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ABSTRACT indeed, we demonstrate that the KGV can also be thought of as 

We introduce a new contrast function, the kemel mutual informa- 
tion (KMIj, to measure the degree of independence of continuous 
random variables. This contrast function provides an approximate 
upper bound on the mutual information, as measured near inde- 
pendence, and is based on a kernel density estimate of the mutual 
information between a discretised approximation of the continuous 
random variables. We show that Bach and Jordan’s kernel gener- 
alised variance (KGV) is also an upper bound on the same kernel 
density estimate, but is looser. Finally, we suggest that the addition 
of a regularising term in the KGV causes it to approach the KMI, 
which motivates the introduction of this regularisation. 

1. INTRODUCTION 

The problem of separating mixtures of signals, so as to recover 
the original signals prior to mixing, is a much studied challenge 
in signal processing. Methods of solution generally depend on the 
nature of the signals, and the manner in which they are mixed: in 
particular, a criterion known as the contrast function is required to 
determine when the demixing is successful. We assume here that 
the original signals are generated i.i.d. according to some unknown 
probability distributions, and are combined in a scalar mixing pro- 
cess: demixing is then achieved by ensuring that the recovered 
signals are statistically independent. This is the framework for in- 
stantaneous ICA‘, and has been used successfully in a wide variety 
of problems: for instance, the separation of linearly mixed audio 
signals, and the recovery of evoked potentials from EEG signals 
(see [IO, 41, and references therein). 

A measure of statistical independence between two random 
variables is the mutual information [ 5 ] ,  which for random vectors 
X;  Tis zero if and only if the random vectors are independent. This 
may also be interpreted as the KL divergence DXL (fi,yllfify) be- 
tween the joint density fi,? and the product of the marginal den- 
sities fif?; the latter quantity generalises readily to distributions 
of more than two random variables. We therefore propose two 
quantities, based on the mutual information, that may be used as 
contrast functions in [CA. The first, which we call the kernel co- 
variance (KC), can be shown to be zero if and only if the random 
variables are independent. The second function. the kemel mutual 
information (KMI), is an upper bound on the Parzen window esti- 
mate of the mutual information, and is also zero if and only if the 
random variables are independent. Both functions bear a strong 
resemblance to the kernel canonical correlation (KCC) and kernel 
generalised variance (KGVj introduced by Bach and Jordan [31: 

‘We shall in future refer to this problem simply as ICA 

a (looser) upper bound on the same Parzen window estimate. An 
important advantage of the derivation described herein, however, 
is that it addresses the behaviour of the contrast functions far finite 
kernel sizes, rather than relying on a limiting argument in which 
the kernel size approaches zero, as in [31. Our approach thus al- 
lows us to apply well established methods for selecting kemel size 
as a function of the number of observations; see for instance [14]. 

In Section 2, we introduce the ICA problem, and describe our 
terminology. We then introduce the KC and KCC in Section 3, 
and derive the KMI and KGV in Section 4. Finally, we show in 
Section 5 that the performance of the KMI, when used in ICA, is 
competitive with that of the KGV, and that both the KMI and KGV 
outperform many traditional ICA algorithms. 

2. ICA: PROBLEM STATEMENT 

We begin by introducing the ICA problem.The discussion draws 
on the numerous existing surveys of ICA and related methods; see 
for instance [lo, 41. Suppose we have a random vector? of di- 
mension N, with independent identically distributed (i.i.d.) com- 
ponents (we use the sans serif to indicate random variables); 

N 

where s, E W. We do not observe ?’, however: instead, we observe 
the random vector <, such that 

t’= As,, (2.1) 

where A is an N x N matrix’. Clearly, the components of Twill 
not be independent unless A = PS, where P is a permutation 
matrix and S is a diagonal scaling matrix. Our goal is to find an 
approximation V to the inverse of the matrix’ A, given m i.i.d. 
samples from fi, and using only the model (2.1) and the fact that 
the unmixed components are independent. The determination of 
A can only be made within certain identifiability constraints, how- 
ever; in particular, no more than one source c_an be Gaussian. 

Assume we have m observations t := ( t i , .  . . , rm). Our f ic t  
step in computing V is to subtract the mean o f t  from each ti, 
and to whiten it, r = QC such that the new observations ihave  

2This corresponds to the number of sources k i n g  equal to the num- 
ber of sensors. In fact. it is possible to recover (2.1) when the number of 
sources is less than the number of sensors by a change of basis, although 
the presence of noise makes this more difficult. 

)Up to permutation and scaling. 
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a unit covariance matrix. Our estimate of the demixing matrix 
then becomes V := WQ, where W is an orthogonal matrix; our 
estimate of d is I := Wc Although the determination of W 
remains difficult, there are only N ( N  - 1) degrees of freedom 
involved in this problem, as opposed to the N 2  degrees of freedom 
present in the estimation of V. 

3. THE KERNEL COVARIANCE AND CORRELATION 

We now describe the kernel covariance, which is proposed as a 
measure of statistical independence of the random vectors P and 7, 
defined on X := Rn3"' and y := R"' . The generalisation to, more 
than two vectors is addressed in [XI. We define the vectors x and y 
and the random vectors x and y in the feature spaces 3x and 3 y ,  
and the mappings 9, : X i 32 and +, : Y --t F y  such that 

x := +, (3) and y := +v (y3 
The feature spaces may be the reproducing kernel Hilben spaces 
(and subspaces of e) associated with particular kernels. which 
represent the inner products4 on 3 x  and 3 y .  We define 

(3.2) 

where C,, and C,, are given by analogy. We observe m i.i.d. 
samples of data; x = ((xi, y,), . . . , (x,,,, y,,,)). where xi E 3 x  
and yi t 3 y .  

We may also define the Gram matrices K!&, Kkk bf in- 
ner products between the mapped observations above, in the case 
where 32 and 3 y  are reproducing kernel Hilbert spaces (RKHSs) 
with associated kemels k ( I , , I j )  := x:xj = (K!%!,)i,J and 
k ( < ; , g j )  := yTy, = (KkL) i , j .  According to 1131, Gram 
matrices for the variables centred in feature space are Kkk := 

HKkbH, KkL := HKkLH, where H = I, - m-'l,,,l;, 
and 1, is an m x 1 vector of ones. 

We can now introduce the kernel covariance (KC). In the pop- 
ulation case, the KC is 

I 

- 

where F x  := {f E 3 x  : l l f 1 1 7 x  5 11, and F y  is analogous. 
An empirical estimate 3(r) may be obtained from the finite sample 
z, using the representer theorem (Scholkopfetal. [121) to replace 

withasimilarreplacementforg (9; itfollows that>(%) := maxi ~ i .  
where ~i are the eigenvalues of 

We now describe the link between the kernel covariance and inde- 
pendence; details are given in [XI. 

'To be a kemel associated with a RKHS, k(%,Z,) must satisfy the 
Mercer conditions [I];  these hold for Gaussian and Laplace kernels, among 
(many) others. Note also lhal the argument of the kemel specifies whether 
the kernel pertains to 32 or 5, although these kemels are identical in 
the present study. 

Theorem 1 (Kernel covariance and independence). 3 = 0 if 
and only i f x ,  y are independent. 

Finally, we introduce the canonical correlation, as described in 
[7, 3, 111; the final reference is a particularly insightful investiga- 
tion of the canonical correlation in high dimensional spaces (such 
as RKHSs). We fint define the canonical correlation in the gen- 
eral case, without reference to its interpretation when 3 x ,  3 y  are 
RKHSs. We would like to find vectors ai$, onto which x and 
y respectively project, such that the correlation pi between these 
projections is a stationary point with respect to a,, p,. The canon- 
ical correlations, pi, aTe thus given by 

(3.4) pi := a:CZ,Pi 

J(a:C=,ai) (PTC,,P) 

When 32 and 3 y  are RKHSs, then care must be taken when find- 
ing empirical estimates of the canonical correlates, to ensure that 
these estimates are data dependent. This may be done by con- 
fining ai, Pi to subspaces of the space spanned by the sample in 
3 ~ , 3 y ,  as in Kuss [ I l l ,  or by regularising, as in [3]; in the lat- 
ter case, the largest kernel canonical correlation may be used as a 
contrast function for ICA. 

4. UPPER BOUNDS ON MUTUAL INFORMATION 

We now apply both these definitions to derive an approximation of 
the mutual information between random variables x and y. defined 
on the respective bounded intervals X and Y on W. Full details 
of the proofs, and a generalisation to more than two random vari- 
ables, may be found in [XI. We begin by introducing the Gaussian 
mutual information, and its relation with the canonical correlation. 
If ZG, YG are Gaussian random variables in Rp' , Wpq respectively, 
then according to [3] the mutual information between them can be 
written 

where the p. are given by the canonical correlations in (3.4). 
Next, consider a grid of sire p ,  x p ,  over X and Y respec- 

tively. Let the indices i , j  denote the point (qi, r,) E X x Y on 
this grid, and let q := ( y l , .  . . , y p r ) ,  T := ( ? I , .  . . , r p v )  be the 
grid coordinates. The spacing between points along the x and y 
axes is respectively A, and A,. We define two multinomial ran- 
dom variables k, 9 with a distribution Pi,? (i, j) over the grid (we 
write the complete p, x p ,  matrix of such probabilities as P,,), 
where 

Thus Pi,? ( i , j )  is a discretisation of Px,y. We denote as p. the 
vector for which (ps), = P i ( i ) ,  with a similar py definition. We 
may always write Pi,? ( i l j )  = P; (2) Pi ( j )  (1 + ci,,) for an ap- 
propriate choice of t.,, . If e;, ,  is small. we approximate 

It is well known (see [ 5 ] )  that I ( x ,  y)  represents the upper bound 
on I (a; 9 )  as the discretisation becomes infinitely fine. 
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We next define an equivalent multidimensional representation 
P, 7 of ?> 9 in the previous section, where P E Rp' and 7 E Rpv, 
such that2 = i is equivalent to (5); = 1 and (Z)j :;#, = 0. Using 

Ex,y (2y") = P,,, E,(?) = p2, E, (PZT) = D,, 

where D, = diag (pz), it is possible to define covariances 
T 

C z y  = Pz, - pzpc, C z z  = Dz - P ~ P ~ .  (4.3) 

We define the Gaussian random variables ZG, 70 to have the same 
covariance S~TUC~UIC as Z, 7, and with mutual information given by 
(4.1). The mutual information for this Gaussian case may then he 
approximated by (4.2) near independence; see [3,8]. 

Given that we are not provided with the distribution Pz,? ( i ,  j ) ,  
but rather a finite sample z of size m, we make use of a kernel den- 
sity estimate of the mutual information for the discretised random 
variables. A detailed discussion of the properties and behaviour of 
such estimates may he found i n  [14], and previous work on their 
application to the computation of entropies in [9]. The kernel den- 
sity (Parzen window) estimates off. and fx,y are 

- l m  
fX,Y(Z,Y) := m C k ( Z I > Z ) k  (Y l ,Y) .  

i = 1  

The kernels must be non-negative and continuous, with unit inte- 
gral w.1.t. to its two arguments. We require approximations to the 
covariance matrices in the Gaussian mutual information, as de- 
scribed in (4.3). We therefore define the vectors pz, p,, and the 
matrix P,,, using the expectations computed with these kernel 
expressions; 

- 

where i., := min;Ejl...p.) CL, k  XI,^;), we replace the ma- 
trix term in c= by the left hand expression in (4.5). yielding a new 
quantity l?,l 2 18.1; it follows that replacing 8. with T% yields an 
upper bound on (4.1). In fact, 7; is simply the kernel covariance, 
but with the additional requirement that the functions f, g be pro- 
jected in their respective feature spaces onto the basis spanned by 
the columns of the grid q, r ,  as well as an added scaling factor 
&. We use this insight to replace T, in (4. I )  with an appropriately 
scaled y;, and i., with U, := m i n , t ~ , , , , ~ ~ ~ l = ~ k ( x ~ , x j ) ,  to 
obtain the empirical kernel mutual information (KMI), 

m 

7v[ (z) :=-Zlog( / I - (u ,u , )K~! ,K~! , / ) ,  1 (4.6) 

which is also an upper hound on (4.1). It follows from Theorem 
1 that the random variables x, y are independent if and only if the 
population KMI satisfies M = 0. 

Bach and Jordan [3] propose a related quantity as a contrast 
function for I C A  the kernel generalised variance (KGV). In fact, 
the latter quantity may also he derived by finding an upper bound 
on (4.1): this is a different approach to the proof in [3], which uses 
a limit as the kernel becomes infinitely small. Using 

STKPL (KPA)T S, 5 STdiag (Ke) (KFA) 1,. c,, 

we replace the right hand term in the above with the left hand term 
in the denominator of (4.4) to get a set of kernel canonical correla- 
tions p .  2 E ; ,  restricted to the basis spanned by the grid. The mu- 
tual information computed using the unrestricted kernel canonical 
correlations pi is therefore an upper bound on (4.1). The contrast 
function thus derived is never used in practice, since it is infinite; 
in other words, the approximation we made above is too loose. If 
we instead make the replacement 

> -  

where 8, 2 0.02 2 0, and 01 + 82 5 1, we recover an expression 
which, for correct choice of 01, 0 2 ,  yields the regularised KGv 
proposed in [315. We therefore expect the performance of both the 
KGV and mI be vely similar when used for this is indeed 
the in Our experimental 

We now briefly address the generalisation of the kernel covari- 
ance 3 to the case of N random variables x, on bounded subsets 
X; C W, by analogy with derivation of [3]; this can be used to 
measure the painvise independence of our estimate 3 of the inde- 
pendent components s7 The KC is the largest eigenvalue Xi of 

Let Kb"n! be the matrix of inner products in 32 between the grid 
Points and with K% defined by we 
P= B. m and P ,  >> m. The first subscript specifies whether 
the grid (q or r )  or the sample (2: or y) is used in the rows of 
this matrix, and the second subscript whether the grid or sample is 
used in the columns. By analogy, we may also define the matrices 
Kg), Kk(=, K&), K$L, In the limit where A,, A, are small 
(and thus, by implication, p, >> m, p, >> m, a >> A,, and 
a >> A,, where D defines the kemel sire), we make the approxi- 
mations 

c; = A ,  (diag(K)c;) , 

- (4.7) 
where ci = (ci,l,, , , , Ci,N)T and = [E,, I(*, , , , K ~ ] T ,  T~ 
reduce computational cost, we use a reduced rank approximation 
of g;, via an incomplete Cholesky factorization with appropriate 
pivoting 161 (that is, Kj z Z j Z 7  with Z j  t RmXd and d << m). 
Wese td ;  = [ c l , Z l ,  . . . ,  cZ,Z~]~ ,andrewri te(4 .7)as  

I) 

I >  

P..-finfi: - = * (.pi ( K ~ L ) ~  ~ k ~ ~ i i , , ,  ( ~ g i i ~ ) ~ ) ,  
K N K N  

m 

6, = %diag m (KPil,)  = g d i a g  nl ( K$ ( (KPA)Tlpi) 

The kernel density approximation to the discretised mutual infor- 
mation is then found by replacing the p, in (4.1) with 

Ei  := (4.4) 

d, = Aid;, (4.8) 

'Specifically, the parameter denoting the amount of regularisation in [31 
can be written IC = Bzu,/B1, although we must be careful in our choice 
of 01, 82 to ensure we still have an upper bound; see 181 for details. 

This cannot easily be computed, however, since it is computation- 
ally prohibitive to evaluate the Gram matrices on a sufficiently fine 
grid. Noting that ZLZN 

'dKkl'; 5 'Tdiag (.FA (KfA) '%'> (4.5) 
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where Z = [ZI ,  22,. . . Z N ] ~ .  This transformation takes care of 
the nullspace inherent in Z, Z: and reduces the eigenproblem to 
dN dimensions6. Finally, the KMI for more than two variables is 

Table 1. Illustration of the demixing of N randomly chosen 
signals; comparison with fast ICA, Jade, and extended Infomax. 
The best result is in boldface. 

where U. = min, u.> (in our experiments. we simply set U. = 
l / m ;  the performance remained satisfactory). 

5. EXPERIMENTAL RESULTS 

We now apply the KGV and KMI to the problem of ICA. Since the 
main purpose is to compare the performance with that reported in 
[3], we use identical settings and data. The mixing matrix A was 
chosen randomly, with condition number between 1 and 2. We 
usedtheGaussianRBFkernel, k ( z , z ' )  = exp(-&Ilz-z'11'), 
with g z  = a and n = 2 x for the KGV, except in the case 
of the 250 point sample, where r2 = 1 and n = 2 x lo-*. We 
only used a' = 1 for the KMI. The orthogonal component W 
of the demixing matrix was found using gradient descent on the 
manifold of orthogonal matrices; see [3]. In order to measure the 
distance between the true (A-') and approximate (WQ) demix- 
ing matrices, we used the Amnri divergence 141. This metric is in 
the interval [0, 1001, is equal to zero if and only if A-', WQ are 
piecewise identical, and is invariant to permutation and scaling of 

Our experiment consisted in de-mixing data drawn indepen- 
dently from 2 - 16 distributions, chosen at random with replace- 
ment from 18 possible options; these include signals with both 
positive and negative kurtosis, and are described in detail in 13, U]. 
Table 1 summarises our results; the KMI seems somewhat better 
in the case of larger m and N ,  although further refinement of the 
parameter choices in both methods might be possible. Further ex- 
periments are described in [a], most notably addressing the prob- 
lem of recovering signals in the presence of noise, and in the case 
of low kurtosis. In these cases, the KMI and KGV again yield the 
best observed performance. 

A-',W$. 

6. CONCLUSIONS 

We have presented a novel derivation of several kemel based con- 
trast functions for ICA (the KMI, KGV, and related), which yields 
useful insight both into the problem of model selection, and the 
function ofthe regularising term in these contrasts. The Kh4I and 
KGV are comparable in performance, and substantially outper- 
form several alternative ICA approaches. Further work will focus 
on the application of kernel based contrasts to convolutive mix- 
ing, and to the recovery of random processes that are not i.i.d.; an 
application to graphical model estimation is given in [2]. 
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