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Abstract. Three simple and explicit procedures for testing the inde-
pendence of two multi-dimensional random variables are described. Two
of the associated test statistics (L1, log-likelihood) are defined when the
empirical distribution of the variables is restricted to finite partitions.
A third test statistic is defined as a kernel-based independence measure.
All tests reject the null hypothesis of independence if the test statistics
become large. The large deviation and limit distribution properties of all
three test statistics are given. Following from these results, distribution-
free strong consistent tests of independence are derived, as are asymp-
totically α-level tests. The performance of the tests is evaluated experi-
mentally on benchmark data.

Consider a sample of R
d ×R

d′

-valued random vectors (X1, Y1), . . . , (Xn, Yn)
with independent and identically distributed (i.i.d.) pairs defined on the same
probability space. The distribution of (X, Y ) is denoted by ν, while µ1 and µ2

stand for the distributions of X and Y , respectively. We are interested in testing
the null hypothesis that X and Y are independent,

H0 : ν = µ1 × µ2,

while making minimal assumptions regarding the distribution.

We consider two main approaches to independence testing. The first is to
partition the underlying space, and to evaluate the test statistic on the resulting
discrete empirical measures. Consistency of the test must then be verified as the
partition is refined for increasing sample size. Previous multivariate hypothesis
tests in this framework, using the L1 divergence measure, include homogeneity
tests (to determine whether two random variables have the same distribution, by
Biau and Györfi [1]); and goodness-of-fit tests (for whether a random variable has
a particular distribution, by Györfi and van der Meulen [2], and Beirlant et al.
[3]). The log-likelihood has also been employed on discretised spaces as a statistic
for goodness-of-fit testing [4]. We provide generalizations of both the L1 and log-
likelihood based tests to the problem of testing independence, representing to
our knowledge the first application of these techniques to independence testing.
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We obtain two kinds of tests for each statistic: strong consistent tests3 based on
large deviation bounds, which make no assumptions about the distribution; and
tests based on the asymptotic distribution of the test statistic, which assume
only that the distribution is nonatomic. We also present a conjecture regarding
the form taken by an asymptotic test based on the Pearson χ2 statistic, using
the goodness-of-fit results in [4] (further related test statistics include the power
divergence family of Read and Cressie [6], although we do not study them here).
The advantage of our test procedures is that, besides being explicit and easy
to carry out, they require very few assumptions on the partition sequences, are
consistent, and have distribution-independent thresholds.

Our second approach to independence testing is kernel-based. In this case,
our test statistic has a number of different interpretations: as an L2 distance
between Parzen window estimates [7], as a smoothed difference between em-
pirical characteristic functions [8, 9], or as the Hilbert-Schmidt norm of a cross-
covariance operator mapping between functions of the random variables [10, 11].
Each test differs from the others regarding the conditions required of the ker-
nels: the Parzen window statistic requires the kernel bandwidth to decrease with
increasing sample size, and has a different limiting distribution to the remaining
two statistics; while the Hilbert-Schmidt approach uses a fixed bandwidth, and
can be thought of as a generalization of the characteristic function-based test.
We provide two new results: a strong consistent test of independence based on
a tighter large deviation bound than that in [10], and an empirical comparison
of the limiting distributions of the kernel-based statistic.

Additional independence testing approaches also exist in the statistics lit-
erature. For d = d′ = 1, an early nonparametric test for independence, due to
Hoeffding, Blum, Kiefer, and Rosenblatt [12, 13], is based on the notion of differ-
ences between the joint distribution function and the product of the marginals.
The associated independence test is consistent under appropriate assumptions.
Two difficulties arise when using this statistic in a test, however. First, quantiles
of the null distribution are difficult to estimate. Second, and more importantly,
the quality of the empirical distribution function estimates becomes poor as the
dimensionality of the spaces R

d and R
d′

increases, which limits the utility of the
statistic in a multivariate setting. Further approaches to independence testing
can be used when particular assumptions are made on the form of the distribu-
tions, for instance that they should exhibit symmetry. We do not address these
approaches in the present study.

The paper is organized as follows. Section 1 describes the large deviation and
limit distribution properties of the L1-test statistic. The large deviation result
is used to formulate a distribution-free strong consistent test of independence,
which rejects the null hypothesis if the test statistic becomes large. The limit
distribution is used in an asymptotically α-level test, which is consistent when
the distribution is nonatomic. Both a distribution-free strong consistent test

3 A strong consistent test means that both on H0 and on its complement the test makes
a.s. no error after a random sample size. This concept is close to the definition of
discernability introduced by Dembo and Peres [5]. See [1] for further discussion.
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and an asymptotically α-level test are presented for the log-likelihood statis-
tic in Section 2, and a conjecture for an asymptotically α-level test based on
the Pearson χ2 statistic is described in Section 3. Section 4 contains a review
of kernel-based independence statistics, and the associated hypothesis tests for
both the fixed-bandwidth and variable-bandwidth cases. Finally, a numerical
comparison between the tests is given in Section 5. More detailed proofs and
further discussion may be found in an associated technical report [14].

1 L1-based statistic

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1, Y1), . . . , (Xn, Yn), X1, . . . , Xn, and Y1, . . . , Yn, respectively, so that

νn(A × B) = n−1#{i : (Xi, Yi) ∈ A × B, i = 1, . . . , n},
µn,1(A) = n−1#{i : Xi ∈ A, i = 1, . . . , n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . , n},

for any Borel subsets A and B. Given the finite partitions Pn = {An,1, . . . , An,mn
}

of R
d and Qn = {Bn,1, . . . , Bn,m′

n
} of R

d′

, we define the L1 test statistic com-
paring νn and µn,1 × µn,2 as

Ln(νn, µn,1 × µn,2) =
∑

A∈Pn

∑

B∈Qn

|νn(A × B) − µn,1(A) · µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution
properties of this L1 statistic, and the associated independence tests.

1.1 Large deviation properties

For testing a simple hypothesis versus a composite alternative, Györfi and van
der Meulen [2] introduced a related goodness of fit test statistic Ln defined as

Ln(µn, µ) =
∑

A∈Pn

|µn(A) − µ(A)|.

Beirlant [15], and Biau and Györfi [1] proved that, for all 0 < ε,

P{Ln(µn, µ) > ε} ≤ 2mne−nε2/2. (1)

We now show that a similar result follows quite straightforwardly for the L1

independence statistic.

Theorem 1. Under H0, for all 0 < ε1, 0 < ε2 and 0 < ε3,

P{Ln(νn, µn,1×µn,2) > ε1+ε2+ε3} ≤ 2mn·m′

ne−nε2

1
/2+2mne−nε2

2
/2+2m′

ne−nε2

3
/2.
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Proof We bound Ln(νn, µn,1 × µn,2) according to

Ln(νn, µn,1 × µn,2) ≤
∑

A∈Pn

∑

B∈Qn
|νn(A × B) − ν(A × B)|

+
∑

A∈Pn

∑

B∈Qn
|ν(A × B) − µ1(A) · µ2(B)|

+
∑

A∈Pn

∑

B∈Qn
|µ1(A) · µ2(B) − µn,1(A) · µn,2(B)|.

The central term in the sum is zero under the null hypothesis. The proof is then
completed by further applications of the triangle inequality, then using (1) on
the resulting terms, and applying a union bound.

Theorem 1 yields a strong consistent test of homogeneity, which rejects the
null hypothesis if Ln(νn, µn,1×µn,2) becomes large. The test is distribution-free,
i.e., the probability distributions ν, µ1 and µ2 are completely arbitrary. The proof
of the following corollary is similar to that employed for the homogeneity test
by Biau and Györfi [1].

Corollary 1. Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c1

(

√

mnm′
n

n
+

√

mn

n
+

√

m′
n

n

)

≈ c1

√

mnm′
n

n
,

where c1 >
√

2 ln 2 ≈ 1.177. Assume conditions

lim
n→∞

mnm′
n/n = 0, lim

n→∞
mn/lnn = ∞, lim

n→∞
m′

n/lnn = ∞, (2)

are satisfied. Then under H0, the test makes a.s. no error after a random sample
size. Moreover, if ν 6= µ1 × µ2, and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn, A∩S 6=0

diam(A) = 0 and lim
n→∞

max
B∈Qn, B∩S 6=0

diam(B) = 0, (3)

then after a random sample size the test makes a.s. no error.

1.2 Asymptotic normality

Beirlant et al. [3] proved, under conditions

lim
n→∞

mn = ∞, lim
n→∞

mn/n = 0, lim
n→∞

max
j=1,...,mn

µ(Anj) = 0, (4)

that √
n (Ln(µn, µ) − E{Ln(µn, µ)}) /σ

D→ N (0, 1),

where
D→ stands for the convergence in distribution and σ2 = 1− 2/π. We adapt

this proof to the case of independence testing (see Appendix for details).

Theorem 2. Assume that conditions (2) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (5)

are satisfied. Then under H0, there exists a centering sequence (Cn)n≥1 depend-
ing on ν such that

√
n (Ln(νn, µn,1 × µn,2) − Cn) /σ

D→ N (0, 1), where σ2 = 1 − 2/π.
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Theorem 2 yields the asymptotic null distribution of a consistent indepen-
dence test, which rejects the null hypothesis if Ln(νn, µn,1×µn,2) becomes large.
In contrast to Corollary 1, and because of condition (4), this new test is not
distribution-free. In particular, the measures µ1 and µ2 have to be nonatomic.
The corollary below follows from Theorem 2, replacing Cn with the upper bound

Cn ≤
√

2mnm′
n/(πn)

(the original expression for Cn is provided in the Appendix, eq. (20)).

Corollary 2. Let α ∈ (0, 1). Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c2

√

mnm′
n/n + σ/

√
nΦ−1(1 − α) ≈ c2

√

mnm′
n/n,

where σ2 = 1 − 2/π, c2 =
√

2/π ≈ 0.798, and Φ denotes the standard normal
distribution function. Then, under the conditions of Theorem 2, the test has
asymptotic significance level α. Moreover, under the additional conditions (3),
the test is consistent.

2 Log-likelihood statistic

In the goodness-of-fit testing literature the I-divergence or log-likelihood statistic,

In(µn, µ) = 2
∑mn

j=1 µn(An,j) log [µn(An,j)/µ(An,j)],

plays an important role. For testing independence, the corresponding log-likelihood
test statistic is defined as

In(νn, µn,1 × µn,2) = 2
∑

A∈Pn

∑

B∈Qn

νn(A × B) log
νn(A × B)

µn,1(A) · µn,2(B)
.

The large deviation and the limit distribution properties of In(νn, µn,1 × µn,2)
can be derived from the properties of

In(νn, ν) = 2
∑

A∈Pn

∑

B∈Qn
νn(A × B) log [νn(A × B)/ν(A × B)] ,

since under the null hypothesis it can easily be seen that

In(νn, ν) − In(νn, µn,1 × µn,2) = In(µn,1, µ1) + In(µn,2, µ2) ≥ 0.

For the large deviation bound, Kallenberg [16], and Quine and Robinson [17]
proved that, for all ǫ > 0,

P{In(µn, µ)/2 > ǫ} ≤
(

n + mn − 1

mn − 1

)

e−nǫ ≤ emn log(n+mn)−nǫ.

Therefore under the condition mn log n = o(n), which is stronger than (4),

P{In(µn, µ)/2 > ǫ} = e−n(ǫ+o(1)). (6)
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A test based on this result can be introduced which rejects independence if

In(νn, µn,1 × µn,2) ≥ mnm′
nn−1(2 log(n + mnm′

n) + 1).

Under H0, we obtain the non-asymptotic bound

P
{

In(νn, µn,1 × µn,2) > mnm′
nn−1(2 log(n + mnm′

n) + 1)
}

≤ P
{

In(νn, ν) > mnm′
nn−1(2 log(n + mnm′

n) + 1)
}

≤ e−mnm′

n .

Therefore condition (2) implies
∑∞

n=1 P
{

In(νn, µn,1 × µn,2) > mnm′
nn−1(2 log(n + mnm′

n) + 1)
}

< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null
hypothesis. Under the alternative hypothesis the proof of strong consistency
follows from Pinsker’s inequality,

L2
n(νn, µn,1 × µn,2) ≤ In(νn, µn,1 × µn,2). (7)

Concerning the limit distribution, Györfi and Vajda [4] proved under (4),

(nIn(µn, µ) − mn) (2mn)−1/2 D→ N (0, 1).

This implies that for any real valued x, under conditions (2) and (5),

P

{

nIn(νn,µn,1×µn,2)−mnm′

n√
2mnm′

n

≤ x

}

≤ P

{

nIn(νn,ν)−mnm′

n√
2mnm′

n

≤ x

}

→ Φ(x),

from which an asymptotically α-level test follows straightforwardly.

3 Pearson χ2 statistic

Another statistic for testing independence is the Pearson χ2 test statistic,

χ2
n(νn, µn,1 × µn,2) =

∑

A∈Pn

∑

B∈Qn

(νn(A × B) − µn,1(A) · µn,2(B))2

µn,1(A) · µn,2(B)
.

For the associated goodness of fit test, Quine and Robinson [17] provide a large
deviation bound for the statistic

χ2
n(µn, µ) =

mn
∑

j=1

(µn(An,j) − µ(An,j))
2

µ(An,j)
, (8)

from which it may be possible to obtain a strong consistent distribution-free
test of independence. The asymptotic distribution of (8) under conditions (4)
was addressed by Györfi and Vajda [4], who proved

(

nχ2
n(µn, µ) − mn

)

(2mn)−1/2 D→ N (0, 1).

We conjecture that under the conditions (2) and (5),

(

nχ2
n(νn, µn,1 × µn,2) − mnm′

n

)

(2mnm′
n)−1/2 D→ N (0, 1),

from which an asymptotically α-level test follows.
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4 Kernel-based statistic

We now present a second class of approaches to independence testing, based on
a kernel statistic. We can derive this statistic in a number of ways. The most
immediate interpretation, introduced by Rosenblatt [7], defines the statistic as
the L2 distance between the joint density estimate and the product of marginal
density estimates. Let K and K ′ be density functions (called kernels) defined on
R

d and on R
d′

, respectively. For the bandwidth h > 0, define

Kh(x) =
1

hd
K
(x

h

)

and K ′
h(x) =

1

hd′
K ′
(x

h

)

.

The Rosenblatt-Parzen kernel density estimates of the density of (X, Y ) and X
are respectively

fn(x, y) =
1

n

n
∑

i=1

Kh(x − Xi)K
′
h(y − Yi) and fn,1(x) =

1

n

n
∑

i=1

Kh(x − Xi), (9)

with fn,2(y) defined by analogy. Rosenblatt [7] introduced the kernel-based in-
dependence statistic

Tn =

∫

Rd×Rd′

(fn(x, y) − fn,1(x)fn,2(y))2dx dy. (10)

Alternatively, defining

Lh(x) =

∫

Rd

Kh(u)Kh(x − u)du =
1

hd

∫

Rd

K(u)K(x − u)du

and L′
h(x) by analogy, we may write the kernel test statistic

Tn = 1
n2

∑n
i=1

∑n
j=1 Lh(Xi − Xj)L

′
h(Yi − Yj)

− 2
n3

∑n
i=1

(

∑n
j=1 Lh(Xi − Xj)

)(

∑n
j=1 L′

h(Yi − Yj)
)

+
(

1
n2

∑n
i=1

∑n
j=1 Lh(Xi − Xj)

)(

1
n2

∑n
i=1

∑n
j=1 L′

h(Yi − Yj)
)

. (11)

Note that at independence, the expected value of the statistic is not zero, but

E{Tn} =
n − 1

n2
(Lh(0) − E{Lh(X1 − X2)}) (L′

h(0) − E{L′
h(Y1 − Y2)}) (12)

≤ n−1Lh(0)L′
h(0) = (nhdhd′

)−1‖K‖2‖K ′‖2. (13)

A second interpretation of the above statistic is as a smoothed difference be-
tween the joint characteristic function and the product of the marginals [8]. The
characteristic function and Rosenblatt-Parzen window statistics can be quite
similar: in fact, for appropriate smoothing and kernel choices and fixed n, they
may be identical [9]. For increasing n, the main differences between the ap-
proaches are that the kernel bandwidth h must decrease in the Rosenblatt test
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for consistency of the kernel density estimates, and the more restrictive condi-
tions on the Rosenblatt-Parzen test statistic [7, conditions a.1-a.4].

A generalization of the statistic to include non-Euclidean domains is pre-
sented by Gretton et al. [10, 11]. The test statistic in (11) is then interpreted as
a biased empirical estimate of the Hilbert-Schmidt norm of a cross-covariance
operator between reproducing kernel Hilbert spaces (RKHS),4 ‖Cxy‖2

HS. Clearly,
when Kh and K ′

h are continuous and square integrable densities, the induced
kernels Lh and L′

h are continuous positive definite RKHS kernels. However, as
long as Lh and L′

h are characteristic kernels (in the sense of Fukumizu et al. [18];
see also Sriperumbudur et al. [19]), then ‖Cxy‖2

HS = 0 iff X and Y independent:
these kernels need not be inner products of square integrable probability density
functions. The Gaussian kernel is characteristic on R

d [18], and universal ker-
nels (in the sense of Steinwart [20]) are characteristic on compact domains [10].
Note that universal kernels exist that may not be written as inner products of
kernel density functions: see examples in [20, Section 3]. An appropriate choice
of kernels allows testing of dependence in general settings, such as distributions
on strings and graphs [11].

4.1 Large deviation property

The empirical statistic Tn was previously shown by Gretton et al. [10] to converge
in probability to its expectation with rate 1/

√
n. We now provide a more refined

bound, which is tighter when the bandwidth h decreases. We will obtain our
results for the statistic

T̃n = ‖fn(·, ·) − Efn(·, ·)‖2,

since under the null hypothesis,

√
Tn = ‖fn(·, ·) − fn,1(·)fn,2(·)‖

≤
√

T̃n + ‖fn,1(·)‖ ‖fn,2(·) − Efn,2(·)‖ + ‖fn,1(·) − Efn,1(·)‖ ‖Efn,2(·)‖ ≈
√

T̃n.
(14)

Theorem 3. For any ǫ > 0,

P

{

T̃n ≥
(

ǫ + E

{
√

T̃n

})2
}

≤ e−nǫ2
/

(2Lh(0)L′

h(0)).

Proof We apply McDiarmid’s inequality [21]: Let Z1, . . . , Zn be independent
random variables taking values in a set A, and assume that f : An → R satisfies

sup
z1,...,zn,

z′

i∈A

|f(z1, . . . , zn) − f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ ci, 1 ≤ i ≤ n.

4 Given RKHSs F and G, the cross-covariance operator Cxy : G → F for the
measure ν is defined such that for all f ∈ F and g ∈ G, 〈f, Cxyg〉

F
=

E {[f(x) − E{f(x)}] [g(y) −E{g(y)}]} .
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Then, for all ǫ > 0,

P {f(Z1, . . . , Zn) − Ef(Z1, . . . , Zn) ≥ ǫ} ≤ e−2ǫ2
/

P

n
i=1

c2

i .

Given the function f =
√

T̃n, the result follows from

2

n
‖Kh(· − X1)K

′
h(· − Y1)‖ =

2

n

√

Lh(0)L′
h(0) =: ci = c1.

From these inequalities we can derive a test of independence. Given ǫ such that
nǫ2
/

(2Lh(0)L′
h(0)) = 2 lnn, and recalling (13) and (14), a strongly consistent

test rejects independence if

Tn > ‖K‖2‖K ′‖2(
√

4 lnn + 1)2(nhdhd′

)−1.

Under the alternative hypothesis, there are two cases. If h → 0 and the density
f exists and is square integrable, then Tn → ‖f − f1f2‖2 > 0 a.s. If h is fixed,
the strong law of large numbers implies Tn → ‖Cxy‖2

HS > 0 for characteristic
kernels, and the test is strongly consistent. In both cases the strong consistency
is not distribution-free.

4.2 Limit distribution

We now describe the asymptotic limit distribution of the test statistic Tn in (11).
We address two cases: first, when the kernel bandwidth decreases, and second,
when it remains fixed.

Let us consider the case where Kh(x) and K ′
h(y) are intended to be used

in a Rosenblatt-Parzen density estimator, as in (9). The corresponding density
estimates in Tn are mean square consistent if h = hn such that

hn → 0 and nhd
nhd′

n → ∞. (15)

Based on the results in [22, 23, 24], we expect Tn to be asymptotically normally
distributed. For an independence test, we require var(Tn) ≈ var(T̃n). If h → 0,

var(T̃n) ≈ 2‖f‖2n−2h−dh−d′

. (16)

Therefore a possible form for the asymptotic normal distribution is

nhd/2hd′/2(Tn − E{Tn})/σ
D→ N (0, 1),

where σ2 = 2‖f‖2. While an α-level test may be obtained by replacing E{Tn}
with its upper bound in (13), the resulting threshold is still not distribution-free,
since σ depends on the unknown f . The simplest distribution-free bound for the
variance, σ2 ≤ ‖K‖4‖K ′‖4n−2h−2dh−2d′

, is unsatisfactory since its performance
as a function of h is worse than the result in (16). An improved distribution-
free bound on the variance is a topic for future research: we give an empirical
estimate below (eq. 18) for use in asymptotic hypothesis tests.
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We now consider the case of fixed h. Following [8], the distribution of Tn

under H0 is

nTn
D→

∞
∑

l=1

λlz
2
l , (17)

where zl ∼ N (0, 1) i.i.d., and λl are the solutions to an eigenvalue problem
depending on the unknown distribution of X and Y (see [11, Theorem 2]). A
difficulty in using the statistic (11) in a hypothesis test therefore arises due to
the form of the null distribution, which is a function of the unknown distribution
over X and Y , whether or not h is fixed. In the case of h decreasing according
to (15), we may use an empirical estimate of the variance of Tn under H0 due
to Gretton et al. [11, Theorem 4]. Denoting by ⊙ the entrywise matrix product
and A·2 the entrywise matrix power,

var(Tn) = 1⊤ (B− diag(B)) 1, where B = ((HLH) ⊙ (HL′H))
·2

, (18)

L is a matrix with entries Lh(Xi −Xj), L′ is a matrix with entries L′
h(Yi − Yj),

H = I − n−111⊤ is a centering matrix, and 1 an n × 1 vector of ones.
Two approaches have been proposed in the case of fixed h to obtain quantiles

of the null distribution (17) for hypothesis testing: repeated shuffling of the
sample [8], and approximation by a two-parameter Gamma density [9],

nTn ∼ xα−1e−x/β/ (βαΓ (α)) , α = (E{Tn})2/var(Tn), β = nvar(Tn)/E{Tn},

using E{Tn} from (12). This Gamma approximation was found by [11] to per-
form identically on the Section 5 benchmark data to the more computationally
expensive approach of Feuerverger [8]. We emphasize, however, that this approx-
imation is a heuristic, with no guarantees on asymptotic performance.

We end this section with an empirical comparison between the Normal and
two-parameter Gamma null distribution approximations, and the null CDF gen-
erated by repeated independent samples of Tn. We chose X and Y to be in-
dependent and univariate, with X having a uniform distribution and Y being
a symmetric bimodal mixture of Gaussians. Both variables had zero mean and
unit standard deviation. Results are plotted in Figure 1. We observe that as the
kernel size increases, the Gamma approximation of Tn becomes more accurate
(although it is always good for large quantiles, which is the region most impor-
tant to a hypothesis test). The Normal approximation is close to the Gamma
approximation for small kernel sizes, but is less accurate for larger kernel sizes
(where “small” and “large” will depend on the measure ν).

5 Experiments

In comparing the independence tests, we made use of the multidimensional
benchmark data proposed by Gretton et al. [11]. We tested the independence
of both one-dimensional and two-dimensional random variables (i.e. d = d′ = 1
and d = d′ = 2). The data were constructed as follows. First, we generated n
samples of two univariate random variables, each drawn at random from the
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Fig. 1. Simulated cumulative distribution function of Tn (Emp) under H0 for n =
200, compared with the two-parameter Gamma distribution (Gamma) and the Normal
distribution (Normal). The empirical CDF was obtained using 5000 independent draws
of Tn.

ICA benchmark densities in Figure 5 of Bach and Jordan [25]: these included
super-Gaussian, sub-Gaussian, multimodal, and unimodal distributions. Second,
we mixed these random variables using a rotation matrix parametrised by an
angle θ, varying from 0 to π/4 (a zero angle meant the data were independent,
while dependence became easier to detect as the angle increased to π/4: see the
two plots in Figure 2). Third, in the case of d = 2, a second dimension was ap-
pended to each of the mixed variables, consisting of independent Gaussian noise
of zero mean and unit standard deviation; and each resulting vector was multi-
plied by an independent random two-dimensional orthogonal matrix, to obtain
vectors dependent across all observed dimensions. We emphasise that classical
approaches (such as Spearman’s ρ or Kendall’s τ) are unable to find this depen-
dence, since the variables are uncorrelated; nor can we recover the subspace in
which the variables are dependent using PCA, since this subspace has the same
second order properties as the noise. We investigated sample sizes n = 128, 512.

We compared three different asymptotic independence testing approaches
based on space partitioning: the L1 test, denoted L1; the Pearson χ2 test Pears;
and the log likelihood test Like. The number of discretisations per dimension
was set at mn = m′

n = 4, besides in the n = 128, d = 2 case, where it was set
at mn = m′

n = 3: in the latter case, there were too few samples per bin when
a greater number of partitions were used. We divided our spaces R

d and R
d′

into roughly equiprobable bins. Further increases in the number of partitions
per dimension, where sufficient samples were present to justify this (i.e., the
n = 512, d = 1 case), resulted only in very minor shifts in performance. We
also compared with the kernel approach from Section 4, using both the Gamma
Ker(g) and Normal Ker(n) approximations to the null distribution. Our kernels
were Gaussian for both X and Y , with h and h′ set to the median distances
between samples of the respective variables, following Gretton et al. [11].

Results are plotted in Figure 2 (average over 500 independent generations
of the data). The y-intercept on these plots corresponds to the acceptance rate
of H0 at independence, or 1 − (Type I error), and should be close to the de-
sign parameter of 1 − α = 0.95. Elsewhere, the plots indicate acceptance of
H0 where the underlying variables are dependent, i.e. the Type II error. As ex-
pected, dependence becomes easier to detect as θ increases from 0 to π/4, when
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Fig. 2. Top left plots: Example dataset for d = d′ = 1, n = 200, and rotation angles
θ = π/8 (left) and θ = π/4 (right). In this case, both distributions prior to rotation
are mixtures of two Gaussians. Next four plots: Rate of acceptance of H0 for the
PD, fCorr, HSICp, and HSICg tests. “Samp” is the number n of samples, and “dim” is
the dimension d = d′ of x and y. Bottom right plots Performance of the Ker(g) and
Ker(n) tests for a large kernel size h = 3, and α = 0.5, to show the difference between
the Normal and two-parameter Gamma approximations to the null distribution.

n increases, and when d decreases. Although no tests are reliable for small θ,
several tests do well as θ approaches π/4 (besides the case of n = 128, d = 2).
For smaller numbers of samples (n = 128), the L1 test performs the same as
or slightly better than the log likelihood test; the Pearson χ2 test always per-
forms worst. For larger numbers of samples (n = 512), the L1 test has a slight
advantage at d = 1, but the log-likelihood test displays far better performance
for d = 2. The superior performance of the log-likelihood test compared with
the χ2 test might arise due to the different convergence properties of the two
test statistics. In particular, we note the superior convergence behaviour of the
goodness-of-fit statistic for the log likelihood, as compared with the χ2 statistic,
in terms of the dependence of the latter on the number mn of partitions used
[15]. In all cases, the kernel-based test outperforms the remaining methods, and
behaviour under the Normal and Gamma null distribution models is virtually
identical. That said, we should bear in mind the kernel test thresholds require
E{Tn} and var(Tn), which are unknown and must be estimated from the data:
thus, unlike the L1, χ2, and log likelihood tests, the kernel test thresholds are
not distribution-independent.

It is of interest to further investigate the null distribution approximation
strategies for the kernel tests. We used an artificially high kernel bandwidth
h = 3, and a lower α = 0.5, to make visible the performance difference. Results
are shown in the final row of Figure 2. In accordance with Figure 1, the Gaussian
approximation yields a larger threshold than the true CDF would require, and
consequently has a Type I error below the design level α.
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A Proof of Theorem 2

The main difficulty in proving Theorem 2 is that it states the asymptotic nor-
mality of Ln(νn, µn,1 × µn,2), which is a sum of dependent random variables.
To overcome this problem, we use a “Poissonization” argument originating from
the fact that an empirical process is equal in distribution to the conditional
distribution of a Poisson process given the sample size (see [3] for details). We
begin by introducing the necessary terminology. For each n ≥ 1, denote by
Nn a Poisson(n) random variable, defined on the same probability space as the
sequences (Xi)i≥1 and (Yi)i≥1, and independent of these sequences. Further de-
fine νNn

, µNn,1 and µNn,2 as the Poissonized version of the empirical measures
associated with the samples {(Xi, Yi)}, {Xi} and {Yi}, respectively,

nνNn
(A × B) = #{i : (Xi, Yi) ∈ A × B, i = 1, . . . , Nn},

nµNn,1(A) = #{i : Xi ∈ A, i = 1, . . . , Nn}, and

nµNn,2(B) = #{i : Yi ∈ B, i = 1, . . . , Nn},

for any Borel subsets A and B. Clearly, nνNn
(A×B), nµNn,1(A), and nµNn,2(B)

are Poisson random variables. The Poissonized version L̃n(νn, µn,1 × µn,2) of
Ln(νn, µn,1 × µn,2) is then

L̃n(νn, µn,1 × µn,2) =
∑

A∈Pn

∑

B∈Qn
|νNn

(A × B) − µNn,1(A) · µNn,2(B)|.

Key to the proof of Theorem 2 is the following result, which extends the propo-
sition of [3, p. 311].

Proposition 1. Let gnjk (n ≥ 1, j = 1, . . . , mn, k = 1, . . . , m′
n) be real measur-

able functions, and let

Mn :=

mn
∑

j=1

m′

n
∑

k=1

gnjk (νNn
(Anj × Bnk) − µNn,1(Anj)µNn,2(Bnk)) .

Assume that under the null hypothesis,

E{gnjk (νNn
(Anj × Bnk) − µNn,1(Anj)µNn,2(Bnk))} = 0,
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and that
(

Mn,
Nn − n√

n

)

D→ N
([

0
0

]

,

[

σ2 0
0 1

])

(19)

as n → ∞, where σ is a positive constant and N (m,C) is a normally distributed
random variable with mean m and covariance matrix C. Then

1

σ

mn
∑

j=1

m′

n
∑

k=1

gnjk (νn(Anj × Bnk) − µn,1(Anj)µn,2(Bnk))
D→ N (0, 1).

The proof of the proposition is a simple extension of that by Beirlant et al. for
the goodness-of-fit case [3, pp. 311–313]. We now turn to the proof of Theorem 2.

Proof (Theorem 2, sketch only) We will show the theorem with the centering
constant

Cn = E{L̃n(νn, µn,1×µn,2)} =
∑

A∈Pn

∑

B∈Qn

E{|νNn
(A×B)−µNn,1(A)·µNn,2(B)|}.

(20)
Define

gnjk(x) :=
√

n (|x| − E |νNn
(Anj × Bnk) − µNn,1(Anj)µNn,2(Bnk)|) .

Our goal is to prove that the assumption in (19) holds. In particular (see [3, 1]
for details), we require a central limit result to hold for the Poissonized statistic

Sn := t
√

n

mn
∑

j=1

m′

n
∑

k=1

(

|νNn
(Anj × Bnk) − µNn,1(Anj)µNn,2(Bnk)|

− E |νNn
(Anj × Bnk) − µNn,1(Anj)µNn,2(Bnk)|

)

+ v
√

n (Nn/n − 1) .

Once we obtain var(Sn), the asymptotic normality in (19) can be proved by
verifying the Lyapunov conditions as in Beirlant et al. [3]. We have that

Nn/n − 1 =
∑

A∈Pn

∑

B∈Qn
νNn

(A × B) −∑A∈Pn

∑

B∈Qn
µ1(A)µ2(B),

and therefore the variance of Sn is

var(Sn) = t2n
∑

A∈Pn

∑

B∈Qn
var |νNn

(A × B) − µNn,1(A)µNn,2(B)|
+ 2tvn

∑

A∈Pn

∑

B∈Qn
E
{

|νNn
(A × B) − µNn,1(A)µNn,2(B)|

· (νNn
(A × B) − µ1(A)µ2(B))

}

+ v2.

One can check that there exist standard normal random variables ZA×B, ZA,
and ZB such that

νNn
(A × B)

D≈ ZA×B

√

µ1(A)µ2(B)/n + µ1(A)µ2(B),

µNn,1(A)
D≈ ZA

√

µ1(A)/n + µ1(A),

with µNn,2(B) and ZB defined by analogy. Making these substitutions and sim-
plifying,

var(Sn) ≈ t2(1 − 2/π) + v2.


