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Abstract

We propose a framework for analyzing and comparing disticlbs, which we use to construct sta-
tistical tests to determine if two samples are drawn frorfed#nt distributions. Our test statistic is
the largest difference in expectations over functions éuhit ball of a reproducing kernel Hilbert
space (RKHS), and is called theaximum mean discrepan@MD). We present two distribution-
free tests based on large deviation bounds for the MMD, amira test based on the asymptotic
distribution of this statistic. The MMD can be computed iraduatic time, although efficient linear
time approximations are available. Our statistic is arainsé of an integral probability metric, and
various classical metrics on distributions are obtainedmalternative function classes are used
in place of an RKHS. We apply our two-sample tests to a vanégroblems, including attribute
matching for databases using the Hungarian marriage metttoete they perform strongly. Ex-
cellent performance is also obtained when comparing Higions over graphs, for which these are
the first such tests.
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1. Introduction

We address the problem of comparing samples from two prbtyadistributions, by proposing
statistical tests of the null hypothesis that these distidns are equal against the alternative hy-
pothesis that these distributions are different (this itedahe two-sample problem). Such tests
have application in a variety of areas. In bioinformatidsisiof interest to compare microarray
data from identical tissue types as measured by differdatrédories, to detect whether the data
may be analysed jointly, or whether differences in expenitaleprocedure have caused systematic
differences in the data distributions. Equally of interass comparisons between microarray data
from different tissue types, either to determine whether swbtypes of cancer may be treated as
statistically indistinguishable from a diagnosis perspec or to detect differences in healthy and
cancerous tissue. In database attribute matching, it isafbés to merge databases containing mul-
tiple fields, where it is not known in advance which fields espond: the fields are matched by
maximising the similarity in the distributions of their ees.

We test whether distributiong andq are different on the basis of samples drawn from each of
them, by finding a well behaved (e.g., smooth) function wiclarge on the points drawn from
and small (as negative as possible) on the points fjloM/e use as our test statistic the difference
between the mean function values on the two samples; whenstlérge, the samples are likely
from different distributions. We call this test statistietMaximum Mean Discrepancy (MMD).

Clearly the quality of the MMD as a statistic depends on tless¥F of smooth functions that
define it. On one hand} must be “rich enough” so that the population MMD vanishesd anly
if p=q. Onthe other hand, for the test to be consistent in paivegeds to be “restrictive” enough
for the empirical estimate of the MMD to converge quickly te €xpectation as the sample size
increases. We will use the unit balls in characteristic dpcing kernel Hilbert spaces (Fukumizu
etal., 2008; Sriperumbudur et al., 2010b) as our functiass#s, since these will be shown to satisfy
both of the foregoing properties. We also review classicatrits on distributions, namely the
Kolmogorov-Smirnov and Earth-Mover's distances, which based on different function classes;
collectively these are known as integral probability nmostrfMuller, 1997). On a more practical
note, the MMD has a reasonable computational cost, when aadwith other two-sample tests:
given m points sampled fronp andn from g, the cost iSO(m+-n)? time. We also propose a test
statistic with a computational cost 8{m+n): the associated test can achieve a given Type Il error
at a lower overall computational cost than the quadratt-test, by looking at a larger volume of
data.

We define three nonparametric statistical tests based oMMB. The first two tests are
distribution-free, meaning they make no assumptions déggup andg, albeit at the expense of
being conservative in detecting differences between thtgilolitions. The third test is based on the
asymptotic distribution of the MMD, and is in practice moeasitive to differences in distribution at
small sample sizes. The present work synthesizes and expamésults of Gretton et al. (2007a,b)
and Smola et al. (200A)who in turn build on the earlier work of Borgwardt et al. (200Blote that

1. In particular, most of the proofs here were not providedsogtton et al. (2007a), but in an accompanying technical
report (Gretton et al., 2008a), which this document regace
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the latter addresses only the third kind of test, and thaafipgoach of Gretton et al. (2007a,b) is
rigorous in its treatment of the asymptotic distributiorttod test statistic under the null hypothesis.
We begin our presentation in Section 2 with a formal definitid the MMD. We review the
notion of a characteristic RKHS, and establish that whes a unit ball in a characteristic RKHS,
then the population MMD is zero if and only f= g. We further show that universal RKHSs in
the sense of Steinwart (2001) are characteristic. In Se&jave give an overview of hypothesis
testing as it applies to the two-sample problem, and revigsvreative test statistics, including the
L, distance between kernel density estimates (Anderson, €t9l4), which is the prior approach
closest to our work. We present our first two hypothesis tes&ection 4, based on two different
bounds on the deviation between the population and empMb&D. We take a different approach
in Section 5, where we use the asymptotic distribution ofaimpirical MMD estimate as the basis
for a third test. When large volumes of data are availabkectst of computing the MMD (quadratic
in the sample size) may be excessive: we therefore propdSedtion 6 a modified version of the
MMD statistic that has a linear cost in the number of sampes, an associated asymptotic test.
In Section 7, we provide an overview of methods related taMMD in the statistics and machine
learning literature. We also review alternative functidaesses for which the MMD defines a metric
on probability distributions. Finally, in Section 8, we denstrate the performance of MMD-based
two-sample tests on problems from neuroscience, bioirdtios, and attribute matching using the
Hungarian marriage method. Our approach performs wellgim éiimensional data with low sample
size; in addition, we are able to successfully distinguisstrithutions on graph data, for which ours
is the first proposed test.
A Matlab implementation of the tests iswaiw.gatsby.ucl.ac.uk/ ~ gretton/mmd/mmd.htm.

2. The Maximum Mean Discrepancy

In this section, we present the maximum mean discrepancy@)end describe conditions under
which it is a metric on the space of probability distribusonThe MMD is defined in terms of
particular function spaces that witness the differencdstributions: we therefore begin in Section
2.1 by introducing the MMD for an arbitrary function spaca.Section 2.2, we compute both the
population MMD and two empirical estimates when the assediéunction space is a reproducing
kernel Hilbert space, and in Section 2.3 we derive the RKHf8tfon that witnesses the MMD for
a given pair of distributions.

2.1 Definition of the Maximum Mean Discrepancy

Our goal is to formulate a statistical test that answersaheviing question:

Problem 1 Let x and y be random variables defined on a topological spacwith respective
Borel probability measures p and q . Given observations=Xxi,...,Xn} and Y:= {y1,...,¥n},
independently and identically distributed (i.i.d.) fromapd g, respectively, can we decide whether

p#9?

Where there is no ambiguity, we use the shorthand not&jph(x)] := Ex-p[f(X)] andEy[f(y)] :=
Ey-q/f(y)] to denote expectations with respecttandg, respectively, wherg ~ p indicatesx has
distribution p. To start with, we wish to determine a criterion that, in tlopplation setting, takes
on a unique and distinctive value only when= g. It will be defined based on Lemma 9.3.2 of
Dudley (2002).
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Lemma 1l Let(X,d) be a metric space, and let ¢p be two Borel probability measures defined on
X. Then p=q if and only ifEx(f(x)) = Ey(f(y)) for all f € C(X), where GX) is the space of
bounded continuous functions @

AlthoughC(X) in principle allows us to identifyp = g uniquely, it is not practical to work with such
arich function class in the finite sample setting. We thushéedi more general class of statistic, for
as yet unspecified function classEsto measure the disparity betwepandq (Fortet and Mourier,
1953; Muller, 1997).

Definition 2 LetJ be a class of functions :fX — R and let pg,x,y,X,Y be defined as above. We
define the maximum mean discrepancy (MMD) as

MMD (¥, p,q] := fgbg(Ex[f(X)] —Ey[f(y)])- 1)

In the statistics literature, this is known as an integrabipability metric (Miller, 1997). A biasetl
empirical estimate of the MMD is obtained by replacing thpydation expectations with empirical
expectations computed on the samples X and Y,

feF

We must therefore identify a function class that is rich gjioto uniquely identify whethep = q,
yet restrictive enough to provide useful finite sample eatés (the latter property will be established
in subsequent sections).

2.2 The MMD in Reproducing Kernel Hilbert Spaces

In the present section, we propose as our MMD function fatbe unit ball in a reproducing kernel
Hilbert spaceH. We will provide finite sample estimates of this quantityttbbiased and unbiased),
and establish conditions under which the MMD can be used dtinduish between probability
measures. Other possible function clasgese discussed in Sections 7.1 and 7.2.

We first review some properties 6f (Scholkopf and Smola, 2002). Singéis an RKHS, the
operator of evaluatio®, mappingf € H to f(x) € R is continuous. Thus, by the Riesz represen-
tation theorem (Reed and Simon, 1980, Theorem 11.4), treegefeature mapping(x) from X to
R such thatf (x) = (f,@(x)).. This feature mapping takes the canonical fagix) = k(x,-) (Stein-
wart and Christmann, 2008, Lemma 4.19), whiepe,x2) : X x X — R is positive definite, and
the notationk(x, -) indicates the kernel has one argument fixed, &nd the second free. Note in
particular that@(x), @(y)) s = k(x,y). We will generally use the more concise notatigx) for the
feature mapping, although in some cases it will be clearerite k(x,-).

We next extend the notion of feature map to the embedding abbapility distribution: we
will define an elementy, € H such thatExf = (f, ), for all f € 3, which we call themean
embeddingf p. Embeddings of probability measures into reproducing &ektilbert spaces are
well established in the statistics literature: see Berlarad Thomas-Agnan (2004, Chapter 4) for
further detail and references. We begin by establishinglitions under which the mean embedding
Hp exists (Fukumizu et al., 2004, p. 93), (Sriperumbudur ¢2&l10b, Theorem 1).

2. The empirical MMD defined below has an upward bias—we veiflite an unbiased statistic in the following section.
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Lemma 3 IfK(-,-) is measurable anéy/k(x,x) < o then | € J{.

Proof The linear operatof,f := Exf for all f € 3 is bounded under the assumption, since

Tt = [Exf] < Ex|f] = Exl(F,000)5c] < Ex (VKX Fllc)-

Hence by the Riesz representer theorem, there exjgtseall( such thafl, f = (f,pp),,. If we set
f =q@(t) =k(t,-), we obtainup(t) = (Up,K(t,-)) 5 = ExK(t,x): in other words, the mean embedding
of the distributionp is the expectation undgr of the canonical feature map. |

We next show that the MMD may be expressed as the distangé ietween mean embeddings
(Borgwardt et al., 2006).

Lemma 4 Assume the condition in Lemma 3 for the existence of the nmabedzlings p\ |y is
satisfied. Then

MMD?2[Z, p,q] = Hup—Uqu-

Proof

2
MMD?[F,p,q = [ sup (Ex[f(X)]—Ey[f(y)])]

[Fllge=1

= [ sup <up—uq7f>g{r

[fllgc<1
2
= [l#p— Hal|5-
[ |

We now establish a condition on the RKH$ under which the mean embeddipg is injective,
which indicates that MMIOU, p, q] is a metrié on the Borel probability measures &h Evidently,
this property will not hold for allH: for instance, a polynomial RKHS of degree two cannot distin
guish between distributions with the same mean and varj&otelifferent kurtosis (Sriperumbudur
et al., 2010b, Example 3). The MMD is a metric, however, whérs auniversalRKHS, defined
on a compact metric spacé Universality requires thé(-,-) be continuous, ant be dense in
C(X) with respect to thé, norm. Steinwart (2001) proves that the Gaussian and Lapl&téSs
are universal.

Theorem 5 Let J be a unit ball in a universal RKH3(, defined on the compact metric spate
with associated continuous kerndl k). ThenMMD [, p,q] = 0if and only if p=q.

Proof The proof follows Cortes et al. (2008, Supplementary Appanghose approach is clearer
than the original proof of Gretton et al. (2008a, p. *4)First, it is clear thatp = q implies

3. According to Dudley (2002, p. 26) a metidcx,y) satisfies the following four properties: symmetry, triangi-
equality,d(x,x) = 0, andd(x,y) =0 = x =Y. A pseudo-metric only satisfies the first three properties.

4. Note that the proof of Cortes et al. (2008) requires aniegipbn the of dominated convergence theorem, rather than
using the Riesz representation theorem to show the existeribe mean embeddings andpg as we did in Lemma
3.
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MMD [F, p,q] is zero. We now prove the converse. By the universalit§offor any givene > 0
andf € C(X) there exists g € H such that

If—gll. <t

We next make the expansion

[Exf(X) —Ey(F(y))| < [Exf(X) = Exg(X)[ + [Exa(X) — Eyg(y)| + [Eya(y) — Ey fF(y)]-
The first and third terms satisfy
|[Exf(X) — Exg(x)| < Ex|f(x) —g(x)| <e.

Next, write
Ex9(x) — Eyg(y) = (9 Hp — Ha)5c =0,
since MMD[J, p,q] = 0 impliesp, = pg. Hence

[Exf(x) —Ey(f(y))| <2¢
for all f € C(X) ande > 0, which impliesp = q by Lemma 1. |

While our result establishes the mappingis injective for universal kernels on compact domains,
this result can also be shown in more general cases. Fukurhiali (2008) introduce the notion
of characteristic kernelsthese being kernels for which the mean map is injective.umiku et al.
establish that Gaussian and Laplace kernels are chastictemRY, and thus that the associated
MMD is a metric on distributions for this domain. Sriperundiom et al. (2008, 2010b) and Sripe-
rumbudur et al. (2011a) further explore the properties afrabteristic kernels, providing a simple
condition to determine whether translation invariant kdsrare characteristic, and investigating the
relation between universal and characteristic kernelsamraompact domains.

Given we are in an RKHS, we may easily obtain the squared MMB,— quif in terms of
kernel functions, and a corresponding unbiased finite saegimate.

Lemma 6 Given x and Xindependent random variables with distribution p, and y ghiddepen-
dent random variables with distribution q, the squared dafian MMD is

MMD?[F, p,q] = Exx [K(X,X)] = 2Exy [K(X,Y)] + Eyy [K(Y,Y)] .

where X is an independent copy of x with the same distribution, drnislan independent copy of y.
Anunbiasecempirical estimate is a sum of two U-statistics and a sampigage,

1 m m 1 n n
MMPHEXY = i Q) g R )
2 m n

__lelk(xhyj)' (3)
= J:

mn;

When m= n, a slightly simpler empirical estimate may be used. LetZz,...,z,) be mi.i.d.
random variables, where:z (x,y) ~ px q (i.e., x and y are independent). An unbiased estimate of
MMD? is

m
> h(z.z), 4

) 1
MMDJ%XNL_GRETB#J
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which is a one-sample U-statistic with
h(z,2j) := KX, X}) +K(¥i,Y;) — KOG, i) =KX}, Vi)
Proof Starting from the expression for MMI¥, p,q] in Lemma 4,

MMDZ(T,p.q] = |tp— b3,
= (MpsMp) g+ (Has Ha) ¢ — 2{Mp: M) ¢
= Exx <(P(X)7(P(X/)>g{ +Eyy <(P(Y)7(P(3/)>g{ — 2Exy (9(X), ®Y)) 3¢

The proof is completed by applyin@(x), (X)), = k(x,X'); the empirical estimates follow straight-
forwardly, by replacing the population expectations whtbit corresponding U-statistics and sample
averages. This statistic is unbiased following Serflind3@,hapter 5). |

Note that MML¥ may be negative, since it is an unbiased estimatgMID [T, p,q])?. The only
terms missing to ensure nonnegativity, however hére z ), which were removed to remove spuri-
ous correlations between observations. Consequently wetha bound

1 m
MMD5+m(T_1)i;k(xi,xi)+k(yi,yi) — 2Kk(x;,yi) > 0.

Moreover, while the empirical statistic fon=nis an unbiased estimate of MMDit does not have
minimum variance, since we ignore the cross-tekfs,y;), of which there aré(n). From (3),
however, we see the minimum variance estimate is almostitdéiiSerfling, 1980, Section 5.1.4).

The biased statistic in (2) may also be easily computedviatig the above reasoning. Substi-
tuting the empirical estimatgs ;= %zi";l @(%) andpy := %z{‘zl @(y;) of the feature space means
based on respective sampksandY, we obtain

1 o 2 T 12 :
MMDy, [F,X,Y] = W”Z:lk(xi,xj) i, JZ:lk(Xi,yj) +ﬁ”z:lk(yi,yj) . (5)
Note that the U-statistics of (3) have been replaced by tistitzs. Intuitively we expect the empir-
ical test statistic MMDOJ, X, Y], whether biased or unbiased, to be smap it g, and large if the
distributions are far apart. It cos®((m-n)?) time to compute both statistics.

2.3 Witness Function of the MMD for RKHSs

We define the witness functiofi* to be the RKHS function attaining the supremum in (1), and
its empirical estimatd* to be the function attaining the supremum in (2). From theeaang in
Lemma 4, it is clear that

)0 (), Mp— M)y = Ex[kxt)]—Eylk(y,t)],
M 0 (@) —)g = F3maKG = F 31K

where we have definegdq = m15™; @(x), andpy by analogy. The result follows since the unit
vectorv maximizing (v, x) 4 in a Hilbert space ig = X/ ||X|| 4.

We illustrate the behavior of MMD in Figure 1 using a one-disienal example. The dada
andY were generated from distributiomsandq with equal means and variances, wilaussian

f
f
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0.8

— ) (Gauss)
= = =g (Laplace)q

0.6+

Prob. densities and f*(t)

-0.6

~ol

Figure 1: lllustration of the function maximizing the medsalepancy in the case where a Gaussian
is being compared with a Laplace distribution. Both disttibns have zero mean and unit
variance. The functiori* that witnesses the MMD has been scaled for plotting purposes
and was computed empirically on the basis of 20 samples, using a Gaussian kernel
with 0 =0.5.

andq Laplacian. We chos# to be the unit ball in a Gaussian RKHS. The empirical estinfte
of the functionf* that withesses the MMD—in other words, the function maximgzthe mean
discrepancy in (1)—is smooth, negative where the Laplaosiieexceeds the Gaussian density (at
the center and tails), and positive where the Gaussiantgidadarger. The magnitude dof* is a
direct reflection of the amount by which one density excebdsother, insofar as the smoothness
constraint permits it.

3. Background Material

We now present three background results. First, we int@dbe terminology used in statistical
hypothesis testing. Second, we demonstrate via an exahgdleven for tests which have asymp-
totically no error, we cannot guarantee performance at ay fsample size without making as-
sumptions about the distributions. Third, we review sonterahtive statistics used in comparing
distributions, and the associated two-sample tests (seeSaction 7 for an overview of additional
integral probability metrics).

3.1 Statistical Hypothesis Testing

Having described a metric on probability distributionse(MMD) based on distances between their
Hilbert space embeddings, and empirical estimates (biaseédnbiased) of this metric, we address
the problem of determining whether the empirical MMD shovssadistically significandifference
between distributions. To this end, we briefly describe thmework of statistical hypothesis testing
as it applies in the present context, following Casella aedgBr (2002, Chapter 8). Given i.i.d.
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samplesX ~ p of sizemandY ~ q of sizen, the statistical tesf[(X,Y) : XM x X" — {0,1} is used

to distinguish between the null hypothe§ig : p = g and the alternative hypothesi§ : p # g.
This is achieved by comparing the test statistigMD [F, X, Y] with a particular threshold: if the
threshold is exceeded, then the test rejects the null hgpistiibearing in mind that a zero population
MMD indicatesp = ). The acceptance region of the test is thus defined as thé sl mumbers
below the threshold. Since the test is based on finite sarriplegpossible that an incorrect answer
will be returned. A Type | error is made when= q is rejected based on the observed samples,
despite the null hypothesis having generated the data. eCsely, a Type Il error occurs when
p = qis accepted despite the underlying distributions beinfeint. Thelevela of a test is an
upper bound on the probability of a Type | error: this is a gegarameter of the test which must
be set in advance, and is used to determine the threshold ith wie compare the test statistic
(finding the test threshold for a givam is the topic of Sections 4 and 5). Tipgwer of a test
against a particular member of the alternative clggi.e., a specifidp,q) such thatp +# q) is the
probability of wrongly accepting = q in this instance. A consistent test achieves a leveind a
Type 1l error of zero, in the large sample limit. We will seatlthe tests proposed in this paper are
consistent.

3.2 A Negative Result

Even if a test is consistent, it is not possible to distingudgstributions with high probability at a
given,fixedsample size (i.e., to provide guarantees on the Type I emadthout prior assumptions
as to the nature of the difference betwgeandq. This is true regardless of the two-sample test
used. There are several ways to illustrate this, which eaghigsight into the kinds of differences
that might be undetectable for a given number of samples. fallmving examplé is one such
illustration.

Example 1 Assume we have a distribution p from which we have drawn th igbservations.
We construct a distribution q by drawing®mi.d. observations from p, and defining a discrete
distribution over these frinstances with probability m? each. It is easy to check that if we now
draw m observations from g, there is at Ieas(f:é) %’m > 1—e~! > 0.63 probability that we thereby
obtain an m sample from p. Hence no test will be able to distgigsamples from p and q in this
case. We could make the probability of detection arbityagmall by increasing the size of the
sample from which we construct g.

3.3 Previous Work

We next give a brief overview of some earlier approachesaadtio sample problem for multivariate
data. Since our later experimental comparison is with mdjgecertain of these methods, we give
abbreviated algorithm names in italics where appropridtese should be used as a key to the tables
in Section 8.

5. This may be biased or unbiased.
6. This is a variation of a construction for independencesteghich was suggested in a private communication by John
Langford.
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3.3.1 L, DISTANCE BETWEENPARZEN WINDOW ESTIMATES

The prior work closest to the current approach is the Parzedow-based statistic of Anderson
et al. (1994). We begin with a short overview of the Parzendein estimate and its properties
(Silverman, 1986), before proceeding to a comparison WithRKHS approach. We assume a
distribution p onRY, which has an associated density functign The Parzen window estimate of
this density from an i.i.d. sampbe of sizemis

, wherek Sa'[ISerS/ X)dx=1 andk (x) > 0.
- Z [ k() (>

We may rescale according tOmK ( ) for a bandwidth parametéy,. To simplify the discussion,

we use a single bandwidty,  , for both fp and fq. Assumingm/nis bounded away from zero and
infinity, consistency of the Parzen window estimatesffpand f, requires

im hd,,=0 and olim (m-+ nhd,, , = . (6)
We now show thé., distance between Parzen windows density estimates is ekpase of the bi-
ased MMD in Equation (5). Denote % (p,q) := || f, — fq||, theL, distance between the densities
fp and fy corresponding to the distributiornsandq, respectively. For = 1 the distanc®; (p,q) is
known as the Lévy distance (Feller, 1971), andrfer 2 we encounter a distance measure derived
from the Renyi entropy (Gokcay and Pr|n0|pe 2002). Assdnaeitp and fq are given as kernel
density estimates with kernei(x—x), that is, f, p(X) =m 1y K(% —X) and f, q(y) is defined by
analogy. In this case

2
D2 (fp, fq /[%ZK %ZK(yi— )] dz
—% Zlk(Xi—Xan—lz,Zlk(y yj)—%] Z k(% —Yj),
i,]= )= I]=

wherek(x—y) = [K(x—2)K(y—2z)dz By its definitionk(x—y) is an RKHS kernel, as it is an inner
product betweer (x — z) andk(y — z) on the domairiX.

We now describe the asymptotic performance of a two-sarepteising the statistio,( pr, fq)z.
We consider the power of the test under local departures fhenmull hypothesis. Anderson et al.
(1994) define these to take the form

fq= fp+ 00, (7)

whered € R, andg is a fixed, bounded, integrable function chosen to ensutelsa valid density
for sufficiently small|d|. Anderson et al. consider two cases: the kernel bandwidtiierging to
zero with increasing sample size, ensuring consistenclieParzen window estimates &f and
fq; and the case of a fixed bandwidth. In the former case, thenmimi distance with which the test

can discriminatefy, from fq is” 8 = (m+ n)‘l/zh;i/nz. In the latter case, this minimum distance is
&= (m+n)~Y2, under the assumption that the Fourier transform of theetermloes not vanish

7. Formally, definesy as a threshold for the statistid, (fp, fq)z chosen to ensure the test has leyghnd letd =
(m+n)~1/2h OI/Zc for some fixedc # 0. Whenm,n — o such thatm/n is bounded away from 0 and, and
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on an interval (Anderson et al., 1994, Section 2.4), whicblies the kernek is characteristic
(Sriperumbudur et al., 2010b). The power of thetest against local alternatives is greater when
the kernel is held fixed, since fany rate of decrease dfy,, with increasing sample sizé,will
decrease more slowly than for a fixed kernel.

An RKHS-based approach generalizes lthestatistic in a number of important respects. First,
we may employ a much larger class of characteristic kerhalscannot be written as inner products
between Parzen windows: several examples are given bywsiei(2001, Section 3) and Micchelli
et al. (2006, Section 3) (these kernels are universal, hema@cteristic). We may further generalize
to kernels on structured objects such as strings and gr&utéikopf et al., 2004), as done in our
experiments (Section 8). Second, even when the kernel mayritten as an inner product of
Parzen windows oY, the D3 statistic with fixed bandwidth no longer converges td_amistance
between probability density functions, hence it is moreuratto define the statistic as an integral
probability metric for a particular RKHS, as in Definition hdeed, in our experiments, we obtain
good performance in experimental settings where the diroealty greatly exceeds the sample
size, and density estimates would perform very pdoffgr instance the Gaussian toy example
in Figure 5B, for which performance actually improves whiea dimensionality increases; and the
microarray data sets in Table 1). This suggests it is notgsaag to solve the more difficult problem
of density estimation in high dimensions to do two-sampétirig.

Finally, the kernel approach leads us to establish comsigtagainst a larger class of local
alternatives to the null hypothesis than that consideredrmerson et al. In Theorem 13, we prove
consistency against a class of alternatives encoded irstefrthe mean embeddings pfandq,
which applies to any domain on which RKHS kernels may be defiard not only densities dd.
This more general approach also has interesting conseemiéorcdistributions ofRY: for instance,

a local departure frorfi{p occurs wherp andq differ at increasing frequencies in their respective
characteristic functions. This class of local alternaigannot be expressed in the fobmfor fixed
g, as in (7). We discuss this issue further in Section 5.

3.3.2 MMD FORMULTINOMIALS

Assume a finite domaif( := {1,...,d}, and define the random variablesindy on X such that
pi :=P(x=i) andqg; :=P(y= j). We embedinto an RKHSK via the feature mapping(x) := &,
wheree; is the unit vector irfRY taking value 1 in dimensios, and zero in the remaining entries.
The kernel is the usual inner product BA. In this case,

d
MMDZ[T, p,q| =Hp—q!!§gu:_;(pi—qi)2- (8)

Harchaoui et al. (2008, Section 1, long version) note thatithstatistic may not be the best choice
for finite domains, citing a result of Lehmann and Romano §20theorem 14.3.2) that Pearson’s

assuming conditions (6), the limit

o iy
T(c) 1= <ml'r'1§!mp% (Dz (fp,fq)" > su>

is well-defined, and satisfies< 1(c) < 1 for 0< |c| < o, andTt(c) — 1 asc — co.
8. Thel, error of a kernel density estimate converge@(ars*“/ (4+d)) when the optimal bandwidth is used (Wasserman,
2006, Section 6.5).
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Chi-squared statistic is optimal for the problem of goodrafdit testing for multinomials. It would
be of interest to establish whether an analogous resulsHotdwo-sample testing in a wider class
of RKHS feature spaces.

3.3.3 FURTHER MULTIVARIATE TWO-SAMPLE TESTS

Biau and Gyorfi (2005)Biau) use as their test statistic the distance between discretized esti-
mates of the probabilities, where the patrtitioning is refias the sample size increases. This space
partitioning approach becomes difficult or impossible fagghhdimensional problems, since there
are too few points per bin. For this reason, we use this tdgtfonlow-dimensional problems in
our experiments.

A generalisation of the Wald-Wolfowitz runs test to the rivaltiate domain was proposed and
analysed by Friedman and Rafsky (1979) and Henze and Pefie8@) (FR Wolf) and involves
counting the number of edges in the minimum spanning treetbeeaggregated data that connect
points inX to points inY. The resulting test relies on the asymptotic normality eftist statistic,
and is not distribution-free under the null hypothesis foitéi samples (the test threshold depends
on p, as with our asymptotic test in Section 5; by contrast, oststén Section 4 are distribution-
free). The computational cost of this method using Kruskakyorithm isO((m+ n)?log(m+n)),
although more modern methods improve on thehog n) term: see Chazelle (2000) for details.
Friedman and Rafsky (1979) claim that calculating the matidistances, which cos@((m+-n)?),
dominates their computing time; we return to this point ineéxperiments (Section 8). Two possible
generalisations of the Kolmogorov-Smirnov test to the ivaltate case were studied by Bickel
(1969) and Friedman and Rafsky (1979). The approach of faedand RafskyFR Smirnov)in
this case again requires a minimal spanning tree, and hasilarscost to their multivariate runs
test.

A more recent multivariate test was introduced by Rosenb@@@5). This entails computing
the minimum distance non-bipartite matching over the agggeedata, and using the number of pairs
containing a sample from botk andY as a test statistic. The resulting statistic is distribufiee
under the null hypothesis at finite sample sizes, in whiclpeesit is superior to the Friedman-
Rafsky test; on the other hand, it co(m+ n)3) to compute. Another distribution-free test
(Hall) was proposed by Hall and Tajvidi (2002): for each point frpnit requires computing the
closest points in the aggregated data, and counting how wfahgse are frong (the procedure is
repeated for each point froopwith respect to points fronp). As we shall see in our experimental
comparisons, the test statistic is costly to compute; Hall Bajvidi consider only tens of points in
their experiments.

4. Tests Based on Uniform Convergence Bounds

In this section, we introduce two tests for the two-samplebfam that have exact performance

guarantees at finite sample sizes, based on uniform com@rdemunds. The first, in Section 4.1,

uses the McDiarmid (1989) bound on the biased MMD statiaticl the second, in Section 4.2, uses
a Hoeffding (1963) bound for the unbiased statistic.

9. A goodness of fit test determines whether a sample fpasndrawn from aknowntarget multinomialg. Pearson’s
Chi-squared statistic weights each term in the sum (8) tlwrcsespondingqi’l.
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4.1 Bound on the Biased Statistic and Test

We establish two properties of the MMD, from which we derivieypothesis test. First, we show
that regardless of whether or not= g, the empirical MMD converges in probability at radg(m+
n)*%) to its population value. This shows the consistency of dtaéil tests based on the MMD.
Second, we give probabilistic bounds for large deviatidnhe empirical MMD in the cas@ = q.
These bounds lead directly to a threshold for our first hypsithtest. We begin by establishing the
convergence of MMB[F, X,Y] to MMD|[F, p,q]. The following theorem is proved in A.2.

Theorem 7 Let pq,X,Y be defined as in Problem 1, and assuimek(x,y) < K. Then
Prcy { IMMDG[5 X, Y] ~MMDI[ p.q] > 2((K/m) +(/n)?) + &} < 2exp( zamn )

wherePry y denotes the probability over the m-sample X and n-sample Y.

Our next goal is to refine this result in a way that allows usdfind a test threshold under the null
hypothesisp = g. Under this circumstance, the constants in the exponerstigrely improved. The
following theorem is proved in Appendix A.3.

Theorem 8 Under the conditions of Theorem 7 where additionally: g and m=n,

—_——
Bl(?v p) BZ(H’" p)

MMD[T, X, Y] < M /2, [K(x,X) — k(x,%)] +& < (2K /m)¥2 t¢,

both with probability at leasi — exp(—%‘”) :

In this theorem, we illustrate two possible boui$F, p) andBy(F, p) on the bias in the empirical
estimate (5). The first inequality is interesting inasmuglt provides a link between the bias bound
Bi1 (&, p) and kernel size (for instance, if we were to use a Gaussiarekeiith largeo, thenk(x, x)
andk(x,X') would likely be close, and the bias small). In the contexiesting, however, we would
need to provide an additional bound to show convergence efrgirical estimate dB;(J, p) to its
population equivalent. Thus, in the following test for= g based on Theorem 8, we uBg(F, p)

to bound the bias?

Corollary 9 A hypothesis test of levelfor the null hypothesis g g, that is, forMMD [, p,q] = 0,
has the acceptance regidMD ,[F, X, Y] < «/2K/m<1+ \/2Ioga—1) .

We emphasize that this test is distribution-free: the tastshold does not depend on the particular
distribution that generated the sample. Theorem 7 guaatitve consistency of the test against fixed
alternatives, and that the Type Il error probability desesato zero at rat® (m‘l/ 2), assumingn=
n. To put this convergence rate in perspective, considertateghether two normal distributions
have equal means, given they have unknown but equal varif@asella and Berger, 2002, Exercise
8.41). In this case, the test statistic has a Studeligtribution withn+ m— 2 degrees of freedom,
and its Type Il error probability converges at the same rateua test.

It is worth noting that bounds may be obtained for the devratbetween population mean
embeddinggl, and the empirical embeddings in a completely analogous fashion. The proof

10. Note that we use a tighter bias bound than Gretton et@07E).
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requires symmetrization by means ofjaost samplethat is, a second set of observations drawn
from the same distribution. While not the focus of the prégaper, such bounds can be used to
perform inference based on moment matching (Altun and Sr206I26; Dudik and Schapire, 2006;
Dudik et al., 2004).

4.2 Bound on the Unbiased Statistic and Test

The previous bounds are of interest since the proof stratagype used for general function classes
with well behaved Rademacher averages (see Sriperumbudly 2010a). Whel¥ is the unit ball

in an RKHS, however, we may very easily define a test via a agevee bound on the unbiased
statistic MM[ﬁ in Lemma 4. We base our test on the following theorem, whiehsgaightforward
application of the large deviation bound on U-statisticslogffding (1963, p. 25).

Theorem 10 Assumé < k(x;,xj) < K, from which it follows—2K < h(z,z;) < 2K. Then

—t2
Prcy {MMDZ(F,X,Y) —MMD2(F,p,q) >t} < exp(%)

where m := |m/2] (the same bound applies for deviations-afand below).
A consistent statistical test fgr= q using MMD? is then obtained.

Corollary 11 A hypothesis test of leval for the null hypothesis g q has the acceptance region

MMD2 < (4K //m) /log(a—1).

This test is distribution-free. We now compare the thredtof the above test with that in Corollary
9. We note first that the threshold for the biased statistidiepto an estimate of MMD, whereas
that for the unbiased statistic is for an estimate of MMIBquaring the former threshold to make
the two quantities comparable, the squared threshold inl@oy 9 decreases as 1, whereas the
threshold in Corollary 11 decreasesnasy2. Thus for sufficiently larg* m, the McDiarmid-based
threshold will be lower (and the associated test statistic any case biased upwards), and its Type
Il error will be better for a given Type | bound. This is confiethin our Section 8 experiments.
Note, however, that the rate of convergence of the squaraskedh MMD estimate to its population
value remains at /4,/m (bearing in mind we take the square of a biased estimate,entherbias
term decays as/1/m).

Finally, we note that the bounds we obtained in this sectimhthe last are rather conservative
for a number of reasons: first, they do not take the actuaildisions into account. In fact, they are
finite sample size, distribution-free bounds that hold evetine worst case scenario. The bounds
could be tightened using localization, moments of the ithistion, etc.: see, for example, Bousquet
et al. (2005) and de la Peha and Giné (1999). Any such ingonewts could be plugged straight
into Theorem 19. Second, in computing bounds rather thamgtty characterize the distribution of
MMD [F, X, Y] explicitly, we force our test to be conservative by desigrthe following we aim for
an exact characterization of the asymptotic distributibMBID [F, X, Y] instead of a bound. While
this will not satisfy the uniform convergence requiremeittieads to superior tests in practice.

11. In the case afi = 0.05, this ism> 12.
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5. Test Based on the Asymptotic Distribution of the Unbiasedtatistic

We propose a third test, which is based on the asymptotidhiison of the unbiased estimate of
MMD?2 in Lemma 6. This test uses the asymptotic distribution of MMiDderJ{o, which follows
from results of Anderson et al. (1994, Appendix) and Serf{it®80, Section 5.5.2): see Appendix
B.1 for the proof.

Theorem 12 Let R(xi,xj) be the kernel between feature space mappings from whichéha em-
bedding of p has been subtracted,

R(XHXJ) = <(p(X|) - p.p,(p(Xj) - p—p>g{
= Kk(x;,Xj) — Exk(xi,X) — Exk(X,Xj) + Exxk(x,X), 9)

where X is an independent copy of x drawn from p. Asstirael_, (X x X, pxp) (i.e., the centred
kernel is square integrable, which is true for all p when tleenel is bounded), and that for
M-+, liMy 0 M/t = px andlimmn,e N/t — py := (1—py) for fixed0 < px < 1. Then undefHo,
MMDﬁ converges in distribution according to

tMMDZ(F, X, Y] = 3 N [(px %2 — py 21)2— (pp) 1] (10)

M

where a ~ N(0,1) and b ~ N(0,1) are infinite sequences of independent Gaussian random vari-
ables, and the\; are eigenvalues of

[ KO0 )00 P00 = N ().

We illustrate the MMD density under both the null and altéikeahypotheses by approximating it
empirically for p= g andp # g. Results are plotted in Figure 2.

Our goal is to determine whether the empirical test statiMD? is so large as to be outside
the 1— a quantile of the null distribution in (10), which gives a léeetest. Consistency of this test
against local departures from the null hypothesis is pedidy the following theorem, proved in
Appendix B.2.

Theorem 13 Definepy, py, and t as in Theorem 12, and writg & Hp + &, where g € H is chosen
such that |3+ g; remains a valid mean embedding, df®||,. is made to approach zero as+ « to
describe local departures from the null hypothesis. Tl = ct~1/2 is the minimum distance
between gand p distinguishable by the test.

An example of a local departure from the null hypothesis scdbed earlier in the discussion of
the L, distance between Parzen window estimates (Section 3.BtB.class of local alternatives
considered in Theorem 13 is more general, however: fornestaSriperumbudur et al. (2010b,
Section 4) and Harchaoui et al. (2008, Section 5, long vejgitve examples of classes of pertur-
bationsg; with decreasing RKHS norm. These perturbations have theeptythatp differs fromq

at increasing frequencies, rather than simply with deangaamplitude.

One way to estimate the-1a quantile of the null distribution is using the bootstrap be t

aggregated data, following Arcones and Giné (1992). A#dvely, we may approximate the null
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Figure 2: Left: Empirical distribution of the MMD undef{p, with p andq both Gaussians with
unit standard deviation, using 50 samples from eaRlght: Empirical distribution of
the MMD underH, with p a Laplace distribution with unit standard deviation, and
a Laplace distribution with standard deviatioy/3, using 100 samples from each. In
both cases, the histograms were obtained by computing 2@@péndent instances of
the MMD.

distribution by fitting Pearson curves to its first four monsefdohnson et al., 1994, Section 18.8).
Taking advantage of the degeneracy of the U-statistic, waimlfiorm=n

E([MMD]%) = m(mL—l)Ez’z [i%(z,7)] and
E ([MMDﬁ] 3) - %EH (hz2)Ex (h(zZ")h(Z,2'))] + O(m™*) (11)

(see Appendix B.3), whellg(z,Z) is defined in Lemma & = (x,y) ~ p x q wherex andy are inde-
pendent, and',Z’ are independent copies nfThe fourth momenE ([MMDS] 4) is not computed,

since it is both very smal(m~4), and expensive to calculat®(n?). Instead, we replace the kur-
tosig? with a lower bound due to Wilkins (1944), kyMMD?2) > (skew(MMD2))®+ 1. In Figure

3, we illustrate the Pearson curve fit to the null distribaitithe fit is good in the upper quantiles of
the distribution, where the test threshold is computedalRinwe note that two alternative empiri-
cal estimates of the null distribution have more recentlgrbproposed by Gretton et al. (2009): a
consistent estimate, based on an empirical computatiomeogigenvalueg, in (10); and an alter-
native Gamma approximation to the null distribution, whingts a smaller computational cost but is
generally less accurate. Further detail and experimeataparisons are given by Gretton et al.

E([MMDﬂA)

[E([MMDﬁ]ZN2 -3

12. The kurtosis is defined in terms of the fourth and seconchemts as kur(tMMDﬁ) =
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CDF of the MMD and Pearson fit
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Figure 3: lllustration of the empirical CDF of the MMD and adPgon curve fit. Botlp andq were
Gaussian with zero mean and unit variance, and 50 samplesdrawn from each. The
empirical CDF was computed on the basis of 1000 randomlyrgéze MMD values. To
ensure the quality of fit was determined only by the accurddiiePearson approxima-
tion, the moments used for the Pearson curves were also ¢edhpn the basis of these
1000 samples. The MMD used a Gaussian kernel with0.5.

6. A Linear Time Statistic and Test

The MMD-based tests are already more efficient tharQifre? logm) andO(m?) tests described in
Section 3.3.3 (assuming = n for conciseness). It is still desirable, however, to obtaim) tests
which do not sacrifice too much statistical power. Moreower,would like to obtain tests which
haveO(1) storage requirements for computing the test statisticrdemoto apply the test to data
streams. We now describe how to achieve this by computingesiestatistic using a subsampling
of the terms in the sum. The empirical estimate in this casbtained by drawing pairs froid and

Y respectivelywithoutreplacement.

Lemma 14 Define m ;= UII/ZJ, assume ra= n, and define ('21,22) as in Lemma 6. The estimator
MMDZ?XY ———Eh
SR, Y Xoi—1,Y¥2i—1), (X2, Y2i
I[ ] m; (( 2i—1,Y2i l) ( 2i Y2|))

can be computed in linear time, and is an unbiased estima#é\b %[F, p, ].

While it is expected that MMﬁhas higher variance than MMZas we will see explicitly later), it
is computationally much more appealing. In particular,dtadistic can be used in stream computa-
tions with need for onlyD(1) memory, whereas MMPrequiresO(m) storage and(n?) time to
compute the kerndi on all interacting pairs.

Since MMI:}2 is just the average over a set of random variables, Hoef&lbmund and the cen-
tral limit theorem readily allow us to provide both uniforrarvergence and asymptotic statements
with little effort. The first follows directly from Hoeffdig (1963, Theorem 2).
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Theorem 15 Assumé < k(x;,xj) < K. Then

_¢2
Pty {MMD?(%,X,Y) — MMD?(F, p,q) >t} < eXF(%)

where m := |m/2] (the same bound applies for deviations-@fand below).

Note that the bound of Theorem 10 is identical to that of Theod5, which shows the former is
rather loose. Next we invoke the central limit theorem (eSgrfling, 1980, Section 1.9).

Corollary 16 Assumed < E (h2) < 0, ThenMMD|2 converges in distribution to a Gaussian ac-
cording to

mz (MMD? — MMD? [, p,q]) 2> N (0,07)
wherea? = 2 [Ez’zhz(z, Z) - [Ez’zh(z,z’)]z} , where we use the shorthag 7 := E; 7 pxq-

The factor of 2 arises since we are averaging over ¢ry2| observations. It is instructive to
compare this asymptotic distribution with that of the quaitrtime statistic MM under Ha,
whenm= n. In this case, MM} converges in distribution to a Gaussian according to

m? (MMDZ —MMD? [, p,q]) > N (0,02),

whereo? = 4 (EZ [(Ezh(z,2))?] - [Ezz(h(z,z’))]z) (Serfling, 1980, Section 5.5). Thus for MMD

the asymptotic variance is (up to scaling) the varianc&gfh(z Z)|, whereas for MML‘,3 it is
Var,z[h(z,Z)).

We end by noting another potential approach to reducing disé @f computing an empirical
MMD estimate, by using a low rank approximation to the GrantrimgFine and Scheinberg, 2001;
Williams and Seeger, 2001; Smola and Scholkopf, 2000).n&reimental computation of the MMD
based on such a low rank approximation would req@fend) storage andd(md) computation
(whered is the rank of the approximate Gram matrix which is used taoféme both matrices)
rather tharO(m) storage an@®(n¥) operations. That said, it remains to be determined whatteffe
this approximation would have on the distribution of the &atistic undefHy, and hence on the
test threshold.

7. Related Metrics and Learning Problems

The present section discusses a number of topics related mndaximum mean discrepancy, includ-
ing metrics on probability distributions using non-RKH®étion classes (Sections 7.1 and 7.2), the
relation with set kernels and kernels on probability measEection 7.3), an extension to kernel
measures of independence (Section 7.4), a two-samplstistatsing a distribution over witness
functions (Section 7.5), and a connection to outlier daiad{Section 7.6).

7.1 The MMD in Other Function Classes

The definition of the maximum mean discrepancy is by no meianiged to RKHS. In fact, any
function classF that comes with uniform convergence guarantees and isigutffig rich will enjoy
the above properties. Below, we consider the case wheredhedsfunctions it are dense i€(X)
(which is useful for instance when the functionsdirare norm constrained).
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Definition 17 LetJ be a subset of some vector space. The st@f & a set¥ is
§9]:={af|f e Fanda € [0,)}

Theorem 18 Denote byF the subset of some vector space of functions fiono R for which
SF]NC(X) is dense in €X) with respect to the 4(X) norm. TherMMD [&, p,q] = 0 if and only
if p=q, andMMD [F, p,q] is a metric on the space of probability distributions. Whesrehe star
of F is notdense, thdIMD defines a pseudo-metric space.

Proof It is clear thatp = q implies MMD[F, p,q] = 0. The proof of the converse is very similar
to that of Theorem 5. Defing( := S(F)NC(X). Since by assumptiofi( is dense irC(X), there
exists arh* € H satisfying||h* — f||,, < € for all f € C(X). Write h* := a*g*, whereg* € . By
assumptionExg* — Eyg* = 0. Thus we have the bound
[Exf(¥) —Ey(f(Y)| < [Exf(X) —E"(X)[+ 0" |Exg"(X) — Eyg"(y)[ + [Eyh™(y) — EyF(y)]
< 2t

for all f € C(X) ande > 0, which impliesp = q by Lemma 1.
To show MMD[F, p,q] is a metric, it remains to prove the triangle inequality. Veeén

sup|Epf — Eqf |+ sup|Eqg — Erg| > sup[|Epf — Eqf |+ |Eqf — Ef|]
feF geF feF

> sup|Epf —E/f].
feF

Note that any uniform convergence statements in ternis afow us immediately to characterize
an estimator of MMDRJ, p, q) explicitly. The following result shows how (this reasoniisglso the
basis for the proofs in Section 4, although here we do naticesurselves to an RKHS).

Theorem 19 Letd € (0,1) be a confidence level and assume that for sefdem, F) the following
holds for sample$xi,...,Xn} drawn from p:

Prk {?gg Ex[f]— = Zlf
In this case we have that,
Prxy {{IMMD [F, p,q] — MMD[F,X,Y]| > 2¢(8/2,m, F)} <&,
whereMMD,[F, X, Y] is taken from Definition 2.
Proof The proof works simply by using convexity and suprema asfait

IMMD [, p,q] —MMDb[? X,Y]|

>sém3’)}§6.

_ nggp‘Ex[f] \—fgﬁp Zf X; __Zl )H
1 1
<sup Exm—Eym—ﬁ;f(mﬁ;f(w)'
1m 10
<sup Ex[f]_ﬁi;f(xi) +sup Ey[f]—ﬁizlf(yi)'.
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Bounding each of the two terms via a uniform convergence tquaves the claim. [ |

This shows that MMB[F,X,Y] can be used to estimate MM®, p,q], and that the quantity is
asymptotically unbiased.

Remark 20 (Reduction to Binary Classification) As noted by Friedman (2003), any classifier
which maps a set of observatiofg,|;} with z € X on some domaifl and labels il € {£1}, for
which uniform convergence bounds exist on the convergeinttee @mpirical loss to the expected
loss, can be used to obtain a similarity measure on distidimst—simply assign £ 1if z, € X and
li=—1for z €Y and find a classifier which is able to separate the two setghitnhcase maxi-
mization ofEy[f] — Ey[f] is achieved by ensuring that as many (z) as possible correspond to
f(z) = 1, whereas for as many-z q(z) as possible we have(#) = —1. Consequently neural net-
works, decision trees, boosted classifiers and other abjectwhich uniform convergence bounds
can be obtained can be used for the purpose of distributionpasison. Metrics and divergences
on distributions can also be defined explicitly startingnfirolassifiers. For instance, Sriperumbudur
et al. (2009, Section 2) show thMD minimizes the expected risk of a classifier with linear loss
on the samples X and Y, and Ben-David et al. (2007, Sectioseddhe error of a hyperplane clas-
sifier to approximate thel-distance between distributions (Kifer et al., 2004). Raid Williamson
(2011) provide further discussion and examples.

7.2 Examples of Non-RKHS Function Classes

Other function space inspired by the statistics literature can also be consiteralefining the
MMD. Indeed, Lemma 1 defines an MMD with the space of bounded continuous real-valued
functions, which is a Banach space with the supremum norndléu 2002, p. 158). We now
describe two further metrics on the space of probabilitytrithistions, namely the Kolmogorov-
Smirnov and Earth Mover’s distances, and their associatectibn classes.

7.2.1 KOLMOGOROWSMIRNOV STATISTIC

The Kolmogorov-Smirnov (K-S) test is probably one of the trfamous two-sample tests in statis-
tics. It works for random variablese R (or any other set for which we can establish a total order).
Denote byF,(x) the cumulative distribution function qf and letFx (x) be its empirical counterpart,

Fp(2) :==Pr{x < zfor x~ p} andFx(z) : \X\ leq

It is clear thatF, captures the properties gf The Kolmogorov metric is simply the,, distance
IIFx — Fy||o, for two sets of observation$ andY. Smirnov (1939) showed that far= g the limiting
distribution of the empirical cumulative distribution fttions satisfies

00

1
im_ Prcy { (] 21— Ryl > X} = 25 - 1)ite 2 for x> 0, (12)

which is distribution independent. This allows for an e#iui characterization of the distribution
under the null hypothesi&y. Efficient numerical approximations to (12) can be foundumerical
analysis handbooks (Press et al., 1994). The distributimeuthe alternativgy # g, however, is
unknown.
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The Kolmogorov metric is, in fact, a special instance of MMDp, g for a certain Banach
space (Mdller, 1997, Theorem 5.2).

Proposition 21 Let F be the class of function& — R of bounded variatiol® 1. Then
MMD [, p, ] = [|Fp — F|[.-

7.2.2 EARTH-MOVER DISTANCES

Another class of distance measures on distributions thgtbmavritten as maximum mean discrep-
ancies are the Earth-Mover distances. We ass(ip) is a separable metric space, and define
P1(X) to be the space of probability measuresiofor which [ p(x,z)dp(z) < o for all p € P1(X)
andx € X (these are the probability measures for whighx| < o whenX = R). We then have the
following definition (Dudley, 2002, p. 420).

Definition 22 (Monge-Wasserstein metric)Let pe P1(X) and g€ P1(X). The Monge-Wasserstein
distance is defined as

W(p.a):= inf [ p(cy)duixy).
HEM(p,0)

where M p,q) is the set of joint distributions ol x X with marginals p and q.

We may interpret this as the cost (as represented by theapéity)) of transferring mass dis-
tributed according tg to a distribution in accordance witly wherep is the movement schedule.
In general, a large variety of costs of moving mass frotn y can be used, such as psycho-optical
similarity measures in image retrieval (Rubner et al., 200the following theorem provides the
link with the MMD (Dudley, 2002, Theorem 11.8.2).

Theorem 23 (Kantorovich-Rubinstein) Let pe P1(X) and qe P1(X), whereX is separable.
Then a metric ofP1(S) is defined as
[ rap-a).

[T) — f(y)l
pP(X,Y)

W(p,q) =|p—al = sup
1]l <1

where
Ifll.:= sup
XAy e X
is the Lipschitz seminorthfor real valued f oriX.
A simple example of this theorem is as follows (Dudley, 2B%ercise 1, p. 425).

Example 2 Let X = R with associate(x,y) = [x—y|. Then given f such thaitf||, <1, we use
integration by parts to obtain

< [ I(Fo—Fa) (¥

[ tep-a)| = | [ - Faor (e

13. A functionf defined onja,b] is of bounded variatiof if the total variation is bounded b9, that is, the supremum
over all sums

() — f(xi-a)l,

1<i<n
wherea < xg < ... < xp < b (Dudley, 2002, p. 184).
14. A seminorm satisfies the requirements of a norm bedix|es- 0 only forx = 0 (Dudley, 2002, p. 156).
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where the maximum is attained for the function g with deiveay = 21¢ .r, — 1 (and for which
llgll, = 1). We recover the {.distance between distribution functions,

W(PQ) = [ |(Fy-

One may further generalize Theorem 23 to the set of all &) on arbitrary metric space¥
(Dudley, 2002, Proposition 11.3.2).

Definition 24 (Bounded Lipschitz metric) Let p and g be laws on a metric spa¥e Then

/fdp q‘

is a metric onP(X), where f belongs to the space of bounded Lipschitz functigtisnorm

Ifllee = Il + 11l

Empirical estimates of the Monge-Wasserstein and Boundesthitz metrics ofR? are provided
by Sriperumbudur et al. (2010a).

B(p,q) ;= sup

[ fllgc=1

7.3 Set Kernels and Kernels Between Probability Measures

Gartner et al. (2002) propose kernels for Multi-Instantas€ification (MIC) which deal with sets of
observations. The purpose of MIC is to find estimators whietaale to infer that if some elements
in a set satisfy a certain property, then the set of obsenstalso has this property. For instance,
a dish of mushrooms is poisonous if it contains any poisomoushrooms. Likewise a keyring
will open a door if it contains a suitable key. One is only githke ensemble, however, rather than
information about which instance of the set satisfies thpgmty.

The solution proposed by Gartner et al. (2002) is to map tsemblesX := {X1,...,Xm },
wherei is the ensemble index and, the number of elements in thith ensemble, jointly into
feature space via

. 1 m
o) = ﬁ,;(p(xij)’

and to use the latter as the basis for a kernel method. Thiglesiapproach affords rather good
performance. With the benefit of hindsight, it is now undamgable why the kernel

1 mm

K(Xi, Xj) = mm K(Xiu, Xjv )
uv

produces useful results: it is simply the kernel betweendhmpirical means in feature space
(H(X),1(X})) (Hein et al., 2004, Equation 4). Jebara and Kondor (2008) kxtended this set-
ting by smoothlng the empirical densities before computimger products.

Note, however, that the empirical mean embeddirgnay not be the best statistic to use for
MIC: we are only interested in determining whetlsemeinstances in the domain have the desired
property, rather than making a statement regarding thahllisbn over all instances. Taking this
into account leads to an improved algorithm (Andrews ef8i03).
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7.4 Kernel Measures of Independence

We next demonstrate the application of MMD in determiningettier two random variablesand
y are independent. In other words, assume that pairs of rando@bles(x;,y;) are jointly drawn
from some distributiorp := pyy. We wish to determine whether this distribution factorjztsat
is, whetherq := py x py is the same ap. One application of such an independence measure is in
independent component analysis (Comon, 1994), where thieg find a linear mapping of the
observationsq to obtain mutually independent outputs. Kernel methodssvesnployed to solve
this problem by Bach and Jordan (2002), Gretton et al. (2@)5and Shen et al. (2009). In the
following we re-derive one of the above kernel independeneasures as a distance between mean
embeddings (see also Smola et al., 2007).

We begin by defining

M[Pxy] == Exy[M((x.Y),")]
andppx x py] == ExEy [V((X,y),-)].

Here we assum@is an RKHS ovefX x Y with kernelv((x,y), (X,y)). If xandy are dependent, then
H{Pxy] 7 H[Px x py). Hence we may usi&(V, pxy, Px X Py) := [[U[Pxy] — M[Px X Py]||,, as a measure of
dependence.

Now assume that((x,y), (X,Y)) = k(x,X)I(y,Y), that is, the RKHS? is a direct producH ® G
of RKHSs onX andy. In this case it is easy to see that

D2 (V, Py Px X By) = [|Ey [K(X, )1 (¥, )] = Exc[K(x, )] Ey [1(y ][5
= ExExy [KX)(Y,Y)] — 2EXEyExy [K(X.X)I(y,Y)]
+ExEyExEy [k(X,X’)l (y,)/)] .

The latter is also the squared Hilbert-Schmidt norm of thssfcovariance operator between RKHSs
(Gretton et al., 2005a): for characteristic kernels, thigdro if and only ix andy are independent.

Theorem 25 Denote by G, the covariance operator between random variables x and gwdr
jointly from p,y, where the functions o andy are the reproducing kernel Hilbert spacésand G
respectively. Then the Hilbert-Schmidt nofiy||,,5 equalsA(V, pxy, Px X Py)-

Empirical estimates of this quantity are as follows:

Theorem 26 Denote by K and L the kernel matrices on X and Y respectivetypbg H=1—-1/m
the projection matrix onto the subspace orthogonal to thetarewith all entries set td (wherel is
an mx m matrix of ones). ThenTAtrHKHL is an estimate of? with bias Qm~1). The deviation
from A? is Op(m~1/2).

Gretton et al. (2005a) provide explicit constants. In darté&rcumstances, including in the case of
RKHSs with Gaussian kernels, the empiri¢gl may also be interpreted in terms of a smoothed
difference between the joint empirical characteristicction (ECF) and the product of the marginal
ECFs (Feuerverger, 1993; Kankainen, 1995). This inteaicet does not hold in all cases, however,
for example, for kernels on strings, graphs, and other &tred spaces. An illustration of the wit-
ness functionf* € V from Section 2.3 is provided in Figure 4, for the case of depace detection.
This is a smooth function which has large magnitude wheréaiheédensity is most different from
the product of the marginals.
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Figure 4: lllustration of the function maximizing the meaisalepancy when MMD is used as a
measure of dependence. A sample from dependent randonbleamaandy is shown
in black, and the associated functidh that witnesses the MMD is plotted as a contour.
The latter was computed empirically on the basis of 200 sesyplsing a Gaussian kernel
with 0 =0.2.

We remark that a hypothesis test based on the above kertististiss more complicated than
for the two-sample problem, since the product of the mafgimsributions is in effect simulated
by permuting the variables of the original sample. Furthetails are provided by Gretton et al.
(2008b).

7.5 Kernel Statistics Using a Distribution over Withess Fuictions

Shawe-Taylor and Dolia (2007) define a distance betweeritditbns as follows: lefH be a set of
functions onX andr be a probability distribution ovel. Then the distance between two distribu-
tions p andq is given by

D(p,q) := Efr(r) [ExX[f(¥)] = Ey[F(Y)]]- (13)
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That is, we compute the average distance betweandq with respect to a distribution over test
functions. The following result shows the relation with & D, and is due to Song et al. (2008,
Section 6).

Lemma 27 LetXH be a reproducing kernel Hilbert space &f7, and assume(f ) =r (|| f||5;) with
finite E¢([||f[|5c]. Then O(p,q) = C||up — Hgl| for some constant C which depends onlyJn
andr.

Proof By definitionEx[f(x)] = (up, f),.. Using linearity of the inner product, Equation (13) equals

/|<up—pq,f g{\dr (f)

=l — “qHsf/Kuu Hally, f>g{

where the integral is independentmiy. To see this, note that for anyaq, H H iS a unit vector

dr (1),

which can be transformed into the first canonical basis vefto mstance) by a rotation which
leaves the integral invariant, bearing in mind tha rotation invariant. [ |

7.6 Outlier Detection

An application related to the two sample problem is that dfi@udetection: this is the question of
whether a novel point is generated from the same distribwtfoa particular i.i.d. sample. In a way,
this is a special case of a two sample test, where the secamulesaontains only one observation.
Several methods essentially rely on the distance betweeweh point to the sample mean in feature
space to detect outliers.

For instance, Davy et al. (2002) use a related method to dglalnenstationary time series.
Likewise Shawe-Taylor and Cristianini (2004, p. 117) d&chow to detect novel observations by
using the following reasoning: the probability of being arnlier is bounded both as a function of
the spread of the points in feature space and the unceriaititg empirical feature space mean (as
bounded using symmetrisation and McDiarmid’s tail bound).

Instead of using the sample mean and variance, Tax and D889 kstimate the center and
radius of a minimal enclosing sphere for the data, the adgaenbeing that such bounds can po-
tentially lead to more reliable tests for single observaioScholkopf et al. (2001) show that the
minimal enclosing sphere problem is equivalent to novedtiedtion by means of finding a hyper-
plane separating the data from the origin, at least in the ohsadial basis function kernels.

8. Experiments

We conducted distribution comparisons using our MMD-bassts on data sets from three real-
world domains: database applications, bioinformatics] aeurobiology. We investigated both
uniform convergence approaches (MiM@ith the Corollary 9 threshold, and MMPH with the
Corollary 11 threshold); the asymptotic approaches withi$toap (MM[ﬁ B) and moment match-
ing to Pearson curves (MMM), both described in Section 5; and the asymptotic approaity
the linear time statistic (MME) from Section 6. We also compared against several altgasafiiom
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the literature (where applicable): the multivariate ttése Friedman-Rafsky Kolmogorov-Smirnov
generalisatior{fSmir), the Friedman-Rafsky Wald-Wolfowitz generalisatigtiolf), the Biau-Gyorfi
test(Biau) with a uniform space partitioning, and the Hall-Tajviditt¢dall). See Section 3.3 for
details regarding these tests. Note that we do not apply the-8yorfi test to high-dimensional
problems (since the required space partitioning is no Iopgssible), and that MMD is the only
method applicable to structured data such as graphs.

An important issue in the practical application of the MMBsked tests is the selection of the
kernel parameters. We illustrate this with a Gaussian RBRétewhere we must choose the kernel
width o (we use this kernel for univariate and multivariate data,nmt for graphs). The empirical
MMD is zero both for kernel size = 0 (where the aggregate Gram matrix oXeandY is a unit
matrix), and also approaches zeramas> « (where the aggregate Gram matrix becomes uniformly
constant). We sei to be the median distance between points in the aggregafdesaas a compro-
mise between these two extremes: this remains a heuristidaisto those described in Takeuchi
et al. (2006) and Scholkopf (1997), and the optimum choickeonel size is an ongoing area of
research. We further note that setting the kernel usingaimpke being tested may cause changes to
the asymptotic distribution: in particular, the analysisSiections 4 and 5 assumes the kernel not to
be a function of the sample. An analysis of the convergendéMb when the kernel is adapted on
the basis of the sample is provided by Sriperumbudur et @09p, although the asymptotic distri-
bution in this case remains a topic of research. As a practiatter, however, the median heuristic
has not been observed to have much effect on the asymptstitbdtion, and in experiments is
indistinguishable from results obtained by computing thmkl on a small subset of the sample set
aside for this purpose. See Appendix C for more detail.

8.1 Toy Example: Two Gaussians

In our first experiment, we investigated the scaling perfomoe of the various tests as a function
of the dimensionalityd of the spaceéX c RY, when bothp andq were Gaussian. We considered
values ofd up to 2500: the performance of the MMD-based tests cannotfidre be explained
in the context of density estimation (as in Section 3.3.ihgesthe associated density estimates are
necessarily meaningless here. The levels for all tests setiagn = 0.05, m= n= 250 samples were
used, and results were averaged over 100 repetitions. firdshease, the distributions had different
means and unit variance. The percentage of times the nulithgpis was correctly rejected over a
set of Euclidean distances between the distribution mezhsdlues logarithmically spaced from
0.05 to 50), was computed as a function of the dimensionefithe normal distributions. In case
of the t-test, a ridge was added to the covariance estimmt/did singularity (the ratio of largest
to smallest eigenvalue was ensured to be at most 2). In tomdease, samples were drawn from
distributionsN(0,1) andN(0,0?l) with different variance. The percentage of null rejectioves
averaged over 26 values logarithmically spaced from 4% to 10. The t-test was not compared in
this case, since its output would have been irrelevant. IReste plotted in Figure 5.

In the case of Gaussians with differing means, we observé-tist performs best in low di-
mensions, however its performance is severely weakened thieenumber of samples exceeds the
number of dimensions. The performanceMD? M is comparable to the t-test in low dimen-
sions, and outperforms all other methods in high dimensidiee worst performance is obtained
for MMD? H, thoughMMDy, also does relatively poorly: this is unsurprising givert tihese tests
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Figure 5: Type Il performance of the various tests when sdjpay two Gaussians, with test level
o = 0.05. A Gaussians having same variance and different ma&r3aussians having
same mean and different variances.

derive from distribution-free large deviation bounds, dne sample size is relatively small. Re-
markably,MMD? performs quite well compared with the Section 3.3.3 testigh dimensions.

In the case of Gaussians of differing variance, el test performs best, followed closely
by MMDZ2 M. FR Wolf and (to a much greater exter R Smirnovboth have difficulties in high
dimensions, failing completely once the dimensionalitgdimes too great. The linear-cost test
MMD? again performs surprisingly well, almost matching kis1D2 M performance at the highest
dimensionality. BothtMMDZ H and MMDy, perform poorly, the former failing completely: this
is one of several illustrations we will encounter of the muggbater tightness of the Corollary 9
threshold over that in Corollary 11.

8.2 Data Integration

In our next application of MMD, we performed distributiorstig for data integration: the objec-
tive being to aggregate two data sets into a single sampile tihé understanding that both original
samples were generated from the same distribution. Claaityimportant to check this last con-
dition before proceeding, or an analysis could detect paitn the new data set that are caused
by combining the two different source distributions. We shaeveral real-world settings for this
task: we compared microarray data from normal and tumandisgHealth status), microarray data
from different subtypes of cancer (Subtype), and local figtential (LFP) electrode recordings
from the Macaque primary visual cortex (V1) with and withapike events (Neural Data | and
I, as described in more detail by Rasch et al., 2008). Inagks, the two data sets have different
statistical properties, but the detection of these diffees is made difficult by the high data dimen-
sionality (indeed, for the microarray data, density estiomeis impossible given the sample size and
data dimensionality, and no successful test can rely orratecdensity estimates as an intermediate
step).
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| Data Set | Attr. | MMDy, [ MMDZH | MMDZB | MMDZM | t-test| Wolf [ Smir | Hall |
Neural Data | | Same 100.0 100.0 96.5 96.5] 100.0| 97.0] 95.0] 96.0

Different | 38.0 100.0 0.0 00| 42.0] 0.0] 100] 49.0

Neural Data Il | Same 100.0 100.0 94.6 95.2 | 100.0| 95.0 | 94.5| 96.0

Different | 99.7 100.0 33 3.4]100.0] 08] 31.8] 5.9

Health status | Same 100.0 100.0 95.5 94.4| 100.0| 94.7 | 96.1| 95.6

Different | 100.0 100.0 1.0 0.8]100.0] 28] 44.0] 35.7

Subtype Same 100.0 100.0 99.1 96.4 ] 100.0| 94.6 | 97.3] 96.5

Different | 100.0 100.0 0.0 0.0]1000] 00] 284] 0.2

Table 1: Distribution testing for data integration on mudtiate data. Numbers indicate the per-
centage of repetitions for which the null hypothesis (p=@gwaccepted, givem = 0.05.
Sample size (dimension; repetitions of experiment): Nelu4@00 (63; 100) ; Neural Il
1000 (100; 1200); Health Status 25 (12,600; 1000); Subty#p@A18; 1000).

[ DataSet [ Atir. | MMDy, | MMD3H | MMDZB | MMDZM [ ttest | Wolf | Smir | Hall | Biau |
BIO Same 100.0 100.0 938 948] 952 90.3] 958 953 99.3

Different 20.0 52.6 17.2 176 | 362 172 186 179 421

FOREST Same 100.0 100.0 96.4 96.0] 97.4] 946 99.8] 95.5] 100.0

Different 3.9 11.0 0.0 00] 02] 38| 00[501] 0.0

CNUM Same 100.0 100.0 945 938] 940 984] 975][ 912 985

Different 14.9 52.7 2.7 25] 1917 ] 225| 116 | 79.1] 505

FOREST10D[ Same 100.0 100.0 94.0 94.0 ] 100.0 [ 935 96.5] 97.0 | 100.0

Different 86.6 100.0 0.0 00] 00] 00| 1.0]720] 100.0

Table 2: Naive attribute matching on univariate (BIO, FORESNUM) and multivariate (FOR-
EST10D) data. Numbers indicate the percentage of timesuhdypothesisp = q was
accepted witln = 0.05, pooled over attributes. Sample size (dimension; ate#) repeti-
tions of experiment): BIO 377 (1; 6; 100); FOREST 538 (1; 100t CNUM 386 (1; 13;
100); FOREST10D 1000 (10; 2; 100).

We applied our tests to these data sets in the following dashiiven two data sets A and B,
we either chose one sample from A and the other frofatBibutes = different) or both samples
from either A or B(attributes = same) We then repeated this process up to 1200 times. Results
are reported in Table 1. Our asymptotic tests perform bétear all competitors besidéSolf: in
the latter case, we have greater Type Il error for one newat det, lower Type Il error on the
Health Status data (which has very high dimension and lowpsasize), and identical (error-free)
performance on the remaining examples. We note that the Mgper of the bootstrap test on the
Subtype data set is far from its design value df3) indicating that the Pearson curves provide a
better threshold estimate for these low sample sizes. Eartimaining data sets, the Type | errors
of the Pearson and Bootstrap approximations are close., Ttndarger data sets, the bootstrap is
to be preferred, since it cos® m?), compared with a cost @(m?) for the Pearson curves (due to
the cost of computing (11)). Finally, the uniform convergefbased tests are too conservative, with
MMDy, finding differences in distribution only for the data withidast sample size, and MMH
never finding differences.
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8.3 Computational Cost

We next investigate the tradeoff between computational aad performance of the various tests,
with a particular focus on how the quadratic-cost MMD testsf Sections 4 and 5 compare with the
linear time MMD-based asymptotic test from Section 6. Wesider two 1-D data sets (CNUM and
FOREST) and two higher-dimensional data sets (FOREST10DN&WUROII). Results are plotted
in Figure 6. If cost is not a factor, then the Ml\a shows best overall performance as a function
of sample size, with a Type |l error dropping to zero as fagaster than competing approaches in
three of four cases, and narrowly trailikdR Wolfin the remaining case (FOREST10D). That said,
for data sets CNUM, FOREST, and FOREST10D, the linear timeDviMhieves a given Type Il
error at a far smaller computational cost than MR albeit by looking at a great deal more data.
In the CNUM case, however, the linear test is not able to a&ehiero error even for the largest
data set size. For the NEUROII data, attaining zero Typertirdrtas about the same cost for both
approaches. The difference in cost of Mlﬁle and MMD, is due to the bootstrapping required for
the former, which produces a constant offset in cost betwleerwo (here 150 resamplings were
used).

Thet-test also performs well in three of the four problems, anthat represents the best cost-
performance tradeoff in these three data sets (i.e., wihitglires much more data than MI@
for a given Type Il error rate, it costs far less to computd)efFtest assumes that only the difference
in means is important in distinguishing the distributioasd it requires an accurate estimate of
the within-sample covariance; the test fails completeltt@nNEUROII data. We emphasise that
the Kolmogorov-Smirnov results in 1-D were obtained usihg tlassical statistic, and not the
Friedman-Rafsky statistic, hence the low computationat.cdhe cost of both Friedman-Rafsky
statistics is therefore given by iR Wolf cost in this case. The latter scales similarly with sample
size to the quadratic time MMD tests, confirming Friedman Baésky’s observation that obtaining
the pairwise distances between sample points is the domaoeh of their tests. We also remark
on the unusual behaviour of the Type Il error of fig Wolf test in the FOREST data set, which
worsens for increasing sample size.

We conclude that the approach to be recommended for twolsaegiing will depend on the
data available: for small amounts of data, the best restdt®latained using every observation to
maximum effect, and employing the quadratic time M§/B®test. When large volumes of data are
available, a better option is to look at each point only omd@ch can yield lower Type Il error for a
given computational cost. It may also be worth doing a tfiesttin this case, and only running more
sophisticated nonparametric tests if the t-test acceptauh hypothesis, to verify the distributions
are identical in more than just mean.

8.4 Attribute Matching

Our final series of experiments addresses automatic a#rimatching. Given two databases, we
want to detect corresponding attributes in the schemaseasfethlatabases, based on their data-
content (as a simple example, two databases might havectegpields Wage and Salary, which are
assumed to be observed via a subsampling of a particuladgimry and we wish to automatically
determine that both Wage and Salary denote to the same vindedttribute). We use a two-
sample test on pairs of attributes from two databases to Gimeésponding pair$ This procedure

15. Note that corresponding attributes may have differettidutions in real-world databases. Hence, schema rimggch
cannot solely rely on distribution testing.
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Figure 6: Linear-cost vs quadratic-cost MMD. The first colushows Type Il performance, and
the second shows runtime. The dashed grey horizontal Ioiedtes zero Type Il error
(required due to log y-axis).
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is also calledable matchingor tables from different databases. We performed attilboatching

as follows: first, the data set D was split into two halves A Bn&ach of then attributes in A (and

B, resp.) was then represented by its instances in A (respVBYhen tested all pairs of attributes
from A and from B against each other, to find the optimal assigmt of attribute\,, ..., A, from

A to attributesBs, ..., B, from B. We assumed that A and B contain the same number of attributes

As a naive approach, we could assume that any possible pattrifutes might correspond,
and thus that every attribute 8fneeds to be tested against all the attributeB td find the opti-
mal match. We report results for this naive approach, aggeelgover all pairs of possible attribute
matches, in Table 2. We used three data sets: the censusdmtaieset from the UCI KDD archive
(CNUM), the protein homology data set from the 2004 KDD CupdB(Caruana and Joachims,
2004), and the forest data set from the UCI ML archive (Blake lerz, 1998). For the final data
set, we performed univariate matching of attributes (FORE®d multivariate matching of tables
(FOREST10D) from two different databases, where each taipleesents one type of forest. Both
our asymptotic MM3-based tests perform as well as or better than the alteesativotably for
CNUM, where the advantage of MMDs large. Unlike in Table 1, the next best alternatives ate no
consistently the same across all data: for example, in B& #greWolf or Hall, whereas in FOR-
EST they areSmir, Biau, or the t-test. Thus, MME)appears to perform more consistently across
the multiple data sets. The Friedman-Rafsky tests do nayaweturn a Type | error close to the
design parameter: for instand&/plf has a Type | error of 9.7% on the BIO data set (on these data,
MMD?2 has the joint best Type Il error without compromising theigiesd Type | performance).
Finally, MMDy, performs much better than in Table 1, although surprisiitdbils to reliably detect
differences in FOREST10D. The results of MfIBl are also improved, although it remains among
the worst performing methods.

A more principled approach to attribute matching is alscsfis. Assume that
OA) = (1(A1), ®(A2), ..., (An)): in other words, the kernel decomposes into kernels on ttie in
vidual attributes of A (and also decomposes this way on thigiates of B). In this cas@yiMD? can
be writtens ", || (A) — i (Bi)||?, where we sum over the MMD terms on each of the attributes.
Our goal of optimally assigning attributes frddrto attributes ofA via MMD is equivalent to finding
the optimal permutatiom of attributes ofB that minimizesy [, || (A) — pi(Bn(i))HZ. If we define
Cij = i (A) — 1 (Bj)||?, then this is the same as minimizing the sum d¥igy;). This is the linear
assignment problem, which co€%n®) time using the Hungarian method (Kuhn, 1955).

While this may appear to be a crude heuristic, it nonetheleBaes a semi-metric on the sample
spaceX andY and the corresponding distributiopgindg. This follows from the fact that matching
distances are proper metrics if the matching cost funcoasnetrics. We formalize this as follows:

Theorem 28 Let p,q be distributions orRY and denote by ipg; the marginal distributions on the
i-th variable. Moreover, denote by the symmetric group ofil,...,d}. The following distance,
obtained by optimal coordinate matching, is a semi-metric.

d
A[St? P, q] = T[mEIIIPZlMMD [3~7 pivqT[(i)]'
i=

Proof ClearlyA[F, p,q] is nonnegative, since it is a sum of nonnegative quantitiest we show
the triangle inequality. Denote hya third distribution onRY and letTt, 4, T and 1, be the

753



GRETTON, BORGWARDT, RASCH, SCHOLKOPF AND SMOLA

distance minimizing permutations over the associateds am {p,q,r}. It follows that
d d
A[St? p, q] +A[?7 a, r] - ZMMD [?7 pivqT[pq(i)] + ZMMD [3~7 Qi7rru1‘r(i)]
1= 1=

d
> ZMMD [, P i gome )] = BIF, P,
i=

The first inequality follows from the triangle inequality &MD,
MMD [T, Pi, Gy, )] + MMD [F, G, i s U qortg ) i)] = MMD [T, i, Vg ortg, i) -

The second inequality is a result of minimization over |

We tested this 'Hungarian approach’ to attribute matchiray MMDﬁ B on three univariate
data sets (BIO, CNUM, FOREST) and for table matching on atfo(FOREST10D). To study
MMD?2 B on structured data, we used two data sets of protein gr&ROTEINS and ENZYMES)
and used the graph kernel for proteins from Borgwardt et280%) for table matching via the
Hungarian method (the other tests were not applicable setigeaph data). The challenge here is
to match tables representing one functional class of pret@r enzymes) from data set A to the
corresponding tables (functional classes) in B. Resuisshown in Table 3. Besides on the BIO
and CNUM data sets, MMBB made no errors.

| Data Set | Datatype | No. attributes| Sample size Repetitions| % correct|
BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D| multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS | structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching via M§IB on univariate (BIO, CNUM,
FOREST), multivariate (FOREST10D), and structured (ENZY3/ PROTEINS) data
(a = 0.05; “% correct” is the percentage of correct attribute mescbver all repetitions).

9. Conclusion

We have established three simple multivariate tests fopawimg two distributiong andg, based
on samples of sizen andn from these respective distributions. Our test statistihésmaximum
mean discrepancy (MMD), defined as the maximum deviatiohérepectation of a function eval-
uated on each of the random variables, taken over a sufficiech function class: in our case, a
reproducing kernel Hilbert space (RKHS). Equivalently #tatistic can be written as the norm of
the difference between distribution feature means in thelRKWe do not require density estimates
as an intermediate step. Two of our tests provide Type | é&wands that are exact and distribution-
free for finite sample sizes. We also give a third test baseqliantiles of the asymptotic distribution
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of the associated test statistic. All three tests can be ateddnO((m+n)?) time, however when
sufficient data are available, a linear time statistic candwssl, which in our experiments was able to
achieve a given Type Il error at smaller computational dmgipoking at many more samples than
the quadratic-cost tests.

We have seen in Section 7 that several classical metricsadrapility distributions can be writ-
ten as integral probability metrics with function clasdest fare not Hilbert spaces, but rather Banach
or seminormed spaces (for instance the Kolmogorov-SmieralEarth Mover’s distances). It is
therefore of interest to establish under what conditiorss@uld write these discrepancies in terms
of norms of differences of mean embeddings. Sriperumbutiat. €2011b) provide expressions
for the maximum mean discrepancy in terms of mean embeddingproducing kernel Banach
spaces. When the Banach space is not an RKBS, the questiatabfighing a mean embedding
interpretation for the MMD remains open.

We also note (following Section 7.3) that the MMD for RKHSsassociated with a particular
kernel between probability distributions. Hein et al. (2D@describe several further such kernels,
which induce corresponding distances between featureegiatribution mappings: these may in
turn lead to new and powerful two-sample tests.

Two recent studies have shown that additional divergencasures between distributions can
be obtained empirically through optimization in a repradgckernel Hilbert space. Harchaoui
et al. (2008) define a two-sample test statistic arising ftbenkernel Fisher discriminant, rather
than the difference of RKHS means; and Nguyen et al. (2008)imta KL divergence estimate
by approximating the ratio of densities (or its log) with aaétion in an RKHS. By design, both
these kernel-based statistics prioritise different fieggtof p andq when measuring the divergence
between distributions, and the resulting effects on distishability of distributions are therefore of
interest.
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Appendix A. Large Deviation Bounds for Tests with Finite Sanple Guarantees

This section contains proofs of the theorems of SectionWd begin in Section A.1 with a review
of McDiarmid’s inequality and the Rademacher average ofration class. We prove Theorem 7
in Section A.2, and Theorem 8 in Section A.3.
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A.1 Preliminary Definitions and Theorems
We need the following theorem, due to McDiarmid (1989).

Theorem 29 (McDiarmid’s inequality) Let f : X™— R be a function such that for alk {1,...,m},
there exist c< o« for which

sup | f(Xq,...Xm) — F(X1,.. . X—1,%, %41, .-, Xm)| < Gi.
XeXmgeX

Then for all probability measures p and every 0,

2
Pr (f(X) —Ex(f(X)) >1t) < exp(—%) )

whereEy denotes the expectation over the m random variahles x, andPry denotes the proba-
bility over these m variables.

We also define the Rademacher average of the function £lasth respect to then-sampleX.

Definition 30 (Rademacher average off on X) LetJ be the unit ball in an RKHS on the domain
X, with kernel bounded according ®< k(x,y) < K. Let X be an i.i.d. sample of size m drawn
according to a probability measure p 6 and leto; be i.i.d and take values if—1, 1} with equal
probability. We define the Rademacher average

m

%igci f(Xi)

< (K/mY2,

Rn(F,X) = Egsup
feF

where the upper bound is due to Bartlett and Mendelson (2D8&)ma 22), andE, denotes the
expectation over all the;. Similarly, we define

l m
Rn(F,p) :=Exgsup|— S aif(%)].
( p) X'GfesE) mi; if( )

A.2 Bound whenp and g May Differ

We want to show that the absolute difference between MH P, q) and MMDy(F, X,Y) is close to
its expected value, independent of the distributipédg. To this end, we prove three intermediate
results, which we then combine. The first result we need ipaeiubound on the absolute difference
between MMOJ, p,q) and MMDy,(F, X,Y). We have

MMD (7,p.G) ~ MMDY(. X.Y)

1 n
= |sup(Ex(f)—Ey(f))—su f(x)—=
febE( X() y fe?p< Zi nzi )‘
< sup|Ex(f) —Ey(f __Zlf Xi) ‘ (14)
feF

A(p,aX.,Y)
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Second, we provide an upper bound on the difference bet&éprg, X,Y) and its expectation.
Changing either ok; or y; in A(p,g,X,Y) results in changes in magnitude of at mokt'Z/m
or 2K/2/n, respectively. We can then apply McDiarmid’s theorem, gigedenominator in the

exponent of
2 2 1 1 m-+n
m (2K*/2/m) "+ n (2k¥2/n) " = 4K <—+—>:4K n
m n mn

to obtain

€2mn
Prcy (A(p,a,X,Y) —Exy[A(p,g,X,Y)] >€) < eXp<—m> . (15)

For our final result, we exploit symmetrisation, followirfgr example, van der Vaart and Wellner
(1996, p. 108), to upper bound the expectatiod\gb, g, X,Y). Denoting byX’ an i.i.d sample of
sizemdrawn independently of (and likewise forY’), we have

EX,Y [A( p7 q7X7Y)]

1n 10

= EX’YngbPEX(f)—Ei;f(xi)_Ey(fH_ﬁi;f(yj)

1m 1m (L L
= Ex,v?;f Ex/ (a_ZH%)) —a_;f(xi)—EY' (ﬁi;f()/j)> ﬁ Z
UL TN e
= Exmxgvzqoffgg liZGI(f()@_f(X‘)) En-iioi/(f(ylj)—f(yj))‘
§ B 5 (100~ 1)+ Evvozit a 1)~ 1)
(%) 2[Rn(F, p) +Ra (5, 0)].
< 2[(K/mY2+ K/, (16)

—
o
=

where (a) uses Jensen’s inequality, (b) uses the triangtpuality, (c) substitutes Definition 30 (the
Rademacher average), and (d) bounds the Rademacher aextsgevia Definition 30.

Having established our preliminary results, we proceetieéqroof of Theorem 7.
Proof (Theorem 7) Combining Equations (15) and (16), gives

Pl (A(p,q,X,Y) -2 [(K/m)l/2+ (K/n)l/z} > s) < exp(—%) .

Substituting Equation (14) yields the result.
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A.3 Bound whenp=gandm=n

In this section, we derive the Theorem 8 result, namely thgelaeviation bound on the MMD
whenp = gandm= n. Note also that we consider only positive deviations of M\B, X,Y) from
MMD (&, p,q), since negative deviations are irrelevant to our hypothiesit. The proof follows the
same three steps as in the previous section. The first stég)iiécomes

MMDp(F,X,Y)—=MMD (F,p,q) = MMDu(F,X,X")—0

- sup(%i(f(n)—f(%))) (17)

fesF

The McDiarmid bound on the difference between (17) and ifeetation is now a function ofr2

observations in (17), and has a denominator in the exporim‘n()ZKl/z/m)2 =8K/m. We use a
different strategy in obtaining an upper bound on the exque(t7), however: this is now

Exx: [supE i(f(m) - f(%i))]

feg ME
= lExx zi(cmx.) cp(x/i))H
1 2

NI

< % [2mEXk(x, X) + 2m(m— 1)Ey ¢ K(x,X) — 2mPEy k(%X )]

2
- [E Exx (K(X,X) —K(x,X ))} (18)

(2K /m)"/2. (19)

IN

We remark that both (18) and (19) bound the amount by whiclh@sed estimate of the population
MMD exceeds zero undéily. Combining the three results, we find that ungy,

, 2 : —&2m
Prxx [ MMDp(F,X,X") — EEX,X/(k(x,x)—k(x,x’)) >e| < expl and

' 1/2 —&Zm
Prxﬁx/(MMDb(S",X,X)—(ZK/m) >e) < ep( 5 )

Appendix B. Proofs for Asymptotic Tests

We derive results needed in the asymptotic test of Sectidyppendix B.1 describes the distribution
of the empirical MMD undefH (i.e., p=q). Appendix B.2 establishes consistency of the test under
local departures frorfi{g. Appendix B.3 contains derivations of the second and thicdnents of

the empirical MMD, also undet(o.
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B.1 Convergence of the Empirical MMD under Hg

In this appendix, we prove Theorem 12, which describes thigilolition of the unbiased estimator
MMD2[F, X,Y] under the null hypothesis. Thus, throughout this sectioaréader should bear in
mind thaty now has the same distribution &sthat is,y ~ p. We first recall from Lemma 6 in
Section 2.2 the population expression,

MMDZ[?v P, q] = EX,X’ k(X7 X,) + Ey,y’ k(y7)/) - 2EX-,yk(X7 y)7

and its empirical counterpart,

l m m
MMD[F,X,Y] = mz‘zkxuxj i Yi)

A

=17
2mn

szm,yj (20)

We begin with the asymptotic analysis of MM[Z, X, Y] under the null hypothesis. This is based
on the reasoning of Anderson et al. (1994, Appendix), bgarimind the following changes:

e we do not need to deal with the bias terBigin Anderson et al. (1994, Appendix) that vanish
for large sample sizes, since our statistic is unbiased;

e We require greater generality, since our kernels are nagsecily inner products iby be-
tween probability density functions (although this is acdpecase: see Section 3.3.1).

We first transform each term in the sum (20) by centering. Wtdg bothx andy have the same
mean embedding,. Thus we replace each instancekok;, x;j) in the sum with a kernek(x;,x;)
between feature space mappings from which the mean has biegacted,

kOu,xi) 1= (@06) = M, GX) — Hp) 5
= K%, X)) — Exk(xi,X) — Exk(X, X} ) + Exxk(x,X).
The centering terms cancel across the three terms (thecisbetween the two points is unaffected

by an identical global shift in both the points). This givee tequivalent form of the empirical
MMD,

MMD[F.X.Y] = ———3 3 kix,x)+ L)

where each of the three sums has expected value zero. Nogetioufar that the U-statistics in
k(x,x;j) are degenerate, meaning

Exk(x,V) = Exk(x,V) — ExxK(%,X) — Exk(%,V) + Exxk(x,X) = (22)

We define the operat®; : Lo(p) — I satisfying
= [ kexx)gx)dpix).
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According to Reed and Simon (~1980, Theorem VI.23), this ajoeris Hilbert-Schmidt, and hence
compact, if and only if the kernddis square integrable undey

keLa(XxX,pxp). (23)

We may write the kernefk(xi,xj) in terms of eigenfunctiongy (x) with respect to the probability
measurep,

KoX) = 3 M (09 (), (24)
where -
JLKOW09dR0 = Ada(x).
[ wi6ow;odp00 = . (25)

and the convergence isiin (X x X, p x p). Since the operator is Hilbert-Schmidt, we have by Reed
and Simon (1980, Theorem VI1.22) thaf\? < co.
Using the degeneracy of the U-statistic in (22), then wke# O,

NEA() = [ Eckxx)0i00dp
0,

and hence
ExWi(x) = 0. (26)

In other words, the eigenfunctions(x) are zero mean and uncorrelated.
We now use these results to find the asymptotic distributfd®D. First,

m m 1mmoo

%i;;k(xi,xj) = ﬁi;;.;}"w'(xi)""(xi)
2
_ %lzl)\' ((Z%(ﬁ)) IleJ,z(xi))

S S N1, 27)

wherea ~ N(0,1) are i.i.d., and the final relation denotes convergence itmiloligsion, which is
proved by Serfling (1980, Section 5.5.2) using (25) and {26%iven that the random variables
a12 — 1 are zero mean with finite variance, it can be shown eitheKweimogorov’'s inequality or
by the Martingale convergence theorem that the above suwemges almost surely §° ;A? < o
(Grimmet and Stirzaker, 2001, Chapter 7.11 Exercise 30Wwé\bave seen, this is guaranteed under
the assumption (23).

Likewise
n n

%;;k(yi,yj)g

16. Simply replacén (x;,x}) with k(x;,x;) in Serfling (1980, top of p. 196).

)\I (blz - 1)7

E
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whereb; ~ N(0,1) independent of the;, and

1 m n - 0o
ﬁi;;lk(xhw)glz Aiaby, (28)

both jointly in distribution with (27), where (28) is provatithe end of the section. We now combine
these results. Defirte= m+n, and assume ligin—e M/t = px and limyn N/t = pyi= (1—py)
for fixed 0< px < 1. Then

00

> Mab

PxPy 5

tMMD2[F, X, Y] — Px Zm 1)+py Zm b2 —1)—

i (P2 — py 202 = (pxpy) 1)

Proof (Equation 28) The proof is a modification of the result for convergence dafedeerate U-
statistics of Serfling (1980, Section 5.5.2). We only previdose details that differ from the proof
of Serfling, and otherwise refer to the steps in the origimabpas needed. First, using (24) to
expand out the centred kernel, we may write

3

. 4 — 1 c
Tmn._\/—_nzz (%,Y)) = o JZ“ZI W ()W ().

We define a truncation of this sum,

m n L
Tmnl_i— — Z Z (X)W (yj)-
The target distribution is written
V= Z }\lal b|7
=1
and its truncation is )
V= Z ANab.
=1

Our goal is to show
‘EX,Y (eISTmn) _ Ea,b (eISV) |

vanishes for als asmandn increase, where the expectatiBgr y is over all sample points, which
implies Tyn = V (Dudley, 2002, Theorem 9.8.2). We achieve this via the uppend

Ex (€5 ~Ean ()] =[xy (€7) ~Exy (€55 4 [Ex (€7) — Ea (€°4)]
+|Bap (¢°) — Eap (€)],
where we need to show that for large enoligleach of the three terms vanish.

First term: We first show that for large enoudh Ty and T are close in distribution. From
Serfling (1980, p. 197),

1/2
|Exy (€°™) —Exy (€5™)| <|s] [Exy (Ton—Tn0)?|
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and we may write the difference between the full sum andutscation as

Tron Tan—\/—nZlZ< Xi,Yj) — Z?\lllJl llJl)’J)

Ik (X| i)

Each of the properties (Serfling, 1980, Equations (6a)46d)97) still holds foigk , namely
Ex7x’ (gK (Xa Xl)) = 0,
Ex7x’ (g% (Xaxl)) = Z }\|2,

I=L+1

Ex(ok(x.X)) = 0.

Then
2 1 m m n n
Exy (Ton—Tmnl)” = m_ Z Zl Zl xixq; e 1Ok (%5 Yj)Ok (Xg, Yr)]
_ ﬁii XT Exx (gK(val)) I =qgandj =r,
0 otherwise

where we have used thpt= q underJ(y, which allows us to replackyy with E, y in the final line.
It follows that for large enough,

3

2} 1/2

1
IS [EX,Y (Tmn— Tmno) m_ 2

n 1/2
Z xx/ gKXX, ]

_ 12
WS AF]
T

Second term: We show that
TmnL B> VL (29)

asm — o andn — . We rewriteTyn as

L 1 m 1 N
TmnL= I;)\I (ﬁlgwl (Xi)> <%ZLIJ| (yj)> :

Define the length. vectorswW;,, andW, havinglth entries

1 m .1
= llJ| Xi), == llJ| Vi)
\/r—ni; ( ) nl \/ﬁ i; ( J)
respectively. These have mean and covariance

1 1=,

Ex(W) =0,  Covy (Wi, Wiy ) =
x (Whni) V3 (Want, Whn ) {O L1
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Moreover, the vectordi, andW, are independent. The result (29) then holds by the Lindbéxgy
CLT (Serfling, 1980, Theorem 1.9.1A).
Third term : From Serfling (1980, p. 199), we have

1/2
|Eap (€5) —Eap (62)| <9 [Eab v —vL)Z] .

We can bound the right hand term by

2
Eab(V —VL)? = Ea,b( > )\|an|>
=51

00

_ |:Z l}\ley (af) B, (b})

00
— Z A
I=L+1
< ¢

for L sufficiently large. |

B.2 Alternative Distribution: Consistency Against Local Alternatives

We prove Theorem 13, which gives the power against a locairative hypothesis of a two-sample
test based on MMR The proof modifies a result of Anderson et al. (1994, Secid), where we
consider a more general class of local departures from thdéypothesis (rather than the class of
perturbed densities described in Section 3.3.1).

First, we recall our test statistic,

=
3
3

MMD[F,X,Y] = k(xi, %)

m(m—1) 4

1 n n B 2 m n
+ nn—1) i;;k(yi,yj) - %i;;km,yj).

We begin by transforming this statistic by centering theglasX andY in feature space by, and
Hg, respectively; unlike thé(y case, howevey, # |y, and the new statistic MMbis notthe same
as MMD?. The first term is centered as in (9). The second and thirdsteme respectively replaced

by

1

1 n n
m%%@(%)—w@(w)—w%{

and
oS3 (0X) Uy~ b
=1]

mn4& £
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The resulting centred statistic is

l m m
MMDZ[F, X,Y] = mz; (X)) — Mp, @(Xj) — Hp) 5

Wl_l)izz<¢(y. — Ha, ®(Y3) — Ha)5¢ mnzzl«p(m)—upxp(yj)—uq%{-

E

We write g = Hp + 0, Whereg: € H is chosen such that, 4 g remains a valid distribution embed-
ding, and|g: |4, can be made to approach zero to describe local departuragheonull hypothesis.
The difference between the original statistic and the egnstatistic is then

MMD2[F,X,Y] — MMDZ[F,X,Y]

:%i;<up7<p(>q)>g{ = (Hp; Mp)ge + % i;(uq,(p(yi»% — (Mg M)

3 (008 ) 1 (o 02 o )

Z%i@@(m—uq%{—%r (9, @) — Mp) 3¢ + (01, G) ¢

We next showg; can be used to encode a local departure from the null hygeth&efine
t = m+n, and assume lifn e M/t = px @nd limmp e N/t = py := (1 — py) Where 0< py < 1.
Consider the case where the departure from the null hypstsasisfies|g ||, = ct~*/2. Then, as
t — oo,

00

tMMD2[F, X, Y] — Z [ 2 +py 2b1)2 — (pxpy) }:.s

as before, since the distance betwggmandyy vanishes for large (as||g:||;c — 0). Next, the terms

fzi<ugtug{ o)) anc %i%ﬁ’“’w_“"%{

in the difference between MM§and MMD? are straightforward sums of independent zero mean
random variables, and have Gaussian asymptotic diswihutDefininguy, to be the zero mean
Gaussian random variable associated with the first term,

33, @000 e = () 3 (e )

2,

1
B> CPy
Likewise,
t 2 ~1/2
ﬁizl(gb(p(xi) - p—p>g{ B> CPx " Uy,

whereuy is a zero mean Gaussian random variable independet (@iote, however, that, and
uy are correlated with terms i§ and are defined on the same probability spaca asdb; in this
sum). Finally,

t(G, Ot) g = €.
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This leads to our main result: given the threshgldthen
Pry, (t(MMD > s¢) — Pr<S+ 2c (p;l/zux - pgl/zuy) +> sq) ,

which is constant i, and increases as— . Thus, ||g||4 = ct~Y/? is the minimum distance
betweeny, andpy distinguishable by the asymptotic MMD-based test.

B.3 Moments of the Empirical MMD Under Hy
In this section, we compute the moments of the U-statistiBantion 5 form = n, under the null
hypothesis conditions

E.zh(zZ) =0, (30)

and, importantly,

Ezh(zZ)=0. (31)

Note that the latter implies the former.
Variance/2nd moment: This was derived by Hoeffding (1948, p. 299), and is also «lesd
by Serfling (1980, Lemma A p. 183). Applying these results,

E ([MMDﬁ]Z)

( > [ n2 1)(n_2)(2)EZ [(Ezh(z2))?] +
~2(n

-2), 2
= nn=1) E;[(Ezh(z2))%] + nn=1)
2

— n(ni—l)Ezz [hZ(Z,Z,)] s

n(n—1)

E.. [MA(z2)]

Ez7z’ [hZ(Z, Z’)]

where the first term in the penultimate line is zero due to.(8Mte that variance and 2nd moment
are the same under the zero mean assumption.

3rd moment: We consider the terms that appear in the expansicEn(({MMDﬁ] 3) . These are

all of the form
2 3
——— | E(hgphegh
(n(n_1)> ( labl'lcd ef)7

where we shorteh,, = h(z,,2,), and we knowz, andz, are always independent. Most of the terms
vanish due to (30) and (31). The first terms that remain taddaim

(- 1>>3E<“abhbchca>,

and there are
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of them, which gives us the expression

3
(ri2s) " Y- 2@ [z (2212 2)]

n—1) 2
— % E.» [N(z2)Ex Nz Z)N(Z,2"))]. .

Note the scalingﬁﬁﬁ%ﬂz ~ n—13 The remaining non-zero terms, for whiah=c=eandb=d = f,

take the form 5
2 3
<n(n_ 1)) EZ,Z’ [h (sz,)] ’

and there ar@@ of them, which gives

(rrg) Bl

2
However(i) ~ n~4 so this term is negligible compared with (32). Thus, a reabtnap-

n(n—1)
proximation to the third moment is
3 8(n — 2) ! !
E ([Mmog] ) o = (hz2)E, (h(zZ)h(Z,2"))].

Appendix C. Empirical Evaluation of the Median Heuristic for Kernel Choice

In this appendix, we provide an empirical evaluation of thedian heuristic for kernel choice,
described at the start of Section 8: according to this hiécirite kernel bandwidth is set at the
median distance between points in the aggregate samplepawed g (in the case of a Gaussian
kernel onRY). We investigated three kernel choice strategies: keeletton on the entire sample
from p andq; kernel selection on a hold-out set (10% of data), and tgstinthe remaining 90%;
and kernel selectioandtesting on 90% of the available data. These strategies wataaged on
the Neural Data | data set described in Section 8.2, usinguasim kernel, and both the bootstrap
and Pearson curve methods for selecting the test thredRekilllts are plotted in Figure 7. We note
that the Type Il error of each approach follows the same tréhé Type Il errors of the second and
third approaches are indistinguishable, and the first @mbrdas a slightly lower Type Il error (as it
is computed on slightly more data). In this instance, thédistribution with the kernel bandwidth
set using the tested data is not substantially differertadabtained when a held-out set is used.
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