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Abstract

A nonparametric kernel-based method for realizing Bayes’ rule is proposed, based
on kernel representations of probabilities in reproducingkernel Hilbert spaces.
The prior and conditional probabilities are expressed as empirical kernel mean
and covariance operators, respectively, and the kernel mean of the posterior dis-
tribution is computed in the form of a weighted sample. The kernel Bayes’ rule
can be applied to a wide variety of Bayesian inference problems: we demonstrate
Bayesian computation without likelihood, and filtering with a nonparametric state-
space model. A consistency rate for the posterior estimate is established.

1 Introduction

Kernel methods have long provided powerful tools for generalizing linear statistical approaches to
nonlinear settings, through an embedding of the sample to a high dimensional feature space, namely
a reproducing kernel Hilbert space (RKHS) [16]. The inner product between feature mappings need
never be computed explicitly, but is given by a positive definite kernel function, which permits effi-
cient computation without the need to deal explicitly with the feature representation. More recently,
themeanof the RKHS feature map has been used to represent probability distributions, rather than
mapping single points: we will refer to these representations of probability distributions asker-
nel means. With an appropriate choice of kernel, the feature mapping becomes rich enough that
its expectation uniquely identifies the distribution: the associated RKHSs are termedcharacteristic
[6, 7, 22]. Kernel means in characteristic RKHSs have been applied successfully in a number of
statistical tasks, including the two sample problem [9], independence tests [10], and conditional in-
dependence tests [8]. An advantage of the kernel approach isthat these tests apply immediately to
any domain on which kernels may be defined.

We propose a general nonparametric framework for Bayesian inference, expressed entirely in terms
of kernel means. The goal of Bayesian inference is to find the posterior ofx given observationy;

q(x|y) = p(y|x)π(x)
qY(y)

, qY(y) =

∫
p(y|x)π(x)dµX (x), (1)

whereπ(x) andp(y|x) are respectively the density function of the prior, and the conditional density
or likelihood ofy givenx. In our framework, the posterior, prior, and likelihood areall expressed
as kernel means: the update from prior to posterior is calledthe Kernel Bayes’ Rule (KBR). To
implement KBR, the kernel means are learned nonparametrically from training data: the prior and
likelihood means are expressed in terms of samples from the prior and joint probabilities, and the
posterior as a kernel mean of a weighted sample. The resulting updates are straightforward matrix
operations. This leads to the main advantage of the KBR approach: in the absence of a specific para-
metric model or an analytic form for the prior and likelihooddensities, we can still perform Bayesian
inference by making sufficient observations on the system. Alternatively, we may have a paramet-
ric model, but it might be complex and require time-consuming sampling techniques for inference.
By contrast, KBR is simple to implement, and is amenable to well-established approximation tech-
niques which yield an overall computational cost linear in the training sample size [5]. We further
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establish the rate of consistency of the estimated posterior kernel mean to the true posterior, as a
function of training sample size.

The proposed kernel realization of Bayes’ rule is an extension of the approach used in [20] for
state-space models. This earlier work applies a heuristic,however, in which the kernel mean of the
previous hidden state and the observation are assumed to combine additively to update the hidden
state estimate. More recently, a method for belief propagation using kernel means was proposed
[18, 19]: unlike the present work, this directly estimates conditional densities assuming the prior
to be uniform. An alternative to kernel means would be to use nonparametric density estimates.
Classical approaches include finite distribution estimates on a partitioned domain or kernel density
estimation, which perform poorly on high dimensional data.Alternatively, direct estimates of the
density ratio may be used in estimating the conditional p.d.f. [24]. By contrast with density estima-
tion approaches, KBR makes it easy to compute posterior expectations (as an RKHS inner product)
and to perform conditioning and marginalization, without requiring numerical integration.

2 Kernel expression of Bayes’ rule

2.1 Positive definite kernel and probabilities

We begin with a review of some basic concepts and tools concerning statistics on RKHS [1, 3, 6, 7].
Given a setΩ, a (R-valued) positive definite kernelk onΩ is a symmetric kernelk : Ω×Ω → R such
that

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for arbitrary pointsx1, . . . , xn in Ω and real numbersc1, . . . , cn. It is

known [1] that a positive definite kernel onΩ uniquely defines a Hilbert spaceH (RKHS) consisting
of functions onΩ, where〈f, k(·, x)〉 = f(x) for anyx ∈ Ω andf ∈ H (reproducing property).

Let (X ,BX , µX ) and(Y,BY , µY) be measure spaces, and(X,Y ) be a random variable onX ×
Y with probability P . Throughout this paper, it is assumed that positive definitekernels on the
measurable spaces are measurable and bounded, where boundedness is defined assupx∈Ω k(x, x) <
∞. LetkX be a positive definite kernel on a measurable space(X ,BX ), with RKHSHX . Thekernel
meanmX ofX onHX is defined by the mean of theHX -valued random variablekX (·, X), namely

mX =

∫
kX (·, x)dPX(x). (2)

For notational simplicity, the dependence onkX inmX is not shown. Since the kernel mean depends
only on the distribution ofX (and the kernel), it may also be writtenmPX

; we will use whichever
of these equivalent notations is clearest in each context. From the reproducing property, we have

〈f,mX〉 = E[f(X)] (∀f ∈ HX ). (3)

Let kX andkY be positive definite kernels onX andY with respective RKHSHX andHY . The
(uncentered)covariance operatorCY X : HX → HY is defined by the relation

〈g, CY Xf〉HY
= E[f(X)g(Y )] ( = 〈g ⊗ f,m(Y X)〉HY⊗HX

) (∀f ∈ HX , g ∈ HY).

It should be noted thatCY X is identified with the meanm(Y X) in the tensor product spaceHY⊗HX ,
which is given by the product kernelkYkX [1]. The identification is standard: the tensor product is
isomorphic to the space of linear maps by the correspondenceψ ⊗ φ ↔ [h 7→ ψ〈φ, h〉]. We also
defineCXX : HX → HX by 〈f2, CXXf1〉 = E[f2(X)f1(X)] for anyf1, f2 ∈ HX .

We next introduce the notion of a characteristic RKHS, whichis essential when using kernels to ma-
nipulate probability measures. A bounded measurable positive definite kernelk is calledcharacter-
istic if EX∼P [k(·, X)] = EX′∼Q[k(·, X ′)] impliesP = Q: probabilities are uniquely determined
by their kernel means [7, 22]. With this property, problems of statistical inference can be cast in
terms of inference on the kernel means. A widely used characteristic kernel onRm is the Gaussian
kernel,exp(−‖x− y‖2/(2σ2)).

Empirical estimates of the kernel mean and covariance operator are straightforward to obtain. Given
an i.i.d. sample(X1, Y1), . . . , (Xn, Yn) with law P , the empirical kernel mean and covariance op-
erator are respectively

m̂
(n)
X =

1

n

n∑

i=1

kX (·, Xi), Ĉ
(n)
Y X =

1

n

n∑

i=1

kY(·, Yi)⊗ kX (·, Xi),

whereĈ(n)
Y X is written in the tensor product form. These are known to be

√
n-consistent in norm.
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2.2 Kernel Bayes’ rule

We now derive the kernel mean implementation of Bayes’ rule.Let Π be aprior distribution on
X with p.d.f. π(x). In the following,Q andQY denote the probabilities with p.d.f.q(x, y) =
p(y|x)π(x) and qY(y) in Eq. (1), respectively. Our goal is to obtain an estimator of the kernel
mean of posteriormQX |y =

∫
kX (·, x)q(x|y)dµX (x). The following theorem is fundamental in

manipulating conditional probabilities with positive definite kernels.
Theorem 1([6]). If E[g(Y )|X = ·] ∈ HX holds forg ∈ HY , then

CXXE[g(Y )|X = ·] = CXY g.

If CXX is injective, the above relation can be expressed as

E[g(Y )|X = ·] = CXX
−1CXY g. (4)

Using Eq. (4), we can obtain an expression for the kernel meanof QY .
Theorem 2([20]). AssumeCXX is injective, and letmΠ andmQY

be the kernel means ofΠ in HX

andQY in HY , respectively. IfmΠ ∈ R(CXX) andE[g(Y )|X = ·] ∈ HX for anyg ∈ HY , then

mQY
= CY XCXX

−1mΠ. (5)

As discussed in [20], the operatorCY XC
−1
XX implements forward filtering of the priorπ with the

conditional densityp(y|x), as in Eq. (1). Note, however, that the assumptionsE[g(Y )|X = ·] ∈
HX and injectivity ofCXX may not hold in general; we can easily provide counterexamples. In
the following, we nonetheless derive a population expression of Bayes’ rule under these strong
assumptions, use it as a prototype for an empirical estimator expressed in terms of Gram matrices,
and prove its consistency subject to appropriate smoothness conditions on the distributions.

In deriving kernel realization of Bayes’ rule, we will also use Theorem 2 to obtain a kernel mean
representation of thejoint probabilityQ:

mQ = C(Y X)XC
−1
XXmΠ ∈ HY ⊗HX . (6)

In the above equation,C(Y X)X is the covariance operator fromHX to HY ⊗ HX with
p.d.f. p̃((y, x), x′) = p(x, y)δx(x

′), whereδx(x′) is the point measure atx.

In many applications of Bayesian inference, the probability conditioned on a particular value should
be computed. By plugging the point measure atx intoΠ in Eq. (5), we have a population expression

E[kY(·, Y )|X = x] = CY XCXX
−1kX (·, x), (7)

which was used by [20, 18, 19] as the kernel mean of the conditional probabilityp(y|x). Let (Z,W )
be a random variable onX × Y with lawQ. ReplacingP byQ andx by y in Eq. (7), we obtain

E[kX (·, Z)|W = y] = CZWC−1
WW kY(·, y). (8)

This is exactly the kernel mean of the posterior which we wantto obtain. The next step is to derive
the covariance operators in Eq. (8). Recalling that the meanmQ = m(ZW ) ∈ HX ⊗ HY can be
identified with the covariance operatorCZW : HY → HX , andm(WW ) ∈ HY ⊗HY with CWW ,
we use Eq. (6) to obtain the operators in Eq. (8), and thus the kernel mean expression of Bayes’ rule.

The above argument can be rigorously implemented for empirical estimates of the kernel means and
covariances. Let(X1, Y1), . . ., (Xn, Yn) be an i.i.d. sample with lawP , and assume a consistent
estimator formΠ given by

m̂
(ℓ)
Π =

ℓ∑

j=1

γjkX (·, Uj),

whereU1, . . . , Uℓ is the sample that defines the estimator (which need not be generated byΠ), and
γj are the weights. Negative values are allowed forγj . The empirical estimators forCZW and
CWW are identified withm̂(ZW ) andm̂(WW ), respectively. From Eq. (6), they are given by

m̂Q = m̂(ZW ) = Ĉ
(n)
(Y X)X

(
Ĉ

(n)
XX + εnI

)−1
m̂

(ℓ)
Π , m̂(WW ) = Ĉ

(n)
(Y Y )X

(
Ĉ

(n)
XX + εnI

)−1
m̂

(ℓ)
Π ,

whereI is the identity andεn is the coefficient of Tikhonov regularization for operator inversion.

The next two propositions express these estimators using Gram matrices. The proofs are simple
matrix manipulation and shown in Supplementary material. In the following,GX andGY denote
the Gram matrices(kX (Xi, Xj)) and(kY(Yi, Yj)), respectively.
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Input: (i) {(Xi, Yi)}
n
i=1: sample to expressP . (ii) {(Uj , γj)}

ℓ
j=1: weighted sample to express the kernel

mean of the prior̂mΠ. (iii) εn, δn: regularization constants.
Computation:

1. Compute Gram matricesGX = (kX (Xi, Xj)), GY = (kY(Yi, Yj)), and a vectorm̂Π =

(
∑ℓ

j=1
γjkX (Xi, Uj))

n
i=1 ∈ R

n.

2. Computêµ = n(GX + nεnIn)
−1

m̂Π.
3. ComputeRX|Y = ΛGY ((ΛGY )2 + δnIn)

−1Λ, whereΛ = Diag(µ̂).

Output:n× n matrixRX|Y .
Given conditioning valuey, the kernel mean of the posteriorq(x|y) is estimated by the weighted
sample{(Xi, wi)}

n
i=1 with w = RX|Y kY (y), wherekY (y) = (kY(Yi, y))

n
i=1.

Figure 1: Kernel Bayes’ Rule Algorithm

Proposition 3. The Gram matrix expressions of̂CZW andĈWW are given by

ĈZW =
∑n

i=1µ̂ikX (·, Xi)⊗ kY(·, Yi) and ĈWW =
∑n

i=1µ̂ikY(·, Yi)⊗ kY(·, Yi),
respectively, where the common coefficientµ̂ ∈ R

n is

µ̂ = n(GX + nεnIn)
−1

m̂Π, m̂Π,i = m̂Π(Xi) =
∑ℓ

j=1γjkX (Xi, Uj). (9)

Prop. 3 implies that the probabilitiesQ and QY are estimated by the weighted samples
{((Xi, Yi), µ̂i)}ni=1 and{(Yi, µ̂i)}ni=1, respectively, with common weights. Since the weightsµ̂i

may be negative, we use another type of Tikhonov regularization in computing Eq. (8),

m̂QX |y := ĈZW

(
Ĉ2

WW + δnI
)−1

ĈWW kY(·, y). (10)

Proposition 4. For anyy ∈ Y, the Gram matrix expression of̂mQX |y is given by

m̂QX |y = k
T
XRX|Y kY (y), RX|Y := ΛGY ((ΛGY )

2 + δnIn)
−1Λ, (11)

where Λ = Diag(µ̂) is a diagonal matrix with elementŝµi given by Eq. (9),kX =
(kX (·, X1), . . . , kX (·, Xn))

T ∈ HX
n, andkY = (kY(·, Y1), . . . , kY(·, Yn))T ∈ HY

n.

We call Eqs.(10) or (11) thekernel Bayes’ rule(KBR): i.e., the expression of Bayes’ rule entirely
in terms of kernel means. The algorithm to implement KBR is summarized in Fig. 1. If our aim
is to estimateE[f(Z)|W = y], that is, the expectation of a functionf ∈ HX with respect to the
posterior, then based on Eq. (3) an estimator is given by

〈f, m̂QX |y〉HX
= f

T
XRX|Y kY(y), (12)

wherefX = (f(X1), . . . , f(Xn))
T ∈ R

n. In using a weighted sample to represent the posterior,
KBR has some similarity to Monte Carlo methods such as importance sampling and sequential
Monte Carlo ([4]). The KBR method, however, does not generate samples from the posterior, but
updates the weights of a sample via matrix operations. We will provide experimental comparisons
between KBR and sampling methods in Sec. 4.1.

2.3 Consistency of KBR estimator

We now demonstrate the consistency of the KBR estimator in Eq. (12). We show only the best rate
that can be derived under the assumptions, and leave more detailed discussions and proofs to the
Supplementary material. We assume that the sample sizeℓ = ℓn for the prior goes to infinity as the
sample sizen for the likelihood goes to infinity, and that̂m(ℓn)

Π is nα-consistent. In the theoretical
results, we assume all Hilbert spaces are separable. In the following,R(A) denotes the range ofA.
Theorem 5. Let f ∈ HX , (Z,W ) be a random vector onX × Y such that its law isQ with

p.d.f.p(y|x)π(x), andm̂(ℓn)
Π be an estimator ofmΠ such that‖m̂(ℓn)

Π − mΠ‖HX
= Op(n

−α) as

n → ∞ for some0 < α ≤ 1/2. Assume thatπ/pX ∈ R(C
1/2
XX), wherepX is the p.d.f. ofPX , and

E[f(Z)|W = ·] ∈ R(C2
WW ). For εn = n−

2
3α andδn = n−

8
27α, we have for anyy ∈ Y

f
T
XRX|Y kY (y)− E[f(Z)|W = y] = Op(n

− 8
27α), (n→ ∞),

wherefTXRX|Y kY (y) is the estimator ofE[f(Z)|W = y] given by Eq. (12).
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The conditionπ/pX ∈ R(C
1/2
XX) requires the prior to be smooth. Ifℓn = n, and ifm̂(n)

Π is a direct
empirical kernel mean with an i.i.d. sample of sizen from Π, typically α = 1/2 and the theorem
impliesn4/27-consistency. While this might seem to be a slow rate, in practice the convergence may
be much faster than the above theoretical guarantee.

3 Bayesian inference with Kernel Bayes’ Rule

In Bayesian inference, tasks of interest include finding properties of the posterior (MAP value,
moments), and computing the expectation of a function underthe posterior. We now demonstrate
the use of the kernel mean obtained via KBR in solving these problems.

First, we have already seen from Theorem 5 that we may obtain aconsistent estimator under the pos-
terior for the expectation of somef ∈ HX . This covers a wide class of functions when characteristic
kernels are used (see also experiments in Sec. 4.1).

Next, regarding a point estimate ofx, [20] proposes to use the preimagex̂ = argminx ‖kX (·, x)−
k
T
XRX|Y kY (y)‖2HX

, which represents the posterior mean most effectively by one point. We use
this approach in the present paper where point estimates areconsidered. In the case of the Gaussian
kernel, a fixed point method can be used to sequentially optimizex [13].

In KBR the prior and likelihood are expressed in terms of samples. Thus unlike many methods for
Bayesian inference, exact knowledge on their densities is not needed, once samples are obtained.
The following are typical situations where the KBR approachis advantageous:

• The relation among variables is difficult to realize with a simple parametric model, however we
can obtain samples of the variables (e.g. nonparametric state-space model in Sec. 3).

• The p.d.f of the prior and/or likelihood is hard to obtain explicitly, but sampling is possible: (a) In
population genetics, branching processes are used for the likelihood to model the split of species,
for which the explicit density is hard to obtain. Approximate Bayesian Computation (ABC)
is a popular sampling method in these situations [25, 12, 17]. (b) In nonparametric Bayesian
inference (e.g. [14]), the prior is typically given in the form of a process without a density.
The KBR approach can give alternative ways of Bayesian computation for these problems. We
will show some experimental comparisons between KBR approach and ABC in Sec. 4.2.

• If a standard sampling method such as MCMC or sequential MC isapplicable, the computation
giveny may be time consuming, and real-time applications may not befeasible. Using KBR, the
expectation of the posterior giveny is obtained simply by the inner product as in Eq. (12), once
f
T
XRX|Y has been computed.

The KBR approach nonetheless has a weakness common to other nonparametric methods: if a new
data point appears far from the training sample, the reliability of the output will be low. Thus, we
need sufficient diversity in training sample to reliably estimate the posterior.

In KBR computation, Gram matrix inversion is necessary, which would costO(n3) for sample sizen
if attempted directly. Substantial cost reductions can be achieved by low rank matrix approximations
such as the incomplete Cholesky decomposition [5], which approximates a Gram matrix in the form
of ΓΓT with n× r matrixΓ. ComputingΓ costsO(nr2), and with the Woodbury identity, the KBR
can be approximately computed with costO(nr2).

Kernel choice or model selection is key to the effectivenessof KBR, as in other kernel methods.
KBR involves three model parameters: the kernel (or its parameters), and the regularization parame-
tersεn andδn. The strategy for parameter selection depends on how the posterior is to be used in the
inference problem. If it is applied in a supervised setting,we can use standard cross-validation (CV).
A more general approach requires constructing a related supervised problem. Suppose the prior is
given by the marginalPX of P . The posterior densityq(x|y) averaged withPY is then equal to the
marginal densitypX . We are then able to compare the discrepancy of the kernel mean of PX and
the average of the estimatorŝQX|y=Yi

overYi. This leads to application ofK-fold CV approach.

Namely, for a partition of{1, . . . , n} intoK disjoint subsets{Ta}Ka=1, letm̂[−a]
QX|y

be the kernel mean

of posterior estimated with data{(Xi, Yi)}i/∈Ta
, and the prior mean̂m[−a]

X with data{Xi}i/∈Ta
. We

use
∑K

a=1

∥∥ 1
|Ta|

∑
j∈Ta

m̂
[−a]
QX|y=Yj

− m̂
[a]
X

∥∥2
HX

for CV, wherem̂[a]
X = 1

|Ta|

∑
j∈Ta

kX (·, Xj).
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Application to nonparametric state-space model. Consider the state-space model,

p(X,Y ) = π(X1)
∏T

t=1p(Yt|Xt)
∏T−1

t=1 q(Xt+1|Xt),

whereYt is observable andXt is a hidden state. We do not assume the conditional probabili-
tiesp(Yt|Xt) andq(Xt+1|Xt) to be known explicitly, nor do we estimate them with simple para-
metric models. Rather, we assume a sample(X1, Y1), . . . , (XT+1, YT+1) is given for both the
observable and hidden variables in the training phase. Thisproblem has already been consid-
ered in [20], but we give a more principled approach based on KBR. The conditional probabil-
ity for the transitionq(xt+1|xt) and observation processp(y|x) are represented by the covariance
operators as computed with the training sample;ĈX,X+1

= 1
T

∑T
i=1 kX (·, Xi) ⊗ kX (·, Xi+1),

ĈXY = 1
T

∑T
i=1 kX (·, Xi)⊗ kY(·, Yi), andĈY Y andĈXX are defined similarly. Note that though

the data are not i.i.d., consistency is achieved by the mixing property of the Markov model.

For simplicity, we focus on the filtering problem, but smoothing and prediction can be done similarly.
In filtering, we wish to estimate the current hidden statext, given observations̃y1, . . . , ỹt. The
sequential estimate ofp(xt|ỹ1, . . . , ỹt) can be derived using KBR (we give only a sketch below; see
Supplementary material for the detailed derivation). Suppose we already have an estimator of the
kernel mean ofp(xt|ỹ1, . . . , ỹt) in the form

m̂xt|ỹ1,...,ỹt
=

∑T
i=1α

(t)
i kX (·, Xi),

whereα(t)
i = α

(t)
i (ỹ1, . . . , ỹt) are the coefficients at timet. By applying Theorem 2 twice, the

kernel mean ofp(yt+1|ỹ1, . . . , ỹt) is estimated bŷmyt+1|ỹ1,...,ỹt
=

∑T
i=1 µ̂

(t+1)
i kY(·, Yi), where

µ̂(t+1) = (GX + TεT IT )
−1GX,X+1

(GX + TεT IT )
−1GXα

(t). (13)

HereGX+1X is the “transfer” matrix defined by
(
GX+1X

)
ij

= kX (Xi+1, Xj). With the notation

Λ(t+1) = Diag(µ̂
(t+1)
1 , . . . , µ̂

(t+1)
T ), kernel Bayes’ rule yields

α(t+1) = Λ(t+1)GY

(
(Λ(t+1)GY )

2 + δT IT
)−1

Λ(t+1)
kY (ỹt+1). (14)

Eqs. (13) and (14) describe the update rule ofα(t)(ỹ1, . . . , ỹt). By contrast with [20], where the
estimates of the previous hidden state and observation are assumed to combine additively, the above
derivation is based only on applying KBR. In sequential filtering, a substantial reduction of compu-
tational cost can be achieved by low rank approximations forthe matrices of a training phase: given
rankr, the computation costs onlyO(Tr2) for each step in filtering.

Bayesian computation without likelihood. When the likelihood and/or prior is not obtained in
an analytic form but sampling is possible, the ABC approach [25, 12, 17] is popular for Bayesian
computation. The ABCrejection methodgenerates a sample fromq(X|Y = y) as follows: (1) gen-
erateXt from the priorΠ, (2) generateYt from p(y|Xt), (3) if D(y, Yt) < ρ, acceptXt; otherwise
reject, (4) go to (1). In Step (3),D is a distance onX , andρ is the tolerance to acceptance.

In the exactly the same situation as the above, the KBR approach gives the following method: (i)
generateX1, . . . , Xn from the priorΠ, (ii) generate a sampleYt from p(y|Xt) (t = 1, . . . , n), (iii)
compute Gram matricesGX andGY with (X1, Y1), . . . , (Xn, Yn), andRX|Y kY (y).

The distribution of a sample given by ABC approaches the trueposterior if ρ → 0, while the
empirical posterior estimate of KBR converges to the true one asn → ∞. The computational
efficiency of ABC, however, can be arbitrarily low for a smallρ, sinceXt is then rarely accepted
in Step (3). Finally, ABC generates a sample, which allows any statistic of the posterior to be
approximated. In the case of KBR, certain statistics of the posterior (such as confidence intervals)
can be harder to obtain, since consistency is guaranteed only for expectations of RKHS functions.
In Sec. 4.2, we provide experimental comparisons addressing the trade-off between computational
time and accuracy for ABC and KBR.

4 Experiments

4.1 Nonparametric inference of posterior

First we compare KBR and the standard kernel density estimation (KDE). Let {(Xi, Yi)}ni=1 be
an i.i.d. sample fromP on R

d × R
r. With p.d.f.K(x) on R

d andH(y) on R
r, the conditional

6



p.d.f. p(y|x) is estimated bŷp(y|x) =
∑n

j=1KhX
(x − Xj)HhY

(y − Yj)/
∑n

j=1KhX
(x − Xj),

whereKhX
(x) = h−d

X K(x/hX) andHhY
(x) = h−r

Y H(y/hY ). Given an i.i.d. sample{Uj}ℓj=1

from the priorΠ, the posteriorq(x|y) is represented by the weighted sample(Ui, wi) with wi =

p̂(y|Ui)/
∑ℓ

j=1 p̂(y|Uj) as importance weight (IW).

We compare the estimates of
∫
xq(x|y)dx obtained by KBR and KDE + IW, using Gaussian kernels

for both the methods. Note that with Gaussian kernel, the function f(x) = x does not belong to
HX , and the consistency of the KBR method is not rigorously guaranteed (c.f. Theorem 5). Gaussian
kernels, however, are known to be able to approximate any continuous function on a compact subset
with arbitrary accuracy [23]. We can thus expect that the posterior mean can be estimated effectively.
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Figure 2: KBR v.s. KDE+IW.

In the experiments, the dimensionality was given by
r = d ranging form 2 to 64. The distributionP of
(X,Y ) wasN((0, 1d)

T , V ) with V randomly generated
for each run. The priorΠ wasPX = N(0, VXX/2),
whereVXX is theX-component ofV . The sample sizes
weren = ℓ = 200. The bandwidth parameterhX , hY
in KDE were sethX = hY and chosen by two ways,
the least square cross-validation [15] and the best mean
performance, over the set{2 ∗ i | i = 1, . . . , 10}. For
the KBR, we used use two methods to choose the devi-
ation parameter in Gaussian kernel: the median over the
pairwise distances in the data [10] and the 10-fold CV
described in Sec. 3. Fig. 2 shows the MSE of the esti-
mates over 1000 random pointsy ∼ N(0, VY Y ). While the accuracy of the both methods decrease
for larger dimensionality, the KBR significantly outperforms the KDE+IW.

4.2 Bayesian computation without likelihood
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Figure 3: Estimation accuracy and com-
putational time with KBR and ABC.

We compare KBR and ABC in terms of the estima-
tion accuracy and computational time. To compute the
estimation accuracy rigorously, Gaussian distributions
are used for the true prior and likelihood. The sam-
ples are taken from the same model as in Sec. 4.1, and∫
xq(x|y)dx is evaluated at 10 different points ofy. We

performed 10 runs with different covariance.

For ABC, we used only the rejection method; while
there are more advanced sampling schemes [12, 17], im-
plementation is not straightforward. Various parameters
for the acceptance are used, and the accuracy and com-
putational time are shown in Fig.3 together with total
sizes of generated samples. For the KBR method, the sample sizesn of the likelihood and prior are
varied. The regularization parameters are given byεn = 0.01/n andδn = 2εn. In KBR, Gaussian
kernels are used and the incomplete Cholesky decompositionis employed. The results indicate that
KBR achieves more accurate results than ABC in the same computational time.

4.3 Filtering problems

The KBR filter proposed in Sec. 3 is applied. Alternative strategies for state-space models with
complex dynamics involve the extended Kalman filter (EKF) and unscented Kalman filter (UKF,
[11]). There are some works on nonparametric state-space model or HMM which use nonparametric
estimation of conditional p.d.f. such as KDE or partitions [27, 26] and, more recently, kernel method
[20, 21]. In the following, the KBR method is compared with linear and nonlinear Kalman filters.

KBR has the regularization parametersεT , δT , and kernel parameters forkX andkY (e.g., the de-
viation parameter for Gaussian kernel). The validation approach is applied for selecting them by
dividing the training sample into two. To reduce the search space, we setδT = 2εT and use the
Gaussian kernel deviationβσX andβσY , whereσX andσY are the median of pairwise distances
among the training samples ([10]), leaving only two parametersβ andεT to be tuned.
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Figure 4: Comparisons with the KBR Filter and EKF. (Average MSEs and SEs over 30 runs.)

KBR (Gauss) KBR (Tr) Kalman (9 dim.) Kalman (Quat.)
σ2 = 10−4 0.210± 0.015 0.146± 0.003 1.980± 0.083 0.557± 0.023
σ2 = 10−3 0.222± 0.009 0.210± 0.008 1.935± 0.064 0.541± 0.022

Table 1: Average MSEs and SEs of camera angle estimates (10 runs).

We first use two synthetic data sets with KBR, EKF, and UKF, assuming that EKF and UKFknow
the exact dynamics. The dynamics has a hidden stateXt = (ut, vt)

T ∈ R
2, and is given by

(ut+1, vt+1) = (1 + b sin(Mθt+1))(cos θt+1, sin θt+1) + Zt, θt+1 = θt + η (mod2π),

whereZt ∼ N(0, σ2
hI2) is independent noise. Note that the dynamics of(ut, vt) is nonlinear even

for b = 0. The observationYt follows Yt = Xt +Wt, whereWt ∼ N(0, σ2
oI). The two dynamics

are defined as follows: (a) (noisy rotation)η = 0.3, b = 0, σh = σo = 0.2, (b) (noisy oscillatory
rotation)η = 0.4, b = 0.4,M = 8, σh = σo = 0.2. The results are shown in Fig. 4. In all the cases,
EKF and UKF show unrecognizably small difference. The dynamics in (a) has weak nonlinearity,
and KBR shows slightly worse MSE than EKF and UKF. For dataset(b) of strong nonlinearity, KBR
outperforms forT ≥ 200 the nonlinear Kalman filters, which know the true dynamics.

Next, we applied the KBR filter to the camera rotation problemused in [20]1, where the angle of a
camera is the hidden variable and the movie frames of a room taken by the camera are observed. We
are given 3600 frames of20× 20 RGB pixels (Yt ∈ [0, 1]1200), where the first 1800 frames are used
for training, and the second half are used for test. For the details on the data, see [20]. We make
the data noisy by adding Gaussian noiseN(0, σ2) to Yt. Our experiments cover two settings. In the
first, we assume we do not know the hidden stateXt is included inSO(3), but is a general3 × 3
matrix. In this case, we use the Kalman filter by estimating the relations under a linear assumption,
and the KBR filter with Gaussian kernels forXt andYt. In the second setting, we exploit the fact
Xt ∈ SO(3): for the Kalman filter,Xt is represented by a quanternion, and for the KBR filter
the kernelk(A,B) = Tr[ABT ] is used forXt. Table 1 shows the Frobenius norms between the
estimated matrix and the true one. The KBR filter significantly outperforms the Kalman filter, since
KBR has the advantage in extracting the complex nonlinear dependence of the observation on the
hidden state.

5 Conclusion

We have proposed a general, novel framework for implementing Bayesian inference, where the prior,
likelihood, and posterior are expressed as kernel means in reproducing kernel Hilbert spaces. The
model is expressed in terms of a set of training samples, and inference consists of a small number
of straightforward matrix operations. Our approach is wellsuited to cases where simple paramet-
ric models or an analytic forms of density are not available,but samples are easily obtained. We
have addressed two applications: Bayesian inference without likelihood, and sequential filtering
with nonparametric state-space model. Future studies could include more comparisons with sam-
pling approaches like advanced Monte Carlo, and applications to various inference problems such
as nonparametric Bayesian models and Bayesian reinforcement learning.

Acknowledgements.KF was supported in part by JSPS KAKENHI (B) 22300098.

1Due to some difference in noise model, the results here are not directly comparable with those of [20].
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