A Kernel Statistical Test of Independence
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Abstract

Although kernel measures of independence have been widplied in machine
learning (notably in kernel ICA), there is as yet no methodétermine whether
they have detected statistically significant dependeneepidvide a novel test of
the independence hypothesis for one particular kernepiadéence measure, the
Hilbert-Schmidt independence criterion (HSIC). The résgltest cost$ (m?),
wherem is the sample size. We demonstrate that this test outpesfestablished
contingency table and functional correlation-based testd that this advantage
is greater for multivariate data. Finally, we show the HS#Sttalso applies to
text (and to structured data more generally), for which mepindependence test
presently exists.

1 Introduction

Kernel independence measures have been widely appliedéntresachine learning literature, most
commonly in independent component analysis (ICA) [2, 14},diso in fitting graphical models [1]
and in feature selection [22]. One reason for their succetfst these criteria have a zero expected
value if and only if the associated random variables aregaddent, when the kernels are universal
(in the sense of [23]). There is presently no way to tell weetheempirical estimatesf these
dependence measures indicatgatistically significandependence, however. In other words, we
are interested in the threshold an empirical kernel deperalestimate must exceed, before we can
dismiss with high probability the hypothesis that the uihdeg variables are independent.

Statistical tests of independence have been associated Wwibad variety of dependence measures.
Classical tests such as Spearman'and Kendall'st are widely applied, however they are not
guaranteed to detect all modes of dependence between tihemarariables. Contingency table-
based methods, and in particular the power-divergencdyashitest statistics [17], are the best
known general purpose tests of independence, but areditoitelatively low dimensions, since they
require a partitioning of the space in which each randomatéeiresides. Characteristic function-
based tests [6, 13] have also been proposed, which are moeeadjeéhan kernel density-based tests
[19], although to our knowledge they have been used only tepare univariate random variables.

In this paper we present three main results: first, and mqsbitantly, we show how to test whether
statistically significant dependence is detected by a qadati kernel independence measure, the
Hilbert Schmidt independence criterion (HSIC, from [9])hak is, we provide a fastd(m?) for
sample sizen) and accurate means of obtainingheesholdwhich HSIC will only exceed with
small probability, when the underlying variables are inglegient. Second, we show the distribution



of our empirical test statistic in the large sample limit danstraightforwardly parameterised in
terms of kernels on the data. Third, we apply our test to &ired data (in this case, by establishing
the statistical dependence between a text and its tramgjatiTo our knowledge, ours is the first
independence test for structured data.

We begin our presentation in Section 2, with a short ovendéwross-covariance operators be-
tween RKHSs and their Hilbert-Schmidt norms: the latter @sed to define the Hilbert Schmidt
Independence Criterion (HSIC). In Section 3, we describ& tiodetermine whether the depen-
dence returned via HSIC is statistically significant, bygasing a hypothesis test with HSIC as its
statistic. In particular, we show that this test can be patansed using a combination of covariance
operator norms and norms of mean elements of the randonbiesia feature space. Finally, in
Section 4, we give our experimental results, both for tgstiapendence between random vectors
(which could be used for instance to verify convergence @ependent subspace analysis [25]),
and for testing dependence between text and its transla$ioftware to implement the test may be
downloaded fromhttp : //www.kyb.mpg.de/bs/people/arthur/indep.htm

2 Definitions and description of HSIC
Our problem setting is as follows:

Problem 1 Let P, be a Borel probability measure defined on a dom#ix Y, and letP, and
P, be the respective marginal distributions 8handy. Given an i.i.d sampleZ := (X,Y) =
{(z1,91),- .., (m,ym)} Of sizem drawn independently and identically distributed accoglio
P,,, doesP, factorise asP, P, (equivalently, we may write L y)?

We begin with a description of our kernel dependence caitelleaving to the following section the
question of whether this dependence is significant. Thisgation is largely a review of material
from[9, 11, 22], the main difference being that we estalligks to the characteristic function-based
independence criteria in [6, 13]. L&tbe an RKHS, with the continuous feature mappirig) € F
from eachr € X, such that the inner product between the features is givehdyernel function
k(z,z') := (¢(x), p(a’)). Likewise, letG be a second RKHS op with kerneli(-, ) and feature
map(y). Following [7], the cross-covariance operatoy, : § — F is defined such that for all
feFandg € G,

(f:Cayg)y = Euy ([f(x) = E(f(2)] [9(y) — Ey(9(y))]) -

The cross-covariance operator itself can then be written

Coy := Egy[(9(x) — p1z) @ ((y) — 1y)], 1)

wherep, = E,¢(z), 1y := Eyé(y), and® is the tensor product [9, Eq. 6]: this is a generalisation
of the cross-covariance matrix between random vectors.W¢hand§ are universal reproducing
kernel Hilbert spaces (that is, dense in the space of boundetinuous functions [23]) on the
compact domain¥ andy, then the largest singular value of this operatdt,, ||, is zero if and only

if z 1Ly [11, Theorem 6]: the operator therefore induces an indegarelcriterion, and can be used
to solve Problem 1. The maximum singular value gives a doitesimilar to that originally proposed
in [18], but with more restrictive function classes (rattiean functions of bounded variance). Rather
than the maximum singular value, we may use the squared itlamidt norm (the sum of the
squared singular values), which has a population expmessio

HSIC(Pyy, F,G) = Eppryy [k(, )y, y")] + Epar [k(x, x/)]Eyy’ 1(y,y")]
— 2Eqy [Ey [k(z,2")|Ey [I(y,y")]] (2)

(assuming the expectations exist), whefalenotes an independent copy0f9, Lemma 1]: we
call this the Hilbert-Schmidt independence criterion (85I

We now address the problem of estimatH§IC(P,,,J,3) on the basis of the samplg. An
unbiased estimator of (2) is a sum of three U-statisticsxz],,

Z kzylu ( )4 Z kijqu_ Z kl]llq7 (3)

(i,5)€ig (4,9,9,m) €if" (i,3,9) €5
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where(m),, := ( ), , the index set” denotes the set alttuples drawn without replacement from
the set{1,...,m}, k” = k(z;, x;), andl;; := l(y;,y;). For the purpose of testing independence,
however, we will find it easier to use an alternative, biasexbieical estimate [9, Definition 2],
obtained by replacing the U-statistics with V-statistics

1 m
HSIC)(Z) = — Z Fijlij + — > kijlgr — — Z kijliq = trace(KHLH) (4)
4,J,q,7 4,J,9
where the summation indices now denoterailiples drawn with replacement frofd, ..., m} (r

being the number of indices below the suid)is them x m matrix with entries;;;, H = I—- %llT,
and1 is anm x 1 vector of ones (the cost of computing this statisti©ign?)). When a Gaussian

kernelk;; := exp (—0—2 |z — :chQ) is used (or a kernel deriving from [6, Eq. 4.10]), the latter

statistic is equivalent to the characteristic functiosdrhstatistic [6, Eq. 4.11] and tli&,, statistic

of [13, p. 54]: details are reproduced in [10] for comparis@Qur setting allows for more general
kernels, however, such as kernels on strings (as in our impets in Section 4) and graphs (see
[20] for further details of kernels on structures): this & possible under the characteristic function
framework, which is restricted to Euclidean spade$ i the case of [6, 13]). As pointed out in [6,
Section 5], the statistic in (4) can also be linked to theingbquadratic test of Rosenblatt [19] given
an appropriate kernel choice; the main differences beiagdharacteristic function-based tests (and
RKHS-based tests) are not restricted to using kernel dessitor should they reduce their kernel
width with increasing sample size. Another related testidleesd in [4] is based on the functional
canonical correlation betweeh and G, rather than the covariance: in this sense the test statisti
resembles those in [2]. The approach in [4] differs with bibth present work and [2], however,
in that the function space® and G are represented by finite sets of basis functions (spetyfical
B-spline kernels) when computing the empirical test diatis

3 Test description

We now describe a statistical test of independence for twolam variables, based on the test
statisticHSIC,(Z). We begin with a more formal introduction to the frameworkl aerminology

of statistical hypothesis testing. Given the i.i.d. sanmpldefined earlier, the statistical teSt,7) :

(X x Y)™ — {0,1} is used to distinguish between the null hypothésijs : P,, = P, P, and
the alternative hypothesi¥; : P, # P,P,. This is achieved by comparing the test statistic, in
our caselSIC,(Z), with a particular threshold: if the threshold is exceedbdn the test rejects
the null hypothesis (bearing in mind that a zero populati&®indicatesP,, = P,P,). The
acceptance region of the test is thus defined as any real mibalwsv the threshold. Since the test
is based on a finite sample, it is possible that an incorrestvanwill be returned: the Type | error
is defined as the probability of rejectiig, based on the observed sample, despitsdy being
independent. Conversely, the Type Il error is the probgtili acceptingP,, = P,P, when the
underlying variables are dependent. The levelf a test is an upper bound on the Type I error, and
is a design parameter of the test, used to set the test thdeghoonsistent test achieves a level
and a Type Il error of zero, in the large sample limit.

How, then, do we set the threshold of the test giuéh The approach we adopt here is to derive
the asymptotic distribution of the empirical estim&sIC,(Z) of HSIC(P,, ¥, §) under,. We
then use thé — o quantile of this distribution as the test thresh®ldur presentation in this section
is therefore divided into two parts. First, we obtain theritisition of HSIC,(Z) under botHH, and
H1; the latter distribution is also needed to ensure consigtefthe test. We shall see, however, that
the null distribution has a complex form, and cannot be etald directly. Thus, in the second part
of this section, we describe ways to accurately approxinegte — o« quantile of this distribution.

Asymptotic distribution of HSIC,(Z) We now describe the distribution of the test statistic in (4)
The first theorem holds undéf;.

1The U- and V-statistics differ in that the latter allow indicof different sums to be equal.
2An alternative would be to use a large deviation bound, asigied for instance by [9] based on Hoeffding’s
inequality. It has been reported in [8], however, that sumirials are generally too loose for hypothesis testing.



Theorem 1 Let
1 (4,4,9,m)

hijQT = Z ktultu + ktulvw - 2ktultv; (5)
(t w,v,W)

where the sum represents all ordered quadruples:, v,w) drawn without replacement from
(i,4,q,7), and assumd& (hz) < oo. UnderXH;, HSIC,(Z) converges in distribution as. — oo
to a Gaussian according to

m? (HSICy(Z) — HSIC(P.,, F, §)) 2 N (0,02) . (6)

The variance isr2 = 16 (El (Ej7q7,.hijq,) — HSIC(P,,,F,9) > whereE; ;. :=E_, ., -, .

Proof We first rewrite (4) as a single V-statistic,

HSIC,(Z Z Rijqrs @)

0,J,4,7

where we note thdi; ;. defined in (5) does not change with permutation of its indidé® associ-
ated U-statistidISIC,(Z) converges in distribution as (6) with varianeg[21, Theorem 5.5.1(A)]:
see [22]. Since the difference betwd@8IC,(Z) andHSIC,(Z) drops ad /m (see [9], or Theorem
3 below),HSIC,(Z) converges asymptotically to the same distribution. ]

The second theorem applies un@éy

Theorem 2 Under X, the U-statisticHSIC,(Z) corresponding to the V-statistic in (7) is degen-
erate, meaninds;hi;, = 0. In this case HSIC,(Z) converges in distribution according to [21,
Section 5.5.2]

mHSIC,(Z Z e (®)
wherez; ~ N(0, 1) i.i.d., and\; are the solutions to the eigenvalue problem

Alwl (Z]) = / hijqrwl(zi)dﬂ,q,rv

where the integral is over the distribution of variablgs z,, andz,.

Proof This follows from the discussion of [21, Section 5.5.2], nmakappropriate allowance for
the fact that we are dealing with a V-statistic (which is whg terms in (8) are not centred: in the
case of a U-statistic, the sum would be over tes(s? — 1)). [ |

Approximating the 1 — « quantile of the null distribution A hypothesis test usingSIC;(Z)
could be derived from Theorem 2 above by computingthe «)th quantile of the distribution (8),
where consistency of the test (that is, the convergencertoafehe Type Il error forn — o) is
guaranteed by the decaysas ' of the variance oHSIC,(Z) under¥;. The distribution unde#(y
is complex, however: the question then becomes how to aetyepproximate its quantiles.

One approach, taken by [6], is to use a Monte Carlo resampdicignique: the ordering of thg
sample is permuted repeatedly while thatXfis kept fixed, and thé — o quantile is obtained
from the resulting distribution oHSIC, values. This can be very expensive, however. A second
approach, suggestedin [13, p. 34], is to approximate tHelistitibution as a two-parameter Gamma
distribution [12, p. 343, p. 359]: this is one of the moreigfin&forward approximations of an infinite
sum of x? variables (see [12, Chapter 18.8] for further ways to apipnate such distributions; in
particular, we wish to avoid using moments of order gredtenttwo, since these can become
expensive to compute). Specifically, we make the approximat

xoteme/B (E(HSICy(Z)))? mvar(HSIC,(Z))




An illustration of the cumulative distribution functionFigure 1: mHSIC, cumulative distribution
(CDF) obtained via the Gamma approximation is givénnction Emp under 3, for m = 200,

in Figure 1, along with an empirical CDF obtained bybtained empirically using000 indepen-
repeated draws dfiSIC,. We note the Gamma approxident draws ofnHSIC;. The two-parameter
mation is quite accurate, especially in areas of high prdg@mma distribution Gamma is fit using
ability (which we use to compute the test quantile). THe= 1‘17dand.ﬁ = 8.3 x 10 d'”.(g)’r‘]""th
accuracy of this approximation will be further evaluate?ean and variance computed via Theorems

- - . 4.
experimentally in Section 4. and
1

To obtain the Gamma distribution from our observa?
tions, we need empirical estimates I(HSIC,(Z)) and £
var(HSICy(Z)) under the null hypothesis. Expressions_ osf
for these quantities are given in [13, pp. 26-27], howevet |
these are in terms of the joint and marginal characterfg-

0.8

tic functions, and not in our more general kernel setting °%/ e a
(see also [14, p. 313]). In the following two theoremsy of Y : = 2

we provide much simpler expressions for both quantities, mHSIC,
in terms of norms of mean elements andy,, and the

covariance Operators

andC,,, in feature space. The main advantage of our new expresisidhat they are computed
entirely in terms of kernels, which makes possible the apgibbn of the test to any domains on
which kernels can be defined, and not oRK.

Theorem 3 UnderXH,

1 1 2 2 2 2
E(HSIC)(2)) = —TrCouTrCyy = — (14 ol l1ay|* = ieall® = s I?) . (20)
where the second equality assumgs= [;; = 1. An empirical estimate of this statistic is obtained
by replacing the norms above witfu, || = (m);* >_(i.j)eip kij, bearing in mind that this results

in a (generally negligible) bias b (m ') in the estimate of .|| ||y |-

Theorem 4 UnderXH,
2(m —4)(m —
(m)a

Denoting by ® the entrywise matrix productA? the entrywise matrix power, antB =

((HKH) & (HLH))?, an empirical estimate with negligible bias may be foundédplacing the
product of covariance operator norms with (B — diag(B)) 1: this is slightly more efficient than
taking the product of the empirical operator norms (althbale scaling withn is unchanged).

5 _
var(HSIC,(2)) = ) 1Caa s 1Co s + O(m™).

Proofs of both theorems may be found in the Appendix.We rkntet these parameters, like the
original test statistic in (4), may be computediim?).

4 Experiments

General tests of statistical independence are most usefdiata having complex interactions that
simple correlation does not detect. We investigate twoagdeere this situation arises: first, we
test vectors iR which have a dependence relation but no correlation, asredetndependent
subspace analysis; and second, we study the statistiocahdepce between a text and its translation.

Independence of subspacesOne area where independence tests have been applied i det
mining the convergence of algorithms for independent camepbanalysis (ICA), which involves
separating random variables that have been linearly mixgdg only their mutual independence.
ICA generally entails optimisation over a hon-convex fumet(including when HSIC is itself the
optimisation criterion [9]), and is susceptible to locahiia, hence the need for these tests (in fact,
for classical approaches to ICA, tigdobal minimum of the optimisation might not correspond to
independence for certain source distributions). Contiogé¢able-based tests have been applied [15]
in this context, while the test of [13] has been used in [14]Merifying ICA outcomes when the



data are stationary random processes (through using atfbs@mples with a sufficiently large
delay between them). Contingency table-based tests magsbeaiseful in the case of independent
subspace analysis (ISA, see e.g. [25] and its bibliographiy@re higher dimensional independent
random vectors are to be separated. Thus, characteristitidn-based tests [6, 13] and kernel
independence measures might work better for this problem.

In our experiments, we tested the independence of randotorgeas a way of verifying the so-
lutions of independent subspace analysis. We assumedderaégresentation that our subspaces
have respective dimensiafy = d, = d, but this is not required. The data were constructed as
follows. First, we generateah samples of two univariate random variables, each drawmaomra
from the ICA benchmark densities in [11, Table 3]: thesetdel super-Gaussian, sub-Gaussian,
multimodal, and unimodal distributions. Second, we mixeese random variables using a rota-
tion matrix parameterised by an anglevarying from0 to =/4 (a zero angle means the data are
independent, while dependence becomes easier to detéet asdle increases t/4: see the two
plots in Figure 2, top left). Third, we appendédd- 1 dimensional Gaussian noise of zero mean
and unit standard deviation to each of the mixtures. Finaly multiplied each resulting vector
by an independent randodrdimensional orthogonal matrix, to obtain vectors dependeross all
observed dimensions. We emphasise that classical ap®ésich as Spearmapor Kendall’s

7) are completely unable to find this dependence, since thablas are uncorrelated; nor can we
recover the subspace in which the variables are dependegtREA, since this subspace has the
same second order properties as the noise. We investigatgaessizesn = 128,512, 1024, 2048,
andd = 1,2, 4.

We compared two different methods for computing the o quantile of the HSIC null distribution:
repeated random permutation of thesample ordering as in [6HSICp, where we used00 per-
mutations; and Gamma approximatid#§ICg as in [13], based on (9). We used a Gaussian kernel,
with kernel size set to the median distance between poiritgunt space. We also compared with
two alternative tests, the first based on a discretisatidheo¥ariables, and the second on functional
canonical correlation. The discretisation based test wasager-divergence contingency table test
from [17] (PD), which consisted in partitioning the space, counting thmber of samples falling
in each partition, and comparing this with the number of dasthat would be expected under the
null hypothesis (the test we used, described in [15], is mafieed than this short description would
suggest). Rather than a uniform space partitioning, weldiviour space into roughly equiprobable
bins as in [15], using a Gessaman patrtition for higher dinoersy5, Figure 21.4] (Ku and Fine did
not specify a space partitioning strategy for higher dinmrs since they dealt only with univariate
random variables). All remaining parameters were set a@iagto [15]. The functional correlation-
based testfCorr) is described in [4]: the main differences with respect to test are that it uses
the spectrum of the functional correlation operator, nathan the covariance operator; and that it
approximates the RKHS$ and G by finite sets of basis functions. Parameter settings were as
[4, Table 1], with the second order B-spline kernel and a tibflyadic partitioning. Note that
fCorr applies only in the univariate case. Results are plotteddnrE 2 (average over 500 repeti-
tions). They-intercept on these plots corresponds to the acceptareefiaf, at independence, or
1 — (Type I error), and should be close to the design parametdr-efa = 0.95. Elsewhere, the
plots indicate acceptance ®f, where the underlying variables are dependent, i.e. the ygyeor.

As expected, we observe that dependence becomes easi¢e¢bas increases from 0 ta /4,
whenm increases, and whahdecreases. ThED andfCorr tests perform poorly atv = 128,
but approach the performance of HSIC-based tests for isitrga: (althoughPD remains slightly
worse tharHSICat m = 512 andd = 1, while fCorr becomes slightly worse again th&D). PD
also scales very badly witth and never rejects the null hypothesis whies 4, even form = 2048.
Although HSIC-based tests are unreliable for sathey generally do well a8 approaches /4
(besidesn = 128, d = 2). We also emphasise thdSICpandHSICgperform identically, although
HSICpis far more costly (by a factor of around 100, given the nunadf@ermutations used).

Dependence and independence between textn this section, we demonstrate inde-
pendence testing on text. Our data are taken from the Canatiansard corpus
(http: //www.isi.edu/natural — language/download/hansard/). These consist of the of-
ficial records of the 36th Canadian parliament, in Englisti Brench. We used debate transcripts
on the three topics of Agriculture, Fisheries, and Immigratdue to the relatively large volume of
data in these categories. Our goal was to test whether tRists a statistical dependence between
English text and its French translation. Our dependent datsisted of a set of paragraph-long
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Figure 2:Top left plots: Example dataset fat = 1, mn = 200, and rotation angle® = /8 (left) andf = = /4
(right). In this case, both sources are mixtures of two Gansgsourcdg) in [11, Table 3]). We remark that
the random variables appear “more dependent” as the @niglereases, although their correlation is always
zero. Remaining plots: Rate of acceptance 6f, for the PD, fCorr, HSICp andHSICgtests. “Samp” is the

numberm of samples, and “dim” is the dimensiahof = andy.

(5 line) English extracts and their French translations. dwo independent data, the English para-
graphs were matched to random French paragraphs on the spioe for instance, an English
paragraph on fisheries would always be matched with a Freackgmph on fisheries. This was
designed to prevent a simple vocabulary check from beind teseell when text was mismatched.
We also ignored lines shorter than five words long, sincesthese not always part of the text (e.g.
identification of the person speaking). We usedikspectrum kernel of [16], computed according
to the method of [24]. We sét = 10 for both languages, where this was chosen by cross valglatin
on an SVM classifier for Fisheries vs National Defense, sepbffor each language (performance
was not especially sensitive to choicekofk = 5 also worked well). We compared this kernel with
a simple kernel between bags of words [3, pp. 186—189]. Rearg in Table 1.

Our results demonstrate the excellent performance oH®BECptest on this task: even for small
sample sizesHSICpwith a spectral kernel always achieves zero Type Il errad, @afype | error
close to the design value.95). We further observe famn = 10 thatHSICpwith the spectral kernel
always has better Type Il error than the bag-of words kefftek suggests that a kernel with a more
sophisticated encoding of text structure induces a morsitsentest, although for larger sample
sizes, the advantage vanishes. H&Cgtest does less well on this data, always acceptiigdor

m = 10, and returning a Type | error of zero, rather than the des#dumevof 5%, whenn = 50. It
appears that this is due to a very low variance estimaterretilny the Theorem 4 expression, which
could be caused by the high diagonal dominance of kernelsiogs. Thus, while the test threshold
for HSICgat m = 50 still fell between the dependent and independent valudssa€,, this was
not the result of an accurate modelling of the null distridnt We would therefore recommend the
permutation approach for this problem. Finally, we alsedtiesting with 2-line extracts and 10-line
extracts, which yielded similar results.

5 Conclusion

We have introduced a test of whether significant statistiependence is obtained by a kernel depen-
dence measure, the Hilbert-Schmidt independence crité@H&IC). Our test cost® (m?) for sam-

ple sizem. In our experiments, HSIC-based tests always outperfothmedontingency table [17]
and functional correlation [4] approaches, for both uriaterrandom variables and higher dimen-
sional vectors which were dependent but uncorrelated. Wedtberefore recommend HSIC-based
tests for checking the convergence of independent compamatysis and independent subspace
analysis. Finally, our test also applies on structured dospdeing able to detect the dependence



Table 1: Independence tests for cross-language dependetemtion. Topics are in the first column, where the
total number ob-line extracts for each dataset is in parentheses. BOW@®tds a bag of words kernel and
m = 10 sample size, Spec(50) iskaspectrum kernel withn = 50. The first entry in each cell is the null
acceptance rate of the test un@ég (i.e. 1 — (Type I error); should be nead.95); the second entry is the null
acceptance rate undgf; (the Type Il error, small is better). Each entry is an averxagg 300 repetitions.

Topic BOW(10) Spec(10) BOW(50) Spec(50)
HSICg | HSICp | HSICg [ HSICp | HSICg | HSICp | HSICg | HSICp
Agriculture 1.00, | 094, | 100, | 005 | 1.00, | 0093, | 100, | 0.95,
(555) 0.99 0.18 1.00 0.00 0.00 0.00 0.00 0.00
Fisheries 1.00, | 094, | 1.00, | 094, | 1.00, | 093, | 1.00, | 0.95,
(408) 1.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00
Immigration 1.00, | 0.96, | 1.00, | 0.91, | 0.9, | 0.94, | 1.00, | 0.95,
(289) 1.00 0.09 1.00 0.00 0.00 0.00 0.00 0.00

of passages of text and their translation.Another apjdinadlong these lines might be in testing
dependence between data of completely different typeh, asiamages and captions.
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A Derivation of the mean and variance ofHSIC,(Z) under 3,

A.1 Mean

In this appendix, we prove Theorem 3. We begin by noting threten the null hypothesis, all
the terms common toISIC(Z) in (3) andHSIC,(Z) in (4) vanish, since under these conditions
E(HSIC(Z)) = 0. We therefore begin by obtainidSIC,(Z) — HSIC(Z). We split this difference
into the difference between three terms:

> kil

1 1
—3 D hiliy = D kil = —3 > hiilii —
4,7

% (ig)eig ¢ ? (i) eig
1 1
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Combining terms, we get

1 2
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We next take the expectation of this expression. Introdudie notationE,! = E,l(y,y) and
Euyy kl = Egyy k(z, 2)l(y, y') (with the remaining notation defined by analogy), we obtaider
Ho that

mE(HSIC,(Z)) = mE(HSIC, — HSIC)
Eoykl — 2(Eqgyy kl + Eqpprykl)

+E bkl 4+ By kl

—3E pryy kl + 10E 50y kl — 6E gy KE /1
At independence, the three terms on the final line merge, anarevleft with

1
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A.2 Variance

In this appendix, we prove Theorem 4. We begin by computimgudriance of the symmetric
U-statistic associated with the V-statistic in (7), i.e.

HSIC,(Z) = ! > hijar, (11)

(m)4 (2,4,q,)€i}"




whereh;;,, is defined in (5). The symmetry &f; andl;; in their index orderings allows us to make
the simplification
1
hijor = Glkij(lij +lgr) + kiq(li + Ljr) + Kir (lir + Ljq) (12)
Fkijq(lig + lir) + Kjr(Lir + lgi) + kgr(lgr + 1ij)]

1 (4,5,9.7
- Z

(t,u,v)

)
ktu [lt'u + luv]

where the final sum represents all ordered triples:, v) selected without replacement from
(,4,q.1).
According to [21, Section 5.2.1], the variance of the Uistit (11) with kernel (12) is

var(HSIC,(2)) = < " >_1z4:< ! ) ( mo >Cc,

c=1

where we need consider only
G =Ejqr [(Eihz‘qu-)g} , G=Ey [(Eq,rhijqr)g}
(since the remaining terms decay faster thanand can be neglected). Using degenerécys 0.
Thus, the variance can be written
72(n —4)(n —5)
n(n—1)(n—2)(n—3)
Note that direct computation of the variance cd3ts»*), and is not practical.

var(HSIC4(Z)) = G+ O0(n™3).

We now describe how to compute the variance ufdgefficiently. To do this, we begin by finding
an expression foE, . hijqr = E.,_ ., hijq- when the null hypothesis holds. We will require addi-
tional notation to make the expressions readable: Byis:= E,[(y;, y) andE,,/ := E,/[(y,y’).
Using thatx andy are independent, we get

12Eq rhijqr = kij (215 + 2By 0 — 2E,1; — 2E,1;)
—2E;k; (lij + Eyyl — Eyl; — Eylj)
—2E;k; (l;; + Eyyl —Eyl; —Eyl;)
+E, ok (215 + 2E,, 1 — 2E,l; — 2E,1;),
or simplifying further,

1
Eq,7-hijq7- = 6 (kij + Ezok — E k; — Ezkij) (llj + Eyy/l — Eyli — Eylj) .

Again under the assumption thatandy are independent, the expectatiBy; (E, ,hijq)° fac-
torises into a product of two expectations, the first of thefo

Eij (kij + Epwk — Bk — E k)

= Eij (¢(xi) — ptar (75) — )’

= Eij (0(z:) — pa) @ (1) — pa) , (D(25) — p1z) @ (9(25) — pr) g

= ||sz|‘?{s )
and the seconninyHiIS by analogy. Combining these expressions, we obtain
2(m —4)(m —5)

(m)4

The variance otISIC,(Z) is identical, since the additional terms that arise fromlfees vanish

faster than the leading terms retained in (13). For the @ogpiestimate it is slightly more efficient
not to compute the variance as the product of the empiricahbt®ns; rather, denoting by the
entrywise matrix product, byl the entrywise matrix power, anB = (HKH) ® (HLH))'Q,
then our empirical estimate of the product of HS normis'i§ B — diag(B)) 1, where the bias is of
the same order as the terms we neglected in (13).

var(HSIC,(Z)) =

HCM||12{S|‘ny|‘ils+o(m_3)- (13)
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