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ABSTRACT : Thin, cylindrical metal chimes can be used to play in a variety of scales requiring non-harmonic spectra. The spectrum
required for the chimes to have consonant intervals in a given non-harmonic scale can be determined according to a method developed by
Sethares, based on the theory of dissonance proposed by Plomp and Levelt. First order perturbation theory was applied to control the
frequencies of the first six modes of a thin, cylindrical metal chime by perturbations to the chime radius. The resultant chime profile was
then refined using finite element methods. Two aluminium chimes manufactured with this optimised profile demonstrated superior

musical performance compared with unperturbed thin cylinders.

1. INTRODUCTION

The majority of non-percussive musical instruments currently
used in the West produce spectra consisting of harmonically
related frequencies. That is to say, notes played using these
instruments have partials that are nearly integer multiples of
some fundamental frequency f,, Such harmonic spectra are
caused by a control oscillator (such as a reed, lip reed or air jet
in wind instruments, or a bow in string instruments), or by the
intrinsic properties of the vibrating elements used in these
musical instruments, whose natural frequencies are almost
exactly harmonic. Examples of the latter are long, thin,
uniform, flexible strings.

When two notes produced by a harmonic musical
instrument are played together, the sound produced can be
either consonant, meaning pleasant and relaxed, or dissonant,
meaning discordant and tense. Although there is still
speculation regarding the quantitative measurement of
dissonance, Plomp and Levelt [1] have proposed that the
perceived dissonance between two notes is exclusively a
function of the location and amplitude of the partials making
up these notes. This theory of dissonance is widely accepted.

Various scales have been developed that make use of the
dissonance properties of the harmonic spectrum to ensure that
a fairly large range of intervals sound reasonably consonant.
The 12 tone equal temperament (12-tet) scale has been widely
adopted so that free modulation from one key to another is
possible. .

Many objects that are used, or could potentially be used to
produce music, however, do not have harmonic spectra. Thus
they sound discordant when played in chords using notes in a
scale designed for harmonic instruments, such as the 12-tet
scale. In addition, many modern composers are interested in
writing music for scales other than 12-tet, which require
spectra that no readily available, non-electronic musical
instrument is able to produce. An approach to designing
spectra for non-harmonic scales was formulated by Sethares
in [2,3].

One class of non-harmonic objects with potential for wider
musical applications are thin cylindrical metal chimes. In this
project, a design process was developed that can be used to
create a set of such chimes that have a range of consonant

intervals for a given non-harmonic scale. Sethares’ approach
was used to determine the chime spectrum for the non-
harmonic scale under consideration.

Previous work in the design of musical instruments with
non-harmonic spectra includes the Pentangle by Fletcher [4].
The Pentangle consists of a pentagonal gong tuned to produce
a bell-like spectrum, using a combination of analytic and
finite element methods. A similar approach was followed in
this study, in that analytic methods were used for basic chime
design, and the chime profile was then refined using the finite
element analysis package STRAND 6. Such an approach
differs from the method used by Petrolito and Legge [5], who
applied finite element methods alone to tune the first three
modes of xylophone bars with rectangular cross sections.
Thus while the approach adopted by Petrolito and Legge was
to constrain the finite element optimisation process using
criteria such as the minimisation of material to be removed,
the approach of this work and of Fletcher was to limit the
finite element based optimisation to solutions close to results
obtained using simplified theoretical models of the system.
As far as we are aware, however, this study is the first attempt
to produce a non-electronic musical instrument that
implements Sethares’ method of selecting a spectrum for a
scale.

2. CHIME FREQUENCY SHIFT
CALCULATION USING PERTURBATION
THEORY

The theoretical model that was used to obtain a chime profile
that produces a close approximation to the desired spectrum is
described. Equations are given for the bending modes of a
thin, cylindrical rod, and then a general theory is introduced to
describe the frequency shifts caused by perturbations to a
vibrating object. Next, this theory is used to predict the shifts
to rod frequencies when small changes are made to the radius
of a rod.

Finally, this theory is applied to the specific problem of
controlling the frequencies of a cylindrical metal chime. The
problem of achieving the chime goal frequencies while
minimising the changes to chime radius is also addressed,
since the perturbation theory predictions will only be accurate
for small changes to the rod profile.
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2.1 Bending wave equation for a rod
The general wave equation for bending waves in a uniform
rod is [6]
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where E is the Young’s modulus, S is the cross sectional area
(S = m® for a cylindrical rod), « is the radius of gyration about
the neutral axis (i = #/2 for a cylindrical rod), p is the density,
x is the position along the rod as measured from the middle, ¢
is time, and W(x,) is the displacement of the rod from
equilibrium.

Equation (1) is a “thin beam” approximation that neglects
such effects as shear and rotary inertia, and only models
bending modes. For this approximation to be true, the
wavelength of the modes must be large compared with the rod
diameter, since otherwise shear distortion is non-negligible in
comparison with bending. Since we only consider the first six
modes of the rod (the most audible modes), this translates as a
requirement that the length to dimeter ratio for the rod should
be around 60:1 or greater. In practice, this requirement may
be relaxed a little.

The solutions to (1) take the form of sums of members of
the series

v = wn(x)cos(wnz‘), @
where
Y,=4, cosh +C cos 2t +B si 3)
vll ]‘l

Here v, = (wﬁxf,e/ p)l/4 is the wave velocity of mode n with
angular frequency w,, and 4,, B,, C, and D, are constants.

For a rod with both ends free, the solutions to equation (1)
have 4,=C,=0 for even n and B,=D,=0 for odd n, since v, is
even for odd » and odd for even n. Bending oscillations in a
rod of constant radius with both ends free occur at frequencies

f., given by
£ = 8";5 ((2n+1) )

2.2 Frequency shifts to a cylindrical rod due to changes in
rod radius

A general perturbation theory that can be used to determine
the effect on rod frequencies of perturbations to the rod radius
is now described. This theory takes a form similar to that
proposed by Tse, Morse and Hinkle [7]. Only first order
perturbations will be taken into account, which means that the
frequency shifts predicted are approximate. As a starting
point, it is possible to write (1) in the form
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where J is a linear differential operator, given by
2
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for the > Tod, and we take the functions 1, to be normalised so
that f mwﬂx 1, We now consider the effect of making the
perturbations

O, =0, +5(0)) S48, oy, 40y, (7)

in (5). Expanding (5), and retaining only first order or lower
terms, gives
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where we have written &, =o7[ L:,Izu J3w,dx for ease of reference.

We now derive a formula for the T, due to perturbations in
the rod radius. The expression for 5 in the case of the rod is
given by (6). Making the changes r—#+0r(x) and S— 3+63 in
(6), retaining only first order and lower terms in the resulting
expansion, and then substituting this expression for 83 into
(8), gives
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where

0, =2n+1)" (10)

2.3 Design of a chime with a specified set of frequencies

Equations (9) and (8) may now be used to obtain a cylindrical
metal chime whose frequencies of bending oscillation can be
assigned specified values. Given that N mode frequencies are
to be controlled, the perturbation to the chime radius will take
the form of a sum of N terms,

or(x) = EN b”ﬁrm(x) an

where the &7,(x) represent perturbations to the chime radius as
functions of longitudinal coordinate x, and each constant b,
scales the perturbation m. A set of functions for the dr,(x) is
now chosen, with the intention that each perturbing function
should have as large an effect as possible on only one modal
frequency, and a minimum effect on all other frequencies.

For a given increase in chime radius 0r, the stiffness will
increase by a factor 1+46r while the mass will increase by
1+28r. In addition, for all modes, regions of high lateral
displacement from equilibrium correspond to regions of large
curvature over most of the chime (the exception being near the
ends, where the displacement is significant but the curvature
approaches zero). Therefore if the chime radius is increased
in regions where a given mode has a large curvature, then the
frequency increase for this mode due to the higher stiffness
will be greater than the drop in frequency due to the increased
mass, and the net effect will be an increase in mode frequency.

From this property, it seems likely that the perturbing
functions dr,(x) will have larger effects on unique mode
frequencies if each perturbing function only has a large
amplitude where the mode that it targets has large curvature.
Thus the set of perturbing functions adopted is
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The purpose of the integral is to avoid applying an

upwards shift on all modes when the radius is perturbed.
Substituting (11) into (9) allows (9) to be rewritten as

& =D, (13)

where
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Once the N desired frequency shifts dw, have been
specified, (8) may be solved to obtain the N quantities T,. The

set of linear equations (13) can then be solved to give the
amplitudes of the perturbing functions in (11).

3. CHOOSING A TARGET SPECTRUM

Now that an approximate process for controlling the
frequencies of a cylindrical chime has been illustrated, the
chime goal spectrum that was used to test this procedure is
described. Given that the object of this project was to find a
design process that can be used to create chimes for a given
scale, we decided to test this process by selecting a genuinely
arbitrary scale and working towards a set of chimes with
appropriate spectra.

The scale that was chosen for the chimes is an unequally
stretched, Pythagorean major scale. The unstretched
Pythagorean major scale sounds quite similar to the 12-tet
major scale, but with slightly sharper major thirds and slightly
flatter minor thirds [3]. The steps of the Pythagorean scale,
whether stretched or unstretched, can be written

& (o, (x) &y,
o’ r o’

]]wndx (14)
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where f, represents the frequency of the first note in the scale
and a and b are the two basic frequency step ratios. The
notation in (15) means that the first note in the scale has
frequency 1xf,, the second note has frequency axf,, and so
on. The unstretched Pythagorean scale has ¢=9/8 and
b=256/243. Our stretched scale had a=6/5 and b=16/15. This
means that the “octave™ (literally the eighth note) occurs at
1,990,656 / 703,125 ~ 2.83 times the frequency of the lowest
note in this scale, rather than the usual factor of 2 for
unstretched scales. For this reason, the term pseudo-octave
will be used to designate the stretched “octave” interval.

One possible chime spectrum for the scale described in
(15), as determined using the procedure outlined by Sethares
[2,3], is

T=(1 a'% &%, da"b', %, a")xf> (16)

where the notation of equation (15) has been used, and the
number of partials is N = 6. The required frequency shifts to
the modes of the unperturbed chime, as fractions of the
unperturbed mode frequencies, vary from -8% to 9%.

To see why the target spectrum in equation (16) represents
a good spectrum for the scale in (15), it is necessary to
introduce the concept of the dissonance curve for a spectrum.
This is a plot of the dissonance (as defined by Plomp and
Levelt [1]) perceived when two notes are played
simultaneously, where the frequencies of the partials of the
higher note are increased by a factor R with respect to the
partials of the lower note. Plomp and Levelt found that when
these two notes are pure sinusoids, the dissonance d(a,, a,, f,,
/>) between them is a function of the amplitudes a, and a, of
the sinusoids, and their frequencies f, and f,. The dissonance
between the sinusoids is zero when their frequencies are equal,
rises rapidly as the frequency difference increases, and then
drops slowly upon further increase in the frequency
difference. A plot of the dissonance d(a,, a,, f,, f) between two
sinusoids is given in Figure 1, where a, =g, =1 and f; = R x
f;- Plomp and Levelt found that this function d(a, a, f, f5)
closely approximated the average dissonance measured in a
series of tests involving 90 musically untrained volunteers.

The dissonance g(R) of a spectrum containing partials at
several frequencies is obtained by adding the dissonance of
every pair of partials, so that

N N

g(R)= Y ¥ d(f,, Rf;.a.a) a7)

=1 j=1

where g, and g; are the amplitudes of the partials with
frequencies f; and f; respectively. The dissonance curve for a
given spectrum is a plot of g(R) for that spectrum.
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Figure 1 : dissonance between two sinusoids with frequencies f;
and f,, where f, = R x f,. The sinusoids have equal amplitude.

The dissonance curve for the spectrum in (16) is illustrated
in Figure 2, where stems are used to show the location of the
steps of the scale described in (15). We see from this plot that
dissonance is low at most of the scale steps, indicating that
chords played using these intervals will sound pleasant.
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Figure 2 : Dissonance curve of a the stretched Pythagorean
scale, a=6/5, b=16/15, for the spectrum defined in (16). The
stems represent the intervals defined in (15). Amplitudes of all
partials are assumed equal to one.

4. DESIGN OF THE CHIME

The approximate chime design procedure described in section
2 was applied to design a chime to play in the goal spectrum.
A finite element model of the chime was used as a fast and
inexpensive means of testing and refining the results obtained
using perturbation theory. The finite element model was
formulated using the STRAND 6 finite element analysis
package.

4.1 Chime profile obtained using perturbation theory

The profile for a chime that produces the spectrum given by
(16) was generated in accordance with section 2.3. The
unperturbed cylinder on which the chime was based has length
L£=0.5215m and diameter 6.02mm. These dimensions satisfy
the thin rod approximation for the first six modes as described
in section 2.1. The six perturbing functions for the chime,
determined in accordance with equation (12) of section 2.3,
are illustrated in Figure 3.
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Figure 3 : The six perturbing functions for the chime.

The solid profile in Figure 4 illustrates the chime obtained
by summing the scaled perturbing functions and adding the
result to the unperturbed cylindrical chime. It was not
possible to manufacture the smooth profile illustrated in
Figure 4, since the chimes were too long and thin to be
machinable using a computer controlled lathe, and the
sinusoidal shape was too difficult to reproduce by hand. For
this reason, a step approximation to the profile, as illustrated
by the dashed curve in Figure 4, was designed. Although this
step approximation caused slight shifts to the goal
frequencies, these remained small (0.7% of the original goal
frequencies at most, when calculated using perturbation
theory), and were in any case reduced by the refinement
process to be described in the following section.
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Figure 4 : Profile obtained using first order perturbation theory,

and manufacturable step approximation to this profile.
: ideal profile. .............. : step profile.

4.2 Refinement of chime profile using finite element
methods

The finite element analysis package STRAND 6 was used to
model the chime shown in the step approximation from Figure
4. The natural frequencies calculated by the finite element
model for this chime profile differed from the goal
frequencies by amounts ranging from 2.0% to -2.4%. of the
goal frequencies. An improvement in the musical
performance of the chimes, however, is deemed to occur when
the differences between the goal frequencies and the
STRAND 6 simulation frequencies drop below 1%, since our
experience (based on a computer simulation of “chime-like”
chords) was that perceptible improvements in consonance
occur once the error in the partial frequencies falls below 1%.

For this reason, an optimisation process was undertaken
using STRAND 6. Small changes to the profile of the finite
element model were made, and the changes to the natural
frequencies calculated by the model were observed. This data
was used to make small changes to the chime profile that
improved the agreement of the calculated chime frequencies
with the goal frequencies. Simulation of the optimised profile
in STRAND 6 resulted in frequency differences between the
simulation and goal frequencies of 0.89% of the goal
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frequencies or less, which is below the level of 1% mentioned
above. The optimised profile is illustrated in Figure 5.
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Figure 5 : Chime profile obtained using STRAND 6 based
optimisation vs profile obtained using perturbation theory.

—: STRAND 6 optimised. ......: perturbation theory only.
5. MANUFACTURING AND TESTING THE
CHIMES

The chime design arrived at using STRAND 6 optimisation
was tested experimentally by manufacturing two chimes, and
measuring their frequencies of oscillation. The results of
these measurements are summarised, and explanations are
proposed for the differences between the measured results and
the STRAND 6 frequencies.

5.1 Chime dimension selection

Since funds were only available to make two chimes, these
chimes were designed so that one plays a “pseudo-octave”
above the other. The reason for this choice is that this interval
represents the limits of the scale in which the chimes are to be
played. Thus the interval gives a good indication of whether
these limits are attainable using the chimes. Another
advantage of using this interval is that unperturbed chimes
sound dissonant when played in the same interval. Finally, the
octave is usually judged the most consonant interval in the
commonly used temperaments, and so it is especially
interesting to improve its consonance in new timbre/tuning
combinations.

A fundamental of around 170Hz was chosen for the chime
that plays the tonic in the interval. This ensures that the first
six partials of both chimes are audible. When scaling the
chimes to produce these two notes, a constant average radius
was maintained and only the chime lengths were varied. This
causes the radiated sound volume from both chimes to be
fairly similar.

A disadvantage of this scaling method is that the length to
diameter ratio for the octave chime is at most 35:1, which is
below the ratio required for the thin rod approximation to hold
for the fourth to sixth modes. The frequencies predicted by
STRAND 6 for these modes, especially for the fifth and sixth
modes, may therefore be inaccurate. This effect could be
countered using thinner chimes, however such chimes would

become too difficult to machine. The dimensions of the two
chimes manufactured are given in Table 1. Both chimes were
turned from an aluminium rod using a manually controlled
lathe.

Table 1 : Dimensions of the tonic and pseudo-octave chimes

Dimension Tonic chime Octave chime
Length L (mm) 372.8 221.7
Mean diameter (mm) 5.83 5.83

5.2 Measurement of manufactured chime frequencies,
comparison with STRAND 6 model.

The chime frequencies were measured using a microphone
attached to a computer. Sound from the microphone output
was sampled for 2 seconds at 44.1kHz, and the frequency
spectrum was obtained by taking the FFT of this signal.
Chimes were suspended using cotton to simulate the boundary
conditions (the chime must be free at both ends).

Table 2 contains a comparison between the spectra of the
manufactured chimes and the goal spectrum in equation (16).
The partials of the goal spectrum are expressed as ratios with
respect to the goal fundamental. The measured partial
frequencies are expressed as ratios of the scaled fundamental
[, which is equal to

N -1

fs‘=Nf(ErG,n/rM,n]’ (18)

n=l1 7 /
where fis the measured fundamental frequency, 7, is the ratio
of the nth goal frequency to the goal fundamental, and r,,, is
the ratio of the nth measured frequency to the measured
fundamental. This scaled fundamental is used so that the
measured frequencies are compared with the pitch centroid of
the goal frequencies.

Table 2 : Results of the measurement of tonic and pseudo-
octave chime frequencies

Goalfrequenéyl Measured frequency ratio with
ratio with respect to scaled fundamental
Mode respect to frequency
fundamental
frequency
Tonic Pseudo-octave
1 1.00 1.01 1.02
2 2.83 2.82 2.85
3 5.22 5.26 529
4 9.62 9,58 9.58
5 14.77 14.84 14.73
6 21.27 20.91 20.63

As was noted previously, a significant reduction in
dissonance occurs once the errors in the partial frequencies
drop below 1% (approximately 1/6th of a semitone in the 12-
tet scale). In the right hand column of Table 2, we note that
the errors in the ratios of four of the partials for the chime at
the tonic, and three of the partials for the chime at the pseudo-
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octave, are less than 1%. Thus consonance will be improved
for at least some of the chords playable in the scale proposed
in (15), when comparing chimes manufactured with the
STRAND 6 optimised profile to unperturbed chimes.

There are a number of factors contributing to the errors in
the STRAND 6 predictions of the perturbed chime
frequencies. These include differences in segment length and
chime radius when comparing the manufactured chimes to the
finite element model, and the uncertainty in the location of the
measured partials due to the resolution of the recording
equipment. These effects, however, are less important than the
consequences of inaccuracies in our finite element model.
The STRAND 6 simulation used to predict the chime
frequencies made use of a thin rod approximation that neglects
shear effects, as well as being slightly inaccurate in its
treatment of the forces between adjacent cylindrical segments.
These effects cause our simulation to yield higher frequencies
than expected for higher modes, hence the downward trend in
the measured frequency ratios when comparing to the goal
frequency ratios.

6. CONCLUSION

The results obtained in this study are encouraging, since they
indicate that the musical performance of chimes designed
using the method proposed is perceptibly superior to the
performance of unperturbed cylindrical rods, for the stretched
Pythagorean scale. Error with respect to the goal spectrum in
the partials of the manufactured chimes was mainly due to
shear effects not modelled by our finite element simulation,
and/or the incorrect assumptions made in this simulation when
joining thin beam elements end to end.

There arc a number of ways to further improve the
performance of these chimes. The chimes could be tuned by
hand, or by changing the goal frequencies used in the finite
element optimisation of the profile derived using perturbation
theory.  Another approach would be to use a more
sophisticated finite element model of the chimes.
Alternatively, the chime profile could be designed by
perturbing the Timoshenko beam equations [7], which take
shear effects into account and do not require a thin beam
approximation to hold. This would allow the diameter of the
chimes to be greatly increased, thus increasing both
manufacturability and acoustic radiation efficiency. Once a
single such chime has been produced with a satisfactory
spectrum, a set of chimes could easily be manufactured by
linearly scaling the length and diameter of the successful
design.

Perhaps the most exciting outcome of this research is that
these chimes represent, to our knowledge, the first attempt at
applying Sethares’ method [2,3] of creating a spectrum for a
musical scale in a non-electronic instrument. Musical
instrument design methods such as the one proposed in this
study have the possibility of opening up vast new realms of
musical potential to composers. The evolution of these design
methods, both for cylindrical chimes and for other non-
harmonic instruments, will undoubtedly be a fascinating
process.
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