, while having b=kf ð�ÞkF maximum (this is the
distance from 0 to W). Some functions kðxi; �Þ are
allowed to be between 0 and W, and are penalized
linearly with xia0. The segment of S bounded by
W and located opposite to 0 includes the set of
function fkðx; �Þ s.t. x 2 Rg: minimizing the norm of
0
R=1

Margin SV

W
Non-Margin SV Non-SVs

w

� 

S

b
|| f (⋅) || F

∧

Fig. 1. In feature space F, the training data are mapped on a

hypersphereS with radius 1 and center 0. The n-SVND related to

x yields a hyperplane W, orthogonal to f xð�Þ. Black dots

represent the set of kðxi ; �Þ, i ¼ 1; . . . ;m (these are the images of

the training vectors in F).
f xð�Þ is equivalent to minimizing the volume of the
segment of S. As a consequence, the volume of R is
also minimized.

The dual formulation is obtained by introducing
Lagrange multipliers a ¼ fa1; . . . ; amg. The dual
optimization problem is [10]:

Minimize W ða; bÞ ¼
1

2

Xm

i¼1

Xm

j¼1

aiajkðxi; xjÞ

þ b 1�
Xm

i¼1

ai

 !
ð7Þ

subject to the constraints

0paip1=nm for all i 2 f1; . . . ;mg (8)

Xm

i¼1

ai ¼ 1 (9)

and, for all x in X, the optimal decision function is
written from the optimal Lagrange multipliers a and
b as

f xðxÞ ¼
Xm

i¼1

aikðx;xiÞ � bw
H0

H1

0. (10)

In the optimal solution most ai’s are zero and the
corresponding training vectors are referred to as
non-support vectors (NSVs). Training vectors with
a ¼ 1=nm are called non-margin support vectors3

(NMSVs) and vectors with 0oao1=nm are called
margin support vectors (MSVs).

Interestingly, when n ¼ 1, it can be shown [10] that
the term

Pm
i¼1 aikðx; xiÞ in Eq. (10) is the Parzen

windows estimate of p0. For instance, Parzen windows
estimators specify a certain type of region R.
(Similarly, K-nearest neighbors algorithm consider
the number of vectors to enclose.) Though asymptotic
convergence is achieved by Parzen windows and K-
nearest neighbors, their behavior facing finite sets of
samples is far less attractive (which is not the case
generally speaking with support vector methods). In
the general case (no1), the very efficiency of SVND
comes from Vapnik’s principle: instead of designing
f xð�Þ from an estimated underlying density, we design
f xð�Þ directly. This avoids to devote unnecessary
estimation accuracy to regions located far away from
the decision boundary4 and on the contrary, devote
high estimation accuracy to regions close to the
boundary. In Fig. 2, we have plotted two SVND
3These are the vectors with xia0.
4The decision boundary is the limiting hypersurface in X

enclosing R.
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Fig. 2. In input space X, crosses represent 200 Gaussian samples in X ¼ R2 with mean ½0:35 0:35� and covariance matrix S with

S11 ¼ S22 ¼ 0:008 and S21 ¼ S12 ¼ �0:006. The n-SV decision boundary that encloses the region R for n ¼ 0:2 is plotted in solid line,

while the 80% confidence ellipse is drawn in dashed line. Two RBF kernels are tested, with s ¼ 0:1 (left) and s ¼ 0:01 (right).
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estimates of the region R when x contains Gaussian
data.

1.2. Outline of the paper

In this paper, we develop an online procedure for
anomaly detection in signals/systems. We now
consider that xt is either a descriptor extracted at
time t from a signal or, more generally, the output
of a system. The simplest version of our algorithm
consists of testing the novelty of xt with respect to a
set of m previous vectors fxt�m; . . . ;xt�1g. This
technique requires the weights at defining the SV
decision function to be computed for each training
set (i.e., at each time t). A first, simple approach
would consist of computing the weights ‘‘from
scratch’’ at each time t at the expense of a high
computational load. For the sake of computational
efficiency, we propose instead an online algorithm
aimed at updating the weights from time t� 1 to
time t (Section 2). This online algorithm being
designed, we build on n-SVND two procedures
aimed at detecting abnormal events, and discuss
practical efficiency (Section 3). In Section 4, we
provide elements about tuning the algorithm para-
meters. The computation time and performance are
also discussed. Simulations involving real data are
presented, and hints for parameter tuning are
proposed (Section 5). The last section, Section 6,
gives conclusions and future research directions.

2. On-line novelty detection

At time t, consider the training set fxt�m; . . . ;xt�1g.
The n-SVND weights at and offset bt are assumed
known. Our online algorithm consists of computing
the new weights atþ1 and offset btþ1 corresponding to
fxt�mþ1; . . . ; xtg, from their previous values at time t.
Thus, each update step requires to add one vector xt

to the training set and to remove another vector xt�m.
We proceed as follows. First, we obtain an inter-
mediate solution eat; ~bt with the composite training set
fxt�m; . . . ; xt�1g [ fxtg. This solution is not a feasible
solution, however, in that the upper bound on the ai

given in Eq. (8) is kept at 1=nm, whereas it should be
1=ðnðmþ 1ÞÞ. This is because the composite training
set contains one more vector. Second, we remove xt�m

from the composite training set to obtain the feasible
solution atþ1; btþ1. In order to keep notations simple,
we drop the time subscript t in at and bt in the
following.

Let us denote by xc the vector for which the
coefficient ac is being changed, either through being
added to the training set in the first update step (so
that c ¼ t) or through being removed in the second
update step (so that c ¼ t�m). In the former case,
ac is initially set to zero so as to preserve Eq. (9),
and is then adjusted until both the requirements of
Eqs. (8) and (9) are met, whereas in the latter case,
we must reduce ac to zero. In making these
adjustments, however, it is necessary to shift the
remaining weights fai : iacg to preserve optimality
according to Eqs. (8) and (9).

Let MðaÞ (resp. NðaÞ) denote the subset of indexes
ft�m; . . . ; t� 1g corresponding to MSVs (resp.
NMSVs) in the current solution a. We also define
the slopes gi of the cost function W in Eq. (7) as

gi ¼
qW

qai

¼
Xt�1

j¼t�m

ajkðxi;xjÞ � b; i ¼ 1; . . . ;m

(11)
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and we note that gi ¼ 0 if i 2MðaÞ, gio0 if i 2 NðaÞ

and gi40 for NSVs. Adjustments to the solution a

are governed by the following principles:
�
 for MSVs, the slopes fgi : i 2MðaÞg are not
allowed to change (they stay at zero) although
the weights themselves fai : i 2MðaÞg are allowed
to change;

�

5More precisely, KMSV is the symmetric matrix which entry at

line i and row j is kðxi ;xj), with xi and xj in the MSV subset.
for non-margin and non-SVs, weights fai :
ieMðaÞg are not allowed to change (they must
remain, respectively, at 1=nm and 0) but corre-
sponding slopes may change.

As stated previously, a state of equilibrium is fully
described by the constraints over the weights ai and
the slopes gi; however, it can be noted that one can
still use any of the two sets of parameters to follow
the evolution of the optimization process: e.g., an
MSV becoming an NSV can be equally character-
ized by its slope becoming positive or its weight
being shifted down to zero.

In Section 2.1, we focus on the so-called adiabatic
case, where the sets of margin SVs does not evolve.
In the course of these shifts, however, it is possible
for the sets of margin, non-margin and non-SVs to
evolve, due for instance to the weight ai of a margin
SV xi being shifted down to zero, or the slope gi of
the cost function for a non-margin SV reaching zero
(obviously, this is not the complete set of possible
conditions). The resulting updates are described in
Section 2.2.

2.1. Adiabatic changes to solution

We now consider how a solution a; b might be
updated in an adiabatic manner when the coefficient
ac of a particular vector xc is shifted by Dac. Thus,
there can be no shift to the values of ai for vectors xi

that are non-margin SVs or non-SVs, and no shift to
the gi for margin SVs (the latter remains zero). The
sets of margin, non-margin and non-SVs are
assumed to stay the same in the course of the
update (we deal with changes to these sets in the
next section). Given these goals and constraints, a
shift Dac in ac causes changes Dai : i 2MðaÞ to the
weights of MSVs, changes Dgi : ieMðaÞ to the
slopes gi : ieMðaÞ of the cost function, and change
Db to the offset b. We denote DaMSV the vector
whose entries are the corresponding changes
Dai : i 2MðaÞ. To obtain an online solution proce-
dure, we must find the explicit dependence of DaMSV

and fDgi : ieMðaÞg on Dac. There is then a shift to
the constraints in Eqs. (8) and (9), such that

QMSV

�Db

DaMSV

" #
¼ �

1

kMSV;c

" #
Dac with

QMSV ¼
0 1>

1 KMSV

" #
. ð12Þ

Here, KMSV is the matrix of kernels between margin
SVs5 and kMSV;c is the vector of kernels between the
margin SVs and the new vector xc. In equilibrium,

Db ¼ �bbðcÞDac; Daj ¼ bjðcÞDac, (13)

where we define

bbðcÞ

bMSVðcÞ

" #
¼ �Q�1MSV

1

kMSV;c

" #
, (14)

and bjðcÞ ¼ 0 for jeMðaÞ. Substituting Eq. (13) into
Eq. (12) yields the desired relation between Dac and
Dgi:

Dgi ¼ giðcÞDac; 8i 2 f1; . . . ;mg [ fcg, (15)

where

8ieMðaÞ; giðcÞ ¼ kðxi; xcÞ þ
P

j2MðaÞ kðxi; xjÞbjðcÞ

þbbðcÞ;

8i 2MðaÞ; giðcÞ ¼ 0:

8><>:
(16)

Eq. (16) also defines gcðcÞ, and a corresponding
slope shift Dgc, for the vector xc.

2.2. Vectors entering and leaving the margin set

We now consider situations where vectors swap
between two subsets, e.g., a NMSV becomes a
MSV. Since MSVs are in a central position, a
change in any subset concerns MSVs: either a vector
becomes a MSV (it was previously a NSV or a
NMSV), or a MSV becomes a NSV or a NMSV.
Hence, we investigate in this section changes to the
MSV subset. Eq. (14) implies that only Q�1MSV needs
to be computed to obtain all the updated para-
meters.

Let us now consider adding a vector xd to the set
of margin SVs. Eq. (12) becomes

eQMSV

Db

DaMSV

ad

264
375 ¼ � 1

kMSV;c

kd ;c

264
375Dac, (17)
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where

eQMSV ¼

0 1> 1

1 KMSV kMSV;d

1 k>MSV;d kd;d

2664
3775, (18)

where 0 (resp. 1) is a vector of convenient size
composed of 0’s (resp. 1’s). Using the Woodbury
formula [11], we therefore obtain

eQ�1MSV ¼
Q�1MSV 0

0> 0

" #
þ

1

gd ðdÞ

bbðdÞ

bMSVðdÞ

1

2664
3775

�½bbðdÞ b
>
MSVðdÞ 1�. ð19Þ

Eq. (19) considers a point xd entering the margin set
with d4maxaMðaÞ; in a general way, the zeros and
ones in Eq. (19) are to be inserted according to the
sorting of d in MðaÞ. We now consider the effect oneQ�1MSV of a vector xd leaving the margin set. Again

using the Woodbury formula, it is possible to define
the update:

Q�1MSV ¼ ½
eQ�1MSV�dþ1;dþ1 � ½

eQ�1MSV�
�1
dþ1;dþ1½

eQ�1MSV�dþ1;dþ1

�½eQ�1MSV�dþ1;dþ1, ð20Þ

where ½A�a;b denotes the elements of the matrix A

located at row a and column b, and, e.g., ½A�
a;b

indicates that row a and column b have been
removed from A.

2.3. Algorithm

In this subsection, we give details about the two
steps of the update algorithm.

Algorithm 1: Adding a vector to the training set

Step 1.0: Initialization
�
 Use Q�1MSV from the last update at time t� 1 to

compute bMSVðcÞ, bbðcÞ using Eq. (14) and

compute cðcÞ using Eq. (16)

�
 Set ac  0 so as to respect Eq. (9) and set

Dac  0.

�
 Compute the new matrix of kernels between the

points of the training set and compute gc using

Eq. (11).

Step 1.1: The weights are updated
�
 While equilibrium is not reached, do

� If gc40 then xc is a NSV and equilibrium is
reached. Add c to NðaÞ, set ac ¼ 0 and ai,
i ¼ 1; . . . ;m, iac remain unchanged. End.

� Increase Dac and corresponding Dgc, Dai’s

and Dgi’s using Eqs. (13)–(16) until any of the

following situations occurs:
(1) If gc ¼ 0 then xc is a MSV: equilibrium is

reached. Add c to MðaÞ, set ac ¼ Dac and

update ai ’s using Dai’s. Update Q�1MSV using

Eq. (19). Update b using Db from Eq. (13).
End.

(2) Ifgco0 then xc is a NMSV: equilibrium is

reached. Set ac ¼ 1=nm and update ai’s

using Dai ’s. Update b using Db from Eq.
(13). End.

(3) One MSV xj becomes a NSV because gj

becomes positive: remove j from MðaÞ.
Update Q�1MSV using Eq. (20). Update ai’s

and b using Eqs. (13)–(16).
(4) One MSV xj becomes a NMSV because gj

becomes negative: remove j from MðaÞ and

add it to NðaÞ. Update Q�1MSV using Eq. (20).
Update ai ’s and b using Eqs. (13)–(16).

(5) One NSV xj becomes a MSV because gj

becomes zero: add j to MðaÞ. Update Q�1MSV

using Eq. (19). Update ai ’s and b using Eqs.
(13)–(16).

(6) One NMSV xj becomes a MSV because gj

becomes zero: add j to MðaÞ and remove it

from NðaÞ. Update Q�1MSV using Eq. (19).
Update ai ’s and b using Eqs. (13)–(16).
Once the initialization step is completed, the
incoming point can be a non-support vector: in
this case, the equilibrium is met. If not, its para-
meters are sequentially moved towards the state
of equilibrium, each step being conditioned by
vectors swapping from one set to another (this is
the idea of adiabatic changes). The principle of
the method is therefore to compute the smallest
step implying a swap, update subsequently the
problem parameters, and iterate till the equilibrium
is reached.

Algorithm 2: Removing a vector from the training

set

Step 2.0: Initialization
�
 If xc is a NSV, it is removed from the training set.

End.
�
 If xc is a MSV, remove c from MðaÞ, and update

Q�1MSV using Eq. (20).
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Step 2.1: The weights are updated
�

108

109

While equilibrium is not reached, do

� Increase Dac and corresponding Dgc, Dai ’s

and Dgi ’s using Eqs. (13)–(16) such that of the

following situations is met:
6

107

(1) Ifgc40 then xc is a NSV and equilibrium is

reached. Remove xc from the training set

and update remaining ai ’s with Dai ’s. End.

(2) Same as situations (3) to (6) in Algorithm 1.
 10

20 30 40 50 60 70

Training set size m

Fig. 3. Comparison of computational costs at various training

set sizes m, for the online algorithm (dashed line) and the batch

‘‘from scratch’’ implementation. These results were obtained

using a toy data set.

6The time scaling in st and in xt may be different since a unique

descriptor may be extracted from a set of consecutive signal
2.4. Discussion

The algorithm we have presented is similar to that
of [17] for classification, and it relies on the same
concepts. However, the algorithm in [17] cannot be
directly transposed to novelty detection insofar as
no bound similar to Eq. (8) exists in classification
involving the number of training samples. In the
update process described in the above, QMSV is
strictly definite positive (see Eq. (12), as KMSV is a
Gram matrix); yet, its inversion is numerically
unstable, which made us use the pseudo-inverse.
This issue occurs only once, at the start of the online
procedure: in the remainder of the algorithm, the
inverse is updated from one iteration to another
using the Woodbury formula. Another possibility to
overcome problems with matrix inversion consists
of initializing with a small MSV subset (e.g., 2 or 3
vectors), then building QMSV using Eq. (12), and
computing Q�1MSV. This usually does not require
pseudo-inverses because the matrix is small. Finally,
one grows Q�1MSV by incorporating remaining MSVs
using Eq. (19).

2.5. Experimental validation of the online algorithm

In order to show the computational gain and
accuracy of our online implementation, we present a
short simulation study. A set of 50 2D Gaussian
i.i.d. time series of 1024 points was generated. For
each series, the parameters of the SV detector were
computed for training sets defined by a sliding
window over a subset of the data, using both our
online algorithm and the computation ‘‘from
scratch’’ at each iteration. Comparison of the
resulting solutions shows negligible difference in
terms of precision (the average difference between
weights for margin support vectors is below 0.1 %).
Fig. 3 plots the average computational cost of both
methods versus the training set size m, measured
over the 50 time series. As can be seen, our online
method is always quicker, and the advantage
increases with larger m. Note that analytical
analysis of the algorithm complexity is difficult
because (1) forecasting which situation actually
happens in Step 1.1 of Algorithm 1 or in Step 2.1
of Algorithm 2 is hard in most cases and (2) the
exact dimension ofQ�1MSV, to be updated is unknown
a priori (it depends on the number of MSVs).

2.6. Conclusion

Further work includes the modification of this
sequential incremental/decremental learning algo-
rithm so as to allow the training set size to grow
(incremental learning) or decrease (decremental
learning). Issues still to be solved deal with the
equality constraint linking the Lagrange multipliers
to the number of training samples. Adding or
removing a point to/from the training set implies
subsequent modification of the (already computed)
training vectors weights: this might cause vectors to
swap from a subset to another, e.g. from the
NMSVs to the MSVs.

3. Algorithms for abnormality detection

In this section, we present two algorithms aimed
at detecting online abnormal events. We assume at
this step that, either vectors xt are directly observed
at the output of a system, or that an analyzed signal
st has been pre-processed so that vectors xt describe
at time t6 some interesting characteristics of the
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Fig. 4. Principle of OAD (Algorithm 3). Circles represent vectors

xt (t ¼ 1; . . .). The training set xt is composed of the last m

observed vectors. The black dot represent the vector tested at

time t, w.r.t xt.

7A theoretical justification for lowering the threshold b is given
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signal, as explained in Section 4.3. The information
provided to our abnormality detector consists of the
sequence xt. The first algorithm is designed so as to
detect abnormalities with minimum lag, and in-
volves the definition of an abnormality index. The
second algorithm is designed so as to be more
robust, at the expense of a slight detection delay.

3.1. Online abnormality detection

In order to present the first algorithm, let us
introduce the abnormality index It. At time t, a n-
SVND is trained using the m last observed vectors
xt ¼ fxt�m; . . . ;xt�1g, yielding at and bt (where the
superscript t is used to emphasize the time
dependence of ai’s and b). The abnormality index
is defined as follows:

I t ¼ � log
Xm

i¼1

ai;tkðxt�ðmþ1Þþi; xtÞ

" #
þ log½bt� (21)

in which bt is interpreted as the scaling factor of ai’s,
and makes comparison possible between I t1 and I t2

(t1at2) though the scaling of fai;t1 ; i ¼ 1; . . . ;mg
may be different from the scaling of
fai;t2 ; i ¼ 1; . . . ;mg. The normalization in I t is better
explained in the following relation, where we notice
that bt is also the scaling factor of w:

I t ¼ � log
hwt;xti

bt

� �
¼ � log

kwtk

bt

cosðdwt;xtÞ

� �
(22)

using kxtk ¼ 1. In Fig. 1, we see that cosðbytÞ ¼

bt=kwtk, which leads to the following interpretation
of I t:

I t ¼ � log
cosðdwt;xtÞ

cosðbytÞ

" #
(23)

which measures how far xt is from the training data.
In other words, I t is a sophisticated ‘‘distance
measure’’ computed between vector xt and the
training set xt. When n ¼ 1 (Parzen windows
estimator), I t can be interpreted as a ‘‘distance
measure’’ between the training set barycenter and
the current vector. In theory, an abnormal event
should be detected whenever I t40, which corre-
sponds to f xt

ðxtÞo0. In practice, however, I t is
compared to a threshold Z40, with Z � � logðZ0Þ,
(footnote continued)

samples. however, for the sake of simplicity, we do not emphasize

this difference in our notation.
Z0o1, Z0 � 1, which corresponds to lowering7 the
computed threshold b to Z0b. The constant Z0 is
typically 0:99.

Remark 1. When the data xt are Gaussian with
mean mt and diagonal covariance matrix u2t I, and
considering the Gaussian RBF kernel with para-
meter s, it can be shown8 that asymptotically (as
m!1), the following equivalence holds:

I tXZ 3
kxt � mtk

ut

XC
s
ut

; Z; n
� �

, (24)

where Cðs=ut; Z; nÞ is some threshold. In this case,
our detection test is equivalent to the standard test
which consists of comparing the distance to the
distribution mean mt to the distribution spread ut

using, e.g., kxt � mtk=utX3.

The corresponding online abnormality detection
(OAD) algorithm is described below (see also Fig. 4).

Algorithm 3: Online abnormality detection (OAD)

Step 0: Initialization
�

in
8

the

w i
Choose m, n, Z and kð�; �Þ.

�
 Set t mþ 1.
Step 1: Online detection
�
 Train a SVND with xt ¼ fxt�m; . . . ;xt�1g. The

optimization process yields fai;t; i ¼ 1; . . . ;mg
and bt.

�
 For the current vector xt compute I t using

Eq. (21):
� If I tpZ then xt is normal: no abnormal event

occurs at time t (Hypothesis H0).
� If I t4Z then xt is abnormal: an abnormal

event is detected (Hypothesis H1).
[10,

Thi

se G

s co
�
 Set t tþ 1.
p. 240].

s is a direct consequence of the following result [18]: under

aussian distribution/kernel assumptions, asymptotically,

llinear with the image of m in feature space.
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Algorithm 3. As in any detection problem [19], the
xt−N+1 xt−N+1 xt

Fig. 5. Principle of ROAD (Algorithm 4). Circles represent

vectors xt (t ¼ 1; . . .). The training set xt is composed of the last m

observed vectors. Black dots represent the N vectors tested at

time t, w.r.t xt.
Abnormal events are detected with no delay9 in

threshold Z is tuned according to a ‘‘false positives
(H1 decided whereas H0 is true)/true positives (H1

decided whereas H1 is true)’’ compromise. Note that
the overall performance depends on the choice of
kð�; �Þ; this point is addressed in Section 4.3.

A slightly modified version of Algorithm 3 is
obtained by freezing the training set at time m. In
other words, the training set is composed of the m

initial vectors fx1; . . . ;xmg whatever the analysis
time t. This approach is much cheaper in terms of
computation time because ai’s and b are computed
only once. However, it is unable to adapt to smooth
evolutions in xt, which may be unacceptable in some
applications.
3.2. Robust online abnormality detection

In this section, we consider cases where a small
detection delay N can be accepted. N is assumed
such that N5m, the case N � m being rather an
abrupt changes detection problem [20]. Before
describing the robust online abnormality detection
(ROAD) algorithm, let us define the delayed
abnormality index as

DIt1;t2 ¼ � log
Xm

i¼1

ai;t1kðxt1�ðmþ1Þþi; xt2Þ

" #
þ log½bt1 � ð25Þ

and the empirical abnormality rate

At ¼
1

N

XN

i¼1

dðDIt�Nþ1;t�NþiXZÞ, (26)

where dðUÞ ¼ 1 is U is true and dðUÞ ¼ 0 otherwise.
The ROAD algorithm consists of testing the N last
observed vectors with respect to the m previous
vectors, as described below (see also Fig. 5).

Algorithm 4: Robust online abnormality detection

(ROAD)

Step 0: Initialization
�

9

(wi

the
Choose m, n, Z, N, � and kð�; �Þ.

�
 Set t mþN.
When xt is a sequence of descriptors extracted from a signal st

th a different time scaling), there can be a slight delay due to

descriptor extraction step.
Step 1: Online detection
�
 Train a SVND with xt�Nþ1 ¼ fxt�ðmþNÞþ1; � � � ;
xt�Ng. The optimization process yields fai;t�Nþ1;
i ¼ 1; . . . ;mg and bt.

�
 Test each vector in fxt�Nþ1; � � � ;xtg by comput-

ing DIt�Nþ1;t�Nþ1; . . . ;DIt�Nþ1;t using Eq. (25).

�
 compute the current empirical abnormality rate

using Eq. (26).
� If Ato�n then the set of vectors

fxt�Nþ1; . . . ;xtg is normal, and no abnormal

event is detected (Hypothesis H0).
� If AtX�n then the set of vectors

fxt�Nþ1; . . . ;xtg is abnormal, and an abnor-

mal event is detected (Hypothesis H1).

�
 Set t tþ 1.

In Algorithm 4, � is a positive real number
typically chosen close to 1. When using N ¼ 1 and
� ¼ 1=n (in this case �may be far from 1), Algorithm
4 reduces to Algorithm 3. In any other cases,
Algorithm 4 tests the joint abnormality of a set
of vectors, which is generally more robust than
simply testing the abnormality of one vector, at the
expense of detection delay. The parameter � is an
additional tuning parameter aimed at refining the
comparison of At with n. Under mild assumptions,
asymptotically (with m) and with probability one,
the rate of abnormal vectors in the training set is n
(see [10], Proposition 8.3). If vectors in the set
fxt�Nþ1; � � � ;xtg are distributed according to the
same pdf as vectors in the training set, then the
optimal threshold At should be compared to n. In
practice, m is finite, and n is only an upper bound on
the fraction of abnormal vectors in the training set,
which explains why we compare the empirical
abnormality rate to �n, � � 1.

Remark 2. In Algorithms 3–4, whenever an abnor-
mal event is detected at time t, the corresponding xt

is incorporated in the m next training sets
xt þ 1; . . . ;xt þm. One could object that any
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abnormal xt should be omitted in future training
sets, however, recall that the parameter n allows
abnormal vectors in the training set, which are
labeled as NMSVs after training. Removing abnor-
mal xt’s would bias the training process, because the
rate of abnormal training vectors is tuned by n, and
normal vectors would thus be labeled as abnormal
(NMSVs), replacing omitted true abnormal vectors.

4. Discussion

In this Section, we discuss several features of the
proposed OAD and ROAD algorithms. Firstly, the
SVND algorithm performance is discussed and
compared to other classical approaches. Secondly,
we propose techniques aimed at tuning the OAD/
ROAD algorithm parameters. Thirdly, kernel de-
sign and preprocessing are discussed. Finally,
theoretical differences with other online algorithms
are discussed and performance are studied on a toy
example.

4.1. About online novelty detection

Novelty detection using SVMs was first intro-
duced in [16], in which the authors derive novelty
detection from the original binary n-SVMs frame-
work. Their presentation includes a strong theore-
tical study of the approach, and its outlier-detecting
ability is tested on artificially built toy examples:
handwritten digits from the USPS database. SVND
is also successfully applied to a real-world industrial
problem, namely pass-off tests for jet engines [14].
Studies like [15] confirm the excellent ability of
SVND for detecting outliers, once the parameters
(e.g. the kernel, n, etc.) are properly selected; the
latter work includes the comparison to other
methods on tasks involving documents from the
Reuters database: SVND largely outperforms algo-
rithms such as the prototype algorithm, a k-nearest
neighbors-based approach and naive Bayes detec-
tion, and yields similar results as a feed-forward
three layer neural network (which is more complex).

All these previous works share a classical off-line
framework: due to the tasks addressed, the novelty
detector is first trained on a (fixed) training set, then
it is used to test data available in a test set. The task
we address in this paper diverges from that frame-
work in the sense that we require the approach to be
performed online. That is, the training set is no
longer fixed, but evolves with time as incoming
elements are tested then added to the training set,
and older elements are removed from it. Such an
update allows the method to deal with possible
smooth variations in the structure of the time-series,
without losing the ability to detect outliers. The
incremental/decremental update we propose enables
control of the computational load of the method.
Apart from its online settings, the approach we
propose shares all the advantages of the classical
SVND. In particular, the way outliers are handled is
very attractive. In other approaches, the number of
outliers in the training set is only known once
training is done, whereas in SVND, it is tuned
beforehand using the parameter n. When prior
knowledge about how the training set is composed,
e.g. when it includes outliers, this information can
be fed into the classifier by specifying n accordingly.

Finally, SVND does not require density estima-
tion, and this is certainly its strongest advantage. On
the one hand, estimating a region R is much simpler
that estimating a density in terms of covergence as
m tends to infinity. On the other hand, the
dimension of the vectors xt, t ¼ 1; 2; . . . has no
influence on the convergence rate in our approach,
whereas density estimation is not feasible with more
that 50 dimensions and small m.

4.2. Parameter tuning

In classification problems, SV parameters tuning
can be performed using methods such as n-fold
cross-validation [21], or bootstrap [22]. Though
yielding good results, these methods are expensive
in the case of SVMs, as the optimization process is
costly. Bounds and estimates exist for the leave-one-
out (LOO) error which can be minimized instead of
the LOO error itself (see, e.g., [23], or [24] for a
detailed description of existing bounds or estimates
for support vector LOO errors). But in our case,
these techniques do not apply simply as we are
dealing with time-series and an evolving training set.
It is possible, however, to tune the hyperparameters
on the first portions of the time-series: a slow
modification (in comparison with the training set
size) of the time-series structure will not perturb
detection, whereas an abrupt change would corre-
spond to a change detection task, which is out of the
scope of this paper.10 This mild assumption enables
the use of the above techniques to tune the
parameters on the first portions of the time-series.
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In the following, we describe the widely used rule-
of-thumb techniques we applied, giving excellent
results in the experiments we made; of course, when
such empirical tuning does not yield sufficient
performance, one can still use one of the techniques
described above.

Algorithms 3–4 require the selection of para-
meters, in particular the SV parameters n and the
kernel, and the OAD/ROAD parameters m and Z.
The most frequently used kernels are the sigmoid,
polynomial and Gaussian RBF kernel. For the
latter kernel, a robust empirical rule for tuning s
consists of choosing s as half the average Euclidean
distance between training data in x [10]. The
parameter n, that controls the amount of outliers
can be tuned as follows: any prior information
about outliers can be used to set n. More generally,
any knowledge of the data which are handled
should allow choosing a value corresponding to
the expected rate of outliers under a normal
behavior. However, as shown in simulations in
Section 4.5, its influence is limited, provided it
remains in the interval 0:05ono0:5, and assuming Z
is adjusted accordingly so as to yield a given false
alarm rate. The training set size m is easily tuned
from prior knowledge about the data, and it has to
be adapted so that the set x length is adjusted in
accordance with the dynamics of the process
monitored. For example, in music processing,
typical times are around 50ms (this is smaller than
the duration of the shortest note), and m is tuned so
that x is made of data enclosed in a 50ms frame.
Finally, the threshold Z is tuned according to the
standard detection compromise: a small Z leads to
few missed alarms but many false alarms; on the
contrary high Z leads to missed detections, but few
false alarms. In summary, tuning Z depends on the
overall detection objective; note that it also depends
on n. These elements are illustrated in Section 4.5 on
a toy example and in Section 5 on real examples.

4.3. Kernel design

An efficient signal processing kernel should be
built so as to emphasize essential features (i.e.,
information that cannot be omitted to have good
performance) and de-emphasize unnecessary fea-
tures. In model-based approaches, the knowledge
we have about a given problem is contained in the
so-called likelihood function and possibly in prior
densities over the model parameters (in the Bayes
framework). In kernel methods, the prior informa-
tion we have is used to build the kernel. Kernels to
be used in various signal processing problems can be
build on time-frequency representations (see [25] for
signal classification, or [26] for note change detec-
tion in music), mel-cepstral coefficients or the Fisher
score (see [13] and references therein, [27]), wavelets,
etc. One of the great advantage of kernels is that the
dimension of the input data may be arbitrary large.

4.4. Other online algorithms

An alternative method that has been proposed for
obtaining SV solutions online is the stochastic
gradient descent method in [28,29] (naive online
risk minimization algorithm—NORMA), which
may be used both in classification and novelty
detection. The NORMA algorithms handles a new
vector xt at time t as follows: xt is assigned to one of
the three sets (MSVs, NMSVs, NSVs), where it
remains as the time index t increases. In other
words, vectors cannot jump from one set to another
after being incorporated into the training set. A
forgetting factor is applied to each vector in the
training set, so that the vectors furthest in the past
are progressively forgotten, as if an implicit sliding
window was applied. In practice, the oldest vectors
are dropped. A consequence of it is that the
NORMA algorithm provides an approximate solu-
tion; [28,29] provides an upper bound on the error
made by dropping the oldest training vectors. When
tuning the forgetting factor, The user needs to
tradeoff between the effective length of the implicit
window applied, and the accuracy of the solution.

Our method has two main advantages overt the
NORMA algorithm. Firstly, the removal of old
training vectors is handled explicitly, without
approximation. Moreover, an explicit parameter-
ization for the relevant sliding window is used, and
this does not require to tradeoff with the solution
accuracy. Second, the parameter r is poorly
updated using NORMA, it even diverges after a
few iterations [30]. Our algorithm does not have this
kind of behavior, because this parameter is updated
explicitly and without approximation.

Note finally that another algorithm in the same
vein as ours can be found in [31].

4.5. Performance assessment with synthetic data

In order to evaluate the performance of the
proposed algorithms, and their robustness to-
wards parameter tuning, we address the following
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problem. Consider a 2D time series xt (t ¼
1; . . . ; 512) such that each xt is sampled indepen-
dently from a Gaussian pdf with mean l ¼ ð0 0ÞT

and covariance matrix R ¼ I. Outliers are generated
artificially such that, if ~xt denotes an outlier, then
k ~xt � lk2 is sampled uniformly over ½3:5; 4:5�. Such
artificial outliers are added to the original time-
series xt once every 20 points. The 2D data points of
a realization of the time-series are plotted in Fig. 6.

The experiments consists of evaluating the
performance of both detectors for different settings
of the algorithm parameters n and s. We choose to
tune one parameter optimally, and let the other take
a range of different values. This results in the two
following experiments (we select m ¼ 200):
(1)
Fig.

this

acco

outli
The kernel width is fixed: s ¼ 1=2 s0 with s0 the
mean Euclidean distance between the data xt

(t ¼ 1; . . . ; 512), and n ¼ f 0:01, 0:05, 0:1, 0:2,
0:4, 0:8g
(2)
 n is fixed a priori to the rate of artificially added
outliers: n ¼ 0:2, and the kernel width is s ¼ ls0
where l takes the following values: l ¼ f0:1,
0:25, 0:5, 0:75, 1, 2, 5, 10, 100g.
The performance of the detector is assessed by
plotting ROC curves (true alarm rate vs. false alarm
rate). True alarms and false alarms are defined as
6. 2D points of a realization of the time-series considered in

subsection. Normal vectors (crosses) are sampled randomly

rding to a Gaussian pdf with zero mean and unit variance;

ers (circles) are artificially added to the time-series.
follows. First, we recall that an event is detected

whenever the detection index exceeds a given
threshold Z at the time instant of the event. A true

alarm is decided if an artificial outlier is detected,
and if the time instant of the detection equals that of
the outlier in the time-series. A false alarm is
decided whenever an xt not being one of the
artificially added outliers is detected as an outlier.
ROC curves are plotted by varying the threshold Z
from �1 to 1. Note that these definitions of true
and false alarms may cause the ROC curves to be
below the first diagonal. The results for both
experiments are reported in Fig. 7. We see that
near-optimal performance is obtained for a large
range of values for n (roughly, when n is in
½0:05; 0:5�); for the optimal n, the value for s does
not influence much the results. The results are the
same for both OAD and ROAD, which was
expected as there is no smooth change in the
dynamics of the time-series. These results, obtained
on a toy example, show that the actual behavior of
the OAD and ROAD algorithm matches the
expected behavior.
4.6. Comparison of OAD and ROAD on a toy

example

We consider as previously a 2D time series whose
samples are distributed independently according to
a Gaussian pdf with zero mean and unit covariance
matrix. Outliers are generated uniformly over
½3:5; 4:5�. Length of the time-series is 256, and
outliers are located at time-instants t ¼ 127;
128; 129, that is we aim at detecting three con-
secutive outliers.

The SVM parameters both for OAD and ROAD
(N ¼ 3) algorithms11 are n ¼ 0:2 and s ¼ 0:25, and
the training set size is 20. For each different value of
the threshold: ½60 40 20 1:5 0:2 0:1�, the simulations
are run over 500 different realizations of the time-
series. Results for the detection rate of the three
outliers are displayed in Tables 1 and 2, for the
different values for the threshold.

The results exhibit the expected behavior for both
algorithms: ROAD is smoother than OAD, as the
decision is taken at time instant t on a set of samples
rather than on the sole next sample xtþ1. This is
especially outlined for outlier #2 (lated at t ¼ 128)
11The computational cost for OAD and ROAD is roughly the

same as testing with a SV decision function is cheap compared to

training the SVM.
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Fig. 7. Evaluation of the performance of the OAD and ROAD algorithms in terms of ROC curves (true alarm vs. false alarm rate). With

fixed n (left), the parameter l tune s as s ¼ ls0, where s0 is the mean Euclidean distance between the training data.

Table 1

Detection rate for the three outliers located at time instants

127; 128; 129 for the OAD algorithm

Threshold value 60 40 20 1 0.5 0.2 0.1

Detection rate for outlier #1 1 1 1 1 1 1 1

Detection rate for outlier #2 0 0 0 0.68 0.84 0.92 0.94

Detection rate for outlier #3 0 0 0 0.50 0.70 0.85 0.93

Table 2

Detection rate for the three outliers located at time instants

127; 128; 129 for the ROAD algorithm

Threshold value 60 40 20 1 0.5 0.2 0.1

Detection rate for outlier #1 1 1 1 1 1 1 1

Detection rate for outlier #2 1 1 1 1 1 1 1

Detection rate for outlier #3 0 0 0 0.50 0.70 0.88 0.94
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which detection benefits from the immediate neigh-
borhood of outliers #1 and #3.
13This signal was obtained from Godsill’s web page, at the
5. Simulation results

In this section we present simulation results
obtained with OAD and ROAD algorithms intro-
duced in Section 3 on two real examples: defects
detection in a musical signal, and early tooth
damage detection on a gearbox wheel. Note that
the musical example processed in [26] is more an
abrupt change detection problem that an abnorm-
ality detection problem, thus it is not considered
here again.12
12See [32] for an SV-based abrupt changes detection algorithm.
5.1. First real example

In this section, we use the OAD algorithm to
detect abnormalities in a musical signal. The
musical signal we consider is obtained from a
broken then glued back vinyl disk: it contains many
defects.13 Our purpose is to identify accurately all
the signal defects and can be seen, e.g., as a
preprocessing step coming before restoration. A
cleaned version of the signal is also available, which
enables the validation of our detection algorithm.
More precisely, a correct defect detection occurs
whenever defects detected by our algorithm in the
dirty signal coincide with those noticed empirically
(by listening to the signal) and that have disap-
peared in the cleaned signal.

Both the dirty and the cleaned signal are 16.3 s
long, and are sampled at Fs ¼ 44:1 kHz. The
parameters of the OAD algorithm are the same
for the two signals, and are tuned as follows.
Descriptors are extracted from the spectrogram of
the input signal (Gauss window with length 5.8ms).
The training set is built as follows: each training
vector is a subimage of the spectrogram of width 12
time bins, and the training set contains 20 vectors.
The corresponding training set length is 54.4ms,
which is a standard frame length in music proces-
sing. The Gaussian RBF kernel parameter is
s ¼ 1:5, this value is selected empirically as half
the average Euclidean distance between the initial
training vectors. The rate of outliers is chosen
roughly as n ¼ 0:2; values in the range 0:05ono0:5
yield similar results.
address http://www-sigproc.eng.cam.ac.uk/�sjg/

springer/index.html

http://www-sigproc.eng.cam.ac.uk/sjg/springer/index.html
http://www-sigproc.eng.cam.ac.uk/sjg/springer/index.html
http://www-sigproc.eng.cam.ac.uk/sjg/springer/index.html
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For the sake of clarity, the simulation results we
present only involve the first 3 s of each signal. In
Fig. 8, we display the source (musical) signal, its
spectrogram and the OAD outlier detection index,
for both the dirty and the cleaned signal. For both
signals, the scaling is kept the same so as to preserve
fair comparisons. Both the source signal and its
time-frequency representation allow to detect ‘vi-
sually’ some defects (three times in the time sample
displayed below). However, smaller defects are
easily noticeable while listening to the audio track
but are only revealed by the OAD outlier detection
index. The OAD index computed for both signals is
also plotted. For the dirty signal, all abnormalities
are correctly detected: the index peaks well over the
threshold fixed at 0.1 whereas it remains under this
threshold for the cleaned signal (no defect detected).
The computation time for these 16.3 s (117,000 data
points) signal was 255 s on a 2.6GHz PC computed
with (not optimized) Matlab code.

These simulations show the efficiency of the OAD
algorithm when applied to audio signals. In
particular, the time-frequency kernel used is a key
element for the procedure efficiency.
Fig. 8. The input signal (left) contains possible abnormalities. First, desc

outlier detection index is computed (right). This same process is applied

signal (bottom). All abnormalities are correctly detected, and no false
5.2. Second real example

In this example, we want to detect early possible
damages that may appear on the wheels of a
gearbox. Signals are collected from a real industrial
machine: the IDEFIX 401 benchmark, for the
CETIM; tests are performed at O ¼ 1000 rotations
per minute, with torque 200mdaN. The wheel under
consideration has 20 teeth, and generalized chipping
on at least one of them determines the end of the
simulation (after 525 h). The signals we process are
recorded by an horizontal accelerometer at sam-
pling frequency 204.8 kHz at times 75, 225, 387, 434,
500, 515 and 525 h. In addition, a synchronization
index indicates the beginning of each rotation.
Finally, visual observations describing the state of
each tooth of the wheel at these time instants are
available for the same time instants. The aim of the
detection procedure is here to detect early tooth
damage, and cross-check using the visual observa-
tions.

As the number of signal samples may vary within
each rotation, the whole signal is resampled so as to
get 10 000 data points per rotation. We implement
riptors are extracted from its spectrogram (middle), and the OAD

to a dirty music signal (top), and to a cleaned version of the same

alarm occurs.
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Fig. 9. Accelerometer signal (top) and outlier detection index (bottom). Signals are ordered chronologically (from left to right). Though

little information about the teeth responsible for the weird behavior of the wheel can be obtained from the accelerometer signal, the index

shows that only a few teeth are effectively damaged.
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the OAD algorithm. The training set is built in
accordance with the physics of the phenomenon.
More specifically, the descriptors are extracted from
the spectrogram of the signal (Gauss window with
length 999 points, e.g., about 6ms, and 128
frequency bins from 0 to 102KHz ). Each training
vector is a spectrogram subimage with width 50, and
the training set size is m ¼ 20 so that each training
vector carries the information concerning a single
tooth, and every tooth is represented only once in
the training set. The test set is then built in the same
way, with every test vector corresponding to a single
tooth. The Gaussian RBF kernel parameter is
selected as s ¼ 2:5 using the empirical method
described in Section 4.2, and n ¼ 0:2 (this choice
has little influence, values 0:05ono0:5 provide
similar results). The index is expected to peak if an
outlier is detected and to keep at a low level if none
appears.

Fig. 9 displays both the resampled accelerometer
signal and the corresponding outlier detection
index, for four different recording time instants.
These four signals correspond to the whole wheel,
i.e., they contain information from the 20 teeth. In
Fig. 10, we isolate the data corresponding to tooth
number 13, which was identified as one of the three
teeth being the most seriously damaged during the
experiment.
Applying the outlier detection algorithm is
relevant because only a limited number of teeth
will be damaged at first. Thus, we identify accu-
rately those teeth by thresholding the outlier
detection index. The computation time is 185 s for
10 rotations, that is 100 000 data points (this was
obtained using, again, a 2.6GHz PC and rough
matlab code). This could be done online since the
signal is recorded at well separated times for
monitoring purposes.

6. Conclusion

In this paper, we propose an overall strategy to
perform abnormality detection over various signals.
First, we design two algorithms: OAD, and ROAD.
Both rely on a first step which consist in the
extraction of relevant features from the signal. This
can be achieved by choosing an appropriate signal
processing kernel, such as a time-frequency kernel
when dealing with musical signals. Then novelty
detection is performed over these descriptors; the
online treatment of this task is made possible by an
incremental/decremental procedure yielding exact
solutions to the upgrade of the support vector
parameters.

Applications we tested on this approach include
detection of thumps in musical signal, and early
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Fig. 10. Most damaged tooth (number 13): subimages of the spectrogram (top), pictures of the tooth (middle), and excerpts from the

outlier detection index (bottom). The latter shows the progressive appearance of damages on the tooth.
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tooth damage on a gearbox wheel, with good results
in both cases.
References

[1] R.R. Schoen, B.K. Lin, T.G. Habetler, J.H. Schlag, S.

Farag, An unsupervised, on-line system for induction motor

fault detection using Stator current monitoring, IEEE Trans.

Industry Appl. 31 (6) (1995) 1274–1279.

[2] R.M. Tallam, T.G. Habetler, R.G. Harley, Self-commission-

ing training algorithms for neural networks with applica-

tions to electric machine fault diagnostics, IEEE Trans.

Power Electronics 17 (6) (2002).

[3] E.E. Mangina, S.D.J. McArthur, J.R. McDonald, A.

Moyes, A multi-agent system for monitoring industrial gas

turbine start-up sequences, IEEE Trans. on Power Systems

16 (3) (2001) 396–401.

[4] S.J. Godsill, P.J.W. Rayner, Digital Audio Restoration—A

Statistical Model-Based Approach, Springer, London, 1998.

[5] R.O. Duda, P.E. Hart, Pattern Classification and Scene

Analysis, Wiley, New York, 1973.

[6] B. Silverman, Density Estimation for Statistics and Data

Analysis, Chapman and Hall, New York, USA, 1986.

[7] V. Vapnik, The Nature of Statistical Learning Theory,

Springer, New York, 1995.
[8] N. Cristianini, J. Shawe-Taylor, Support Vector Machines

and Other Kernel-Based Learning Methods, Cambridge

University Press, Cambridge, 2000.

[9] C. Campbell, An introduction to kernel methods, in: R.J.

Howlett, L.C. Jain (Eds.), Radial Basis Function Networks:

Design and Applications, Berlin, Physica-Verlag, 2000, pp.

155–192.

[10] A. Smola, B. Schoelkopf, Learning with Kernels, MIT press,

Cambridge, MA, USA, 2002.

[11] R. Herbrich, Learning Kernel Classifers: Theory and

Algorithms, MIT Press, Cambridge, MA, 2002.

[12] G. Raetsch, S. Mika, B. Schoelkopf, K.-R. Mueller,

Constructing boosting algorithms from SVMs: an applica-

tion to one-class classification, IEEE Trans. Pattern Anal.

Machine Intell. 24 (9) (2002) 1184–1199.

[13] N. Smith, M. Gales, M. Niranjan, Data-dependent kernels

in SVM classification of speech patterns, Technical Report

CUED/F-INFENG/TR.387, Engineering Department, Uni-

versity of Cambridge, UK, April 2001.

[14] P. Hayton, B. Schœlkopf, L. Tarassenko, P. Anuzis, Support

vector novelty detection applied to jet engine vibration

spectra, in: NIPS’2000, 2000.

[15] L.M. Manevitz, M. Yousef, One-class SVMs for document

classification, J. Machine Learning Research 2 (2001)

139–154.

[16] B. Schoelkopf, J. Platt, J. Shaw-Taylor, A. Smola, R.C.

Williamson, Estimating the support of a high-dimensional



ARTICLE IN PRESS
M. Davy et al. / Signal Processing ] (]]]]) ]]]–]]] 17
distribution. Technical Report TR87, Microsoft Research,

Redmond, WA, USA, 1999.

[17] G. Cauwenberghs, T. Poggio, Incremental and decremental

support vector machine learning, in: Advances in Neural

Information Processing Systems, MIT Press, Cambridge,

MA, 2001.

[18] F. Desobry, M. Davy, C. Doncarli, An online kernel change

detection algorithm, IEEE Trans. Signal Process. 53 (8)

(2005).

[19] H.L. Van, Trees, Detection, Estimation, and Modulation

Theory, Wiley, Berlin, 1968.

[20] M. Basseville, I. Nikiforov, Detection of Abrupt Changes—

Theory and Application, Prentice-Hall, Englewood Cliffs,

NJ, 1993.

[21] R. Kohavi, A study of cross-validation and bootstrap for

accuracy estimation and model selection, in: IJCAI, 1995,

pp. 1137–1145.

[22] B. Efron, R. Tibshirani, An Introduction to the Bootstrap,

Chapman & Hall, New York, NY, 1993.

[23] A. Gretton, R. Herbrich, B. Schoelkopf, A.J. Smola, P.J.W.

Rayner, Bound on the leave-one-out error for density

support estimation using n-SVMs, Technical Report, Uni-

versity of Cambridge Engineering Department, 2001.

[24] A. Gretton, Kernel methods for classification and signal

separation, Ph.D. Thesis, University of Cambridge, Cam-

bridge, UK, 2003.
[25] M. Davy, A. Gretton, A. Doucet, P.J.W. Rayner, Optimised

support vector machines for nonstationary signal classifica-

tion, Signal Process. Lett. 9 (12) (2002).

[26] M. Davy, S. Godsill, Detection of abrupt spectral changes

using support vector machines. An application to audio

signal segmentation, in: IEEE ICASSP-02, Orlando, USA,

May 2002.

[27] N. Smith, M. Gales, Using SVMs and discriminative models

for speech recognition, in: IEEE ICASSP-02, Orlando, USA,

May 2002.

[28] J. Kivinen, A.J. Smola, R.C. Williamson, Online learning

with kernels, IEEE Trans. Signal Process. 58 (8) (2004).

[29] J. Kivinen, A.J. Smola, R.C. Williamson, Online learning

with kernels, in: T.G. Dietterich, S. Becker, Z. Ghahramani

(Eds.), Advances in Neural Information Processing Systems,

vol. 14, MIT Press, Cambridge, MA, 2002.

[30] H. A. Boubacar, S. Lecoeuche, S. Maouche, Self adaptive

kernel machine: online clustering in RKHS, in: International
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