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Abstract

A nonparametric kernel-based method for realizing Bayd@g'is proposed, based
on kernel representations of probabilities in reprodudiagnel Hilbert spaces.
The prior and conditional probabilities are expressed agireal kernel mean
and covariance operators, respectively, and the kerneh roietihe posterior dis-
tribution is computed in the form of a weighted sample. Themk&EBayes’ rule
can be applied to a wide variety of Bayesian inference probleve demonstrate
Bayesian computation without likelihood, and filtering vé nonparametric state-
space model. A consistency rate for the posterior estirsastablished.

1 Introduction

Kernel methods have long provided powerful tools for geliwnrg linear statistical approaches to
nonlinear settings, through an embedding of the sample ighedimensional feature space, namely
a reproducing kernel Hilbert space (RKHS) [16]. The inn@durct between feature mappings need
never be computed explicitly, but is given by a positive de&dikernel function, which permits effi-
cient computation without the need to deal explicitly witle feature representation. More recently,
themeanof the RKHS feature map has been used to represent propatiditibutions, rather than
mapping single points: we will refer to these representatiof probability distributions aker-
nel means With an appropriate choice of kernel, the feature mappiecpnes rich enough that
its expectation uniquely identifies the distribution: tlss@ciated RKHSs are termelaracteristic
[6, 7, 22]. Kernel means in characteristic RKHSs have begtiexpsuccessfully in a number of
statistical tasks, including the two sample problem [9leipendence tests [10], and conditional in-
dependence tests [8]. An advantage of the kernel approdbhtithese tests apply immediately to
any domain on which kernels may be defined.

We propose a general nonparametric framework for Bayesfareince, expressed entirely in terms
of kernel means. The goal of Bayesian inference is to find tisagpior ofx given observatiow;
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wherer (z) andp(y|x) are respectively the density function of the prior, and theditional density
or likelihood ofy givenz. In our framework, the posterior, prior, and likelihood ateexpressed
as kernel means: the update from prior to posterior is cadlledKernel Bayes’ Rule (KBR). To
implement KBR, the kernel means are learned nonparamigtrfcam training data: the prior and
likelihood means are expressed in terms of samples fromribe gnd joint probabilities, and the
posterior as a kernel mean of a weighted sample. The regulfidates are straightforward matrix
operations. This leads to the main advantage of the KBR agpran the absence of a specific para-
metric model or an analytic form for the prior and likelihodehsities, we can still perform Bayesian
inference by making sufficient observations on the systetterdatively, we may have a paramet-
ric model, but it might be complex and require time-consiwgreampling techniques for inference.
By contrast, KBR is simple to implement, and is amenable th-astablished approximation tech-
nigues which yield an overall computational cost linearhie training sample size [5]. We further



establish the rate of consistency of the estimated postkeeimel mean to the true posterior, as a
function of training sample size.

The proposed kernel realization of Bayes’ rule is an extensif the approach used in [20] for
state-space models. This earlier work applies a heurtstiwgver, in which the kernel mean of the
previous hidden state and the observation are assumed tarmdditively to update the hidden
state estimate. More recently, a method for belief propagatsing kernel means was proposed
[18, 19]: unlike the present work, this directly estimatesditional densities assuming the prior
to be uniform. An alternative to kernel means would be to useparametric density estimates.
Classical approaches include finite distribution estimate a partitioned domain or kernel density
estimation, which perform poorly on high dimensional daddternatively, direct estimates of the
density ratio may be used in estimating the conditionafp2#4]. By contrast with density estima-
tion approaches, KBR makes it easy to compute posteriomgiiens (as an RKHS inner product)
and to perform conditioning and marginalization, withaequiring numerical integration.

2 Kernel expression of Bayes’ rule

2.1 Positive definite kernel and probabilities

We begin with a review of some basic concepts and tools camggstatistics on RKHS [1, 3, 6, 7].
Given a sef?, a (R-valued) positive definite kern&lon 2 is a symmetric kernét : 2 xQ — R such
thatZZj:1 cicjk(x;, ;) > 0 for arbitrary pointsey, . .., z,, in Q and real numbers,, . . ., c,,. Itis
known [1] that a positive definite kernel éhuniquely defines a Hilbert spaéé (RKHS) consisting
of functions on2, where(f, k(-,z)) = f(x) foranyz € Q andf € H (reproducing property).

Let (X, By, nx) and (Y, By, py) be measure spaces, agll,Y’) be a random variable o&’ x
Y with probability P. Throughout this paper, it is assumed that positive defikétmels on the
measurable spaces are measurable and bounded, where droesslis defined asp,cq, k(x, ) <
oo. Letky be a positive definite kernel on a measurable spacéy ), with RKHSH ». Thekernel
meanm x of X on?H y is defined by the mean of ti7é-valued random variabley (-, X'), namely

mx :/k;((-,x)dPX(x). (2)

For notational simplicity, the dependenceignin m x is not shown. Since the kernel mean depends
only on the distribution ofX' (and the kernel), it may also be writtenp, ; we will use whichever
of these equivalent notations is clearest in each conteatnfhe reproducing property, we have

(fimx)=E[f(X)] (V[ €Hx). 3

Let kx andky be positive definite kernels o and)’ with respective RKHSH » andHy. The
(uncentered¥ovariance operato€Cy x : Hx — Hy is defined by the relation

(9.Cvx flay = E[f(X)g(Y)] (=(9® fimyx)nyens)  (Vf€Ha,g€Hy).
It should be noted thaty x is identified with the meam,y x in the tensor product spagey @ H x,
which is given by the product kerngh kx [1]. The identification is standard: the tensor product is
isomorphic to the space of linear maps by the correspondénices < [h — ¥(®, h)]. We also
defineCxx : Hx — Hx by <f2,Cxxf1> = E[fQ(X)fl(X)] for anyfl,fg € Hy.

We next introduce the notion of a characteristic RKHS, wlisabssential when using kernels to ma-
nipulate probability measures. A bounded measurableipesiefinite kernek is calledcharacter-
isticif Exp[k(-,X)] = Ex/~glk(-, X")] implies P = Q: probabilities are uniquely determined
by their kernel means [7, 22]. With this property, problenistatistical inference can be cast in
terms of inference on the kernel means. A widely used cheriatit kernel oriR™ is the Gaussian
kernel,exp(— ||z — y[|?/(25?)).

Empirical estimates of the kernel mean and covariance tpeaee straightforward to obtain. Given
ani.i.d. sampl€X;,Y7),...,(X,,Y,) with law P, the empirical kernel mean and covariance op-
erator are respectively

(n 1 n i 1 n
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Where@(,"))< is written in the tensor product form. These are known tg/feconsistent in norm.



2.2 Kernel Bayes’ rule

We now derive the kernel mean implementation of Bayes’ ridet IT be aprior distribution on
X with p.d.f. 7(z). In the following, @ and @y denote the probabilities with p.df(z,y) =
p(y|z)w(x) andgy(y) in Eq. (1), respectively. Our goal is to obtain an estimatothe kernel
mean of posteriofng |, = [ kx(-,z)q(z|y)dpx(z). The following theorem is fundamental in
manipulating conditional probabilities with positive dgfe kernels.

Theorem 1([6]). If E[g(Y)|X = -] € H holds forg € Hy, then

CxxE[g(Y)|X =] =Cxvyg.

If C'x x is injective, the above relation can be expressed as
Elg(Y)|X =] =Cxx 'Cxvyg. (4)
Using Eq. (4), we can obtain an expression for the kernel mégh,.

Theorem 2([20]). Assume&’'y x is injective, and lein; andmg,, be the kernel means bfin H x
andQy in Hy, respectively. ling € R(Cxx) andE[g(Y)|X = -] € Hx foranyg € Hy, then

mgy = OyxCxx ™~ 'mi. %)

As discussed in [20], the operatdlyXC;(k implements forward filtering of the priar with the
conditional density(y|z), as in Eq. (1). Note, however, that the assumptibfig(Y)|X = | €
‘H~ and injectivity of C'x x may not hold in general; we can easily provide counterexasapin
the following, we nonetheless derive a population expoessif Bayes’ rule under these strong
assumptions, use it as a prototype for an empirical estinejaoressed in terms of Gram matrices,
and prove its consistency subject to appropriate smoostowglitions on the distributions.

In deriving kernel realization of Bayes’ rule, we will alssaiTheorem 2 to obtain a kernel mean
representation of thigint probability @:

In the above equation((y x)x is the covariance operator frofily to Hy ® Hx with
p.d.f.p((y,x),z") = p(z,y)d, ("), whered, (z') is the point measure at

In many applications of Bayesian inference, the probatilinditioned on a particular value should
be computed. By plugging the point measure atto IT in Eqg. (5), we have a population expression

Elky(-Y)|X = 2] = CyxCxx 'kx(-,x), (M

which was used by [20, 18, 19] as the kernel mean of the cemditiprobabilityp(y|x). Let (Z, W)
be a random variable ot x ) with law Q. ReplacingP by @ andz by y in Eq. (7), we obtain

Elkx (-, Z)|W = y] = Czw Cy/yky (-, y). ®)
This is exactly the kernel mean of the posterior which we wartbtain. The next step is to derive
the covariance operators in Eq. (8). Recalling that the megn= m ) € Hx @ Hy can be

identified with the covariance operatOtyy : Hy — Hx, andmww) € Hy @ Hy with Cywy,
we use Eq. (6) to obtain the operators in Eq. (8), and thusaiheekmean expression of Bayes' rule.

The above argument can be rigorously implemented for engbigistimates of the kernel means and
covariances. LetXi,Y1),..., (X,,Y,) be an i.i.d. sample with lawP, and assume a consistent
estimator form given by

4
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iy =3 k(L U;),
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whereUy, ..., U, is the sample that defines the estimator (which need not bergiea byil), and
~; are the weights. Negative values are allowed+pr The empirical estimators fof'zy and
Cww are identified withn zy) andmyw), respectively. From Eq. (6), they are given by

A(n) ~1(0)

~ ~ ~(n A(n -1« ~ ~(n
mQ = mizw) = C((Y)X)X(Cg())( +enl) my, mww) = C((Y)Y)X (Cx'x +enl) iy,

wherel is the identity and,, is the coefficient of Tikhonov regularization for operataoversion.

The next two propositions express these estimators usiagh@natrices. The proofs are simple
matrix manipulation and shown in Supplementary materialthe following,Gx andGy denote
the Gram matrice$kx (X;, X)) and(ky(Y;,Y;)), respectively.



Input: (i) {(X;,Y;:)}i—y: sample to expres®. (i) {(U;,v;)}j=1: weighted sample to express the kernel
mean of the priofn. (iii) ex, d»: regularization constants.
Computation:
1. Compute Gram matrice§x = (kx(X:, X;)), Gy = (ky(¥:,Y;)), and a vectommp =
(i vikx (X3, Uj))iey € R™
2. Computei = n(Gx + nenl,) .
3. ComputeRx |y = AGy ((AGy)? + 6,1,) ' A, whereA = Diag(fi).
Output:n x n matrix Ry y.
Given conditioning valuey, the kernel mean of the posterigfz|y) is estimated by the weighted
sample{ (X, wi)}io, wWith w = Rxyky (y), whereky (y) = (ky(Yi,y))isi.

Figure 1: Kernel Bayes’ Rule Algorithm

Proposition 3. The Gram matrix expressions 6% w andCyyyy are given by

Caw = S0 fuikx (- X;) @ ky(1Y:) and Cww = Y fiiky (-, Y;) @ ky (-, Y7),
respectively, where the common coefficjiert R” is
ii=n(Gx +ne,0y) 'y, W, =mn(X) = Y vke (X, Uj). 9)
Prop. 3 implies that the probabilitie§ and @y are estimated by the weighted samples

{((X:,Y2), ) Yoy and {(Y3, )}, respectively, with common weights. Since the weigdhts
may be negative, we use another type of Tikhonov regulasizé& computing Eq. (8),

Mty = Cow (Corw +0uI) ™ Covrwhy(-,y). (10)

Proposition 4. For anyy € ), the Gram matrix expression 6i, |, is given by
Moly = Kx Rx)vky (¥), Rxy == AGy ((AGy)? + 0,1,) A, (11)
where A = Diag(ji) is a diagonal matrix with elements; given by Eq. (9),kx =

(kx(-, X1), .. k(L X)) € Ha, andky = (ky (-, Y1), ..., ky(-, Yo))T € Hy™.

We call Egs.(10) or (11) thkernel Bayes’ ruldKBR): i.e., the expression of Bayes’ rule entirely
in terms of kernel means. The algorithm to implement KBR imswarized in Fig. 1. If our aim
is to estimateF[f(Z)|W = y], that is, the expectation of a functighe # » with respect to the
posterior, then based on Eq. (3) an estimator is given by

<f7 mQX|y>HX = f§RX|ka(y)7 (12)

wherefy = (f(X1),...,f(X,))T € R™. In using a weighted sample to represent the posterior,
KBR has some similarity to Monte Carlo methods such as ingmee sampling and sequential
Monte Carlo ([4]). The KBR method, however, does not gemesaimples from the posterior, but
updates the weights of a sample via matrix operations. Wepwadliide experimental comparisons
between KBR and sampling methods in Sec. 4.1.

2.3 Consistency of KBR estimator

We now demonstrate the consistency of the KBR estimator ir(E2). We show only the best rate
that can be derived under the assumptions, and leave maitedatiscussions and proofs to the
Supplementary material. We assume that the sample sizé, for the prior goes to infinity as the

sample size: for the likelihood goes to infinity, and thét(rf”) is n®-consistent. In the theoretical
results, we assume all Hilbert spaces are separable. loltbeiihg, R(A) denotes the range of.
Theorem 5. Let f € Hy, (Z,W) be a random vector o’ x ) such that its law i) with
p.d.f.p(y|z)m(x), andﬁm{f") be an estimator ofny; such thatHr?Lif") —mullu, = Op(n™®) as
n — oo for somed < a < 1/2. Assume that/px € R(C)lf/f(), wherepx is the p.d.f. ofPx, and
E[f(Z)[W =] € R(C%). Fore, = n~3*andé, = n~27*, we have for any €

£ Rxyky (y) = E[f(Z)[W = y] = Op(n~7%), (n = o),

wheref? Rx|yky (y) is the estimator of2[f (Z)|W = y] given by Eq. (12).

4
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The conditionr/px € R(CW) requires the prior to be smooth.df = n, and ifmy;” is a direct
empirical kernel mean with an i.i.d. sample of sizérom II, typically o = 1/2 and the theorem
impliesn*/27-consistency. While this might seem to be a slow rate, in frathe convergence may
be much faster than the above theoretical guarantee.

3 Bayesian inference with Kernel Bayes’ Rule

In Bayesian inference, tasks of interest include findingpprties of the posterior (MAP value,
moments), and computing the expectation of a function utiteposterior. We now demonstrate
the use of the kernel mean obtained via KBR in solving thesblpms.

First, we have already seen from Theorem 5 that we may obtansistent estimator under the pos-
terior for the expectation of somfec H x. This covers a wide class of functions when characteristic
kernels are used (see also experiments in Sec. 4.1).

Next, regarding a point estimate ©f [20] proposes to use the preimage= arg min, |kx (-, x) —

k% xRxyky(y )13,.., which represents the posterior mean most effectively By point. We use
thIS approach in tﬁe present paper where point estimatepasidered. In the case of the Gaussian
kernel, a fixed point method can be used to sequentially dgeim[13].

In KBR the prior and likelihood are expressed in terms of daspThus unlike many methods for
Bayesian inference, exact knowledge on their densitiegtisieeded, once samples are obtained.
The following are typical situations where the KBR approachdvantageous:

e The relation among variables is difficult to realize with mple parametric model, however we
can obtain samples of the variables (e.g. nhonparametti-sp@ce model in Sec. 3).

e The p.d.f of the prior and/or likelihood is hard to obtain keigly, but sampling is possible: (a) In
population genetics, branching processes are used fakétidbod to model the split of species,
for which the explicit density is hard to obtain. ApproxireaBayesian Computation (ABC)
is a popular sampling method in these situations [25, 12, 1] In nonparametric Bayesian
inference (e.g. [14]), the prior is typically given in thaiio of a process without a density.

The KBR approach can give alternative ways of Bayesian céatipn for these problems. We
will show some experimental comparisons between KBR ampraad ABC in Sec. 4.2.

e If a standard sampling method such as MCMC or sequential M(pdicable, the computation
giveny may be time consuming, and real-time applications may néégble. Using KBR, the
expectation of the posterior givenis obtained simply by the inner product as in Eq. (12), once
f% Rx|y has been computed.

The KBR approach nonetheless has a weakness common to otigarametric methods: if a new
data point appears far from the training sample, the rdiigluf the output will be low. Thus, we
need sufficient diversity in training sample to reliablyiestte the posterior.

In KBR computation, Gram matrix inversion is necessary,oiiwould cos(n?) for sample size:

if attempted directly. Substantial cost reductions candeared by low rank matrix approximations
such as the incomplete Cholesky decomposition [5], whighi@pmates a Gram matrix in the form
of 'TT with n x r matrixI'. Computingl’ costsO(nr?), and with the Woodbury identity, the KBR
can be approximately computed with coxtnr?).

Kernel choice or model selection is key to the effectiverefsKBR, as in other kernel methods.
KBR involves three model parameters: the kernel (or itsipatars), and the regularization parame-
terse,, andd,,. The strategy for parameter selection depends on how therpmss to be used in the
inference problem. If itis applied in a supervised settimg.can use standard cross-validation (CV).
A more general approach requires constructing a relateelrgispd problem. Suppose the prior is
given by the marginaPx of P. The posterior density(x|y) averaged withPy- is then equal to the
marginal densitypx. We are then able to compare the discrepancy of the kernet wfeBx and

the average of the estimato@\qy y; overY;. This leads to application ok -fold CV approach.
Namely, for a partition of 1, ..., n} into K disjoint subset$7, } |, Ietmg “I be the kernel mean

of posterior estimated with dafg X, Y)} 4T, and the prior meaﬁz[X“ Wlth data{X;}igr,. We

K a a
Usezaleﬁ Yier, M EM]U . —mX HH for CV, wherem[X] = ‘T Y jer, bl X;).



Application to nonparametric state-space model. Consider the state-space model,

p(X,Y) = (XD p (VXIS (X e | X,
whereY; is observable and(; is a hidden state. We do not assume the conditional probabili
ties p(Y;|X:) andq(X;41]|X:) to be known explicitly, nor do we estimate them with simplegsa
metric models. Rather, we assume a saniie,Y1),..., (X741, Yry1) is given for both the
observable and hidden variables in the training phase. pitiblem has already been consid-
ered in [20], but we give a more principled approach based BRKThe conditional probabil-
ity for the transitiong(z;1|z:) and observation procegsgy|z) are represented by the covariance

operators as computed with the training samglg; x,, = % ZZT=1 Ex(, X)) ® ka(c, Xig1),

Cxy = % ZiTzl kx(-, Xi) ® ky(-,Y3), andCyy andCx x are defined similarly. Note that though
the data are not i.i.d., consistency is achieved by the mighoperty of the Markov model.

For simplicity, we focus on the filtering problem, but smdothand prediction can be done similarly.
In filtering, we wish to estimate the current hidden stategiven observationg, ..., 3;. The
sequential estimate @{x¢|71, ..., 3:) can be derived using KBR (we give only a sketch below; see
Supplementary material for the detailed derivation). Siggpwe already have an estimator of the
kernel mean op(x¢|71, . . ., 3:) in the form

~ T t
Tnﬂ”/th}h---,ﬂt = Zi:laz(' )kX('in)v

Whereal(.t) = a§t>(g1, ..., 7;) are the coefficients at time By applying Theorem 2 twice, the
kernel mean op(ys+1|71, - - -, ) is estimated by, , 15, .5, = Sy v Vky(-, Yi), where
//Z(H_l) = (GX + TETIT)_lGX,X+1 (GX + TETIT)_lGXoé(t). (13)
HereGx,, x is the “transfer” matrix defined bYGXHX)ij = kx(X;41,X;). With the notation
A®HD = Diag(a{™ ... altY), kernel Bayes’ rule yields
-1 ~
a(t'H) _ A(t-i-l)Gy((A(t-i-l)Gy)Z + 6TIT) A(t+1)ky(yt+1). (14)

Egs. (13) and (14) describe the update rulex8t (7, ...,7,). By contrast with [20], where the
estimates of the previous hidden state and observatiorsatereed to combine additively, the above
derivation is based only on applying KBR. In sequential fiftg, a substantial reduction of compu-
tational cost can be achieved by low rank approximationgifematrices of a training phase: given
rankr, the computation costs ony(7'r2) for each step in filtering.

Bayesian computation without likelihood. When the likelihood and/or prior is not obtained in
an analytic form but sampling is possible, the ABC appro&@ 2, 17] is popular for Bayesian
computation. The ABCejection methodjenerates a sample froplX |Y = y) as follows: (1) gen-
erateX; from the priorIl, (2) generat&’; from p(y|X:), (3) if D(y,Y;) < p, acceptX;; otherwise
reject, (4) go to (1). In Step (3] is a distance o', andp is the tolerance to acceptance.

In the exactly the same situation as the above, the KBR apprgizes the following method: (i)
generateXy, ..., X, from the priorIl, (ii) generate a samplg; from p(y|X;) (t = 1,...,n), (iii)
compute Gram matriceS x andGy with (X1,Y1),..., (X, Yy), andRx yky (y).

The distribution of a sample given by ABC approaches the paosterior if p — 0, while the
empirical posterior estimate of KBR converges to the true asn — oo. The computational
efficiency of ABC, however, can be arbitrarily low for a smallsince X, is then rarely accepted
in Step (3). Finally, ABC generates a sample, which allowg statistic of the posterior to be
approximated. In the case of KBR, certain statistics of th&tgrior (such as confidence intervals)
can be harder to obtain, since consistency is guarantegdamgxpectations of RKHS functions.
In Sec. 4.2, we provide experimental comparisons addmgs$satrade-off between computational
time and accuracy for ABC and KBR.

4 Experiments

4.1 Nonparametric inference of posterior

First we compare KBR and the standard kernel density esom#&KDE). Let {(X;,Y;)}?, be
an i.i.d. sample fromP on R? x R". With p.d.f. K(z) on R¢ and H(y) on R", the conditional



p.d.f. p(yle) is estimated bys(y|z) = 0, Ky (v — X)) Hy (y — Y;)/ Xy Ky (x — X)),
where Ky, (z) = hy?K(z/hx) and Hy,, (z) = hy"H(y/hy). Given an i.i.d. sampléUj}ﬁzl
from the priorIl, the posteriok(x|y) is represented by the weighted sam(lg, w;) with w; =
PlylU:)/ 351 B(y|U;) as importance weight (IW).

We compare the estimates pfrq(z|y)dz obtained by KBR and KDE + IW, using Gaussian kernels
for both the methods. Note that with Gaussian kernel, thetfan f(z) = = does not belong to
‘H », and the consistency of the KBR method is not rigorously auotered €.f. Theorem 5). Gaussian
kernels, however, are known to be able to approximate anyrmeeous function on a compact subset
with arbitrary accuracy [23]. We can thus expect that thegra® mean can be estimated effectively.

In the experiments, the dimensionality was given by KBR vs KDEHW (E[XIY=y)
r = d ranging form 2 to 64. The distributiof® of o Kok (et dis) i
(X,Y)wasN((0,14), V) with V randomly generated S K BEw ipeat -

for each run. The priofl was Px = N(0,Vxx/2),
whereVy x is theX-component of/. The sample sizes
weren = ¢ = 200. The bandwidth parametéry, hy

in KDE were sethy = hy and chosen by two ways,
the least square cross-validation [15] and the best mean
performance, over the sé2 « ¢ | ¢+ = 1,...,10}. For )
the KBR, we used use two methods to choose the devi- et —r—r—
ation parameter in Gaussian kernel: the median over the bimension
pairwise distances in the data [10] and the 10-fold CV  Figure 2: KBR v.s. KDE+IW.
described in Sec. 3. Fig. 2 shows the MSE of the esti-

mates over 1000 random poinis~ N (0, Vyy). While the accuracy of the both methods decrease
for larger dimensionality, the KBR significantly outpenfios the KDE+IW.

Ave. MSE (50 runs)
w P
& &
-

N
o

48 64

4.2 Bayesian computation without likelihood CPU time vs Error (6 dim)

We compare KBR and ABC in terms of the estima-§ Tsad ;

tion accuracy and computational time. To compute theg 10" o s Lo

estimation accuracy rigorously, Gaussian distributionss o "

are used for the true prior and likelihood. The sam-3 ° 2641

ples are taken from the same model as in Sec. 4.1, argl a0 0

[ zq(x|y)da is evaluated at 10 different points pf We = P 0o g, 790

performed 10 runs with different covariance. <

For ABC, we used only the rejection method; while 1 10 1 10 1¢°
CPU time (sec)

there are more advanced sampling schemes [12, 17], im-
plementation is not straightforward. Various parametdfggure 3: Estimation accuracy and com-
for the acceptance are used, and the accuracy and cpatational time with KBR and ABC.
putational time are shown in Fig.3 together with total

sizes of generated samples. For the KBR method, the sample:sof the likelihood and prior are
varied. The regularization parameters are giver,by= 0.01/n andJ,, = 2¢,. In KBR, Gaussian
kernels are used and the incomplete Cholesky decompogstemployed. The results indicate that
KBR achieves more accurate results than ABC in the same catiqnal time.

4.3 Filtering problems

The KBR filter proposed in Sec. 3 is applied. Alternative telgées for state-space models with
complex dynamics involve the extended Kalman filter (EKF) anscented Kalman filter (UKF,
[11]). There are some works on nonparametric state-spadelrnoHMM which use nonparametric
estimation of conditional p.d.f. such as KDE or partitio@3,[26] and, more recently, kernel method
[20, 21]. In the following, the KBR method is compared withdar and nonlinear Kalman filters.

KBR has the regularization parametess, 6, and kernel parameters fér andky (e.g, the de-
viation parameter for Gaussian kernel). The validationrapgh is applied for selecting them by
dividing the training sample into two. To reduce the seamfce, we sefr = 2er and use the
Gaussian kernel deviatigfo » and 5oy, whereor andoy are the median of pairwise distances
among the training samples ([10]), leaving only two pararset ander to be tuned.
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Figure 4: Comparisons with the KBR Filter and EKF. (Averag8l4 and SEs over 30 runs.)

KBR (Gauss) KBR (Tr) Kalman (9 dim.) Kalman (Quat.)
0?2 =10"710.210£0.015 0.146 +£0.003 | 1.980+0.083  0.557 + 0.023
0?2 =107 | 0.2224+0.009 0.2104+0.008 | 1.935+0.064  0.541 &+ 0.022

Table 1: Average MSEs and SEs of camera angle estimatesr{&] ru

We first use two synthetic data sets with KBR, EKF, and UKFuaseg that EKF and UKKknow
the exact dynamics. The dynamics has a hidden sfate (u;,v;)” € R?, and is given by

(utHth) = (1 + bsin(MGtJrl))(cos 0t+1,Si1’1 9t+1) -+ Zt, 9t+1 =0; + n (mOdQﬂ'),

whereZ; ~ N (0, U?LIQ) is independent noise. Note that the dynamicéugf v,) is nonlinear even
for b = 0. The observatioy; follows Y; = X; + W;, whereW, ~ N(0,02I). The two dynamics
are defined as follows: (a) (noisy rotation)= 0.3, b = 0, o, = 0, = 0.2, (b) (noisy oscillatory
rotation)n = 0.4,b = 0.4, M = 8, o5, = 0, = 0.2. The results are shown in Fig. 4. In all the cases,
EKF and UKF show unrecognizably small difference. The dyicarm (a) has weak nonlinearity,
and KBR shows slightly worse MSE than EKF and UKF. For daté®etf strong nonlinearity, KBR
outperforms fofl" > 200 the nonlinear Kalman filters, which know the true dynamics.

Next, we applied the KBR filter to the camera rotation problesad in [20}, where the angle of a
camera is the hidden variable and the movie frames of a rokemtay the camera are observed. We
are given 3600 frames @f) x 20 RGB pixels {; € [0, 1]*2%°), where the first 1800 frames are used
for training, and the second half are used for test. For thaildeon the data, see [20]. We make
the data noisy by adding Gaussian naég), o2) to Y;. Our experiments cover two settings. In the
first, we assume we do not know the hidden stéifds included inSO(3), but is a generad x 3
matrix. In this case, we use the Kalman filter by estimatirggriations under a linear assumption,
and the KBR filter with Gaussian kernels far, andY;. In the second setting, we exploit the fact
X; € SO(3): for the Kalman filter,X; is represented by a quanternion, and for the KBR filter
the kernelk(A, B) = Tr[AB”] is used forX;. Table 1 shows the Frobenius norms between the
estimated matrix and the true one. The KBR filter significantitperforms the Kalman filter, since
KBR has the advantage in extracting the complex nonlinepeigence of the observation on the
hidden state.

5 Conclusion

We have proposed a general, novel framework for implemgmayesian inference, where the prior,
likelihood, and posterior are expressed as kernel mearepioducing kernel Hilbert spaces. The
model is expressed in terms of a set of training samples, rgacence consists of a small number
of straightforward matrix operations. Our approach is wgelted to cases where simple paramet-
ric models or an analytic forms of density are not availablg, samples are easily obtained. We
have addressed two applications: Bayesian inference wiitlilelihood, and sequential filtering
with nonparametric state-space model. Future studiesidnalude more comparisons with sam-
pling approaches like advanced Monte Carlo, and applieatio various inference problems such
as nonparametric Bayesian models and Bayesian reinforddeagning.
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'Due to some difference in noise model, the results here are not direotlyarable with those of [20].
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