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ABSTRACT: Thin, cylindrical metal chimes can be used to play in a variety of scales requiring non-harmonic spectra The speclrum 
Il'quired for the chimes to have collSOIllllltintervals in a given non-harmonic ocale can be detertnined acoord ingtoamethoddevelopedby 
Sethares,based on the theory of dissonance proposed by Plomp andLevelt First order perturbation theory was appHedto eontrol the 
frequencies of the first six modes ofa thin, cylindrical metal chime by perturbations to the chime radius. The resultant chime profile was 
then refined using finite eiemellt methods. Twa alwninium chimes manufactured with this optimised profile demonstrated superior 
musical peIformance compared with unperturbed thin cylinders. 

1. INTRODUCTION 
Thc majority of non-percussive musical instruments eurrently 
used in the West produce spectra consisting of hannonically 
related frequencies. That is to say, notes played using these 
instruments have partials that are nearly integer multiples of 
some fundamental frequency to. Such harmonic spectra are 
caused by a control oscillator (such as a reed, lip reed or air jet 
in wind instruments, or a bow in string instruments), or by the 
intrinsic properties of the vibrating elements used in these 
musical instruments, wholiC natural frequencics arc almost 
exactly harmonic. Examples of the latter are long, thin, 
unifonn, flexible strings. 

When two produced by a harmonic musical 
.instrument are played together, the sound produced can be 
eithcr consonant, meaning pleasant and T<llaxed, or dissonant, 
meaning discordant and tensc. Although there is ;1ill 
speculation regarding the quantitative measurement of 
dissonance., Plomp and Levelt [1] have proposed that the 
perceived dissonance between twu notes is exclusively a 
function of the location and amplitude of the partials making 
up these notes. This lheory of dissonance is widely accepted 

Various scales have been developed that make use of the 
dissonance properties of the hannonic speetrum to ensure that 
a fairly large range of intervals sound reasonably consonant. 
The 12 tone equal temperament (12-tet) scale has been widely 
adopted so that free modulation from one key to another is 
possible. 

Many objects that are used, or could potentially be used to 
produce music, bowever, do not have harmonic spectra. Thus 
they sound discordant when played in chords using notes in a 
scale designed for harmonic i1llltruments, such as the 12-let 
scale. In addition, many modem composers are interested in 
writing music for scales other than 12-tct, which reqnire 
spectra that no readily available, non-electronic llIUSical 
instrument is able to produce. An approach to designing 
spectra for non-harmonic scales was fonnulated by Sethares 
in [2,3]. 

One class of non-harmonic objects with potential for wider 
musical applicatioos are thin cylindrical metal chimes. In this 
project, a design process was developed that can be used to 
create a set of such chimes that have a range of coosonant 

intervals fur a given oon-harmonic scale. Sctharcs' approach 
was used to determine the chime speCInnn for the non-
harmonic scale under consideration. 

Previous work in the design of musical instnunents with 
non-harmonic spectra includes the Pentangle by Fletcher [4]. 
The Pentangle consists uf a pentagonal gong tuned to produce 
a bell-li1re spectrum, using a combination of analytic and 
finite element methods. A similar approach was followed in 
this study, in that analytic methods were used fur basic chime 
dcsign, and the chimc profile was then rcrmed using the finite 
element llillIlysis package STRAND 6. Such an approach 
dttfers from the method used by Petrolito and Legge [5], who 
applied finite element methods alone to tune the first three 
modes of xylophone bars with rectangular cross sections . 
Thus while the approach adopted by Petrolito and Legge was 
to constrain thc finite element optimisation process using 
criteria such as the minimisation of material to be removed, 
the approach of this work and of Fletcher WllS to limit the 
finite element based optimisation to solutions close to results 

using simplified theoretical models of thc system. 
As far as we are aware, however, this study is the first attempt 
to produce a· non-electronic musical instrument that 
implements Sethares' method of selecting a spectrum for a 
=10 
2_ CHIME FREQUENCY SIllFT 
CALCULATION USING PERTURBATION 
THEORY 
The theoretical model that was used to obtain a chime profile 
that produces a close approximation to the desircd spectrum is 
described. Equations are given for the bending modes of a 
thin, cylindrical rod, and then a general is introduced to 
describe the frequency sbifts callSed by perturbations to a 
vibrating abject. Next, this theory is used to predict the shifu; 
to rod frequencies when small changes are made to the radillS 
ofarod 

Finally, this theory is applied to the specific problem of 
controlling the frequencies of a cylindrical metal chime. The 
problem of achieving the chime goal frequencies while 
minimising thc changes to chimc radius is also addressed, 
since the perturbation theory predictions will only be accurate 
for small changes to the rod profile. 
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2,1 Bending wave equation for a rod 
The general ", .. :w e equation for bending waves in a uni form 

rod is [6] 

(I) 

where E is the YilUng's modulw;, S i, [he eros, sectional area 
(S=rrr' for a cylindrical rod), K is the radius of gyration about 
the neotral axis (K= rf2 fora cylindricai rod),p is thedensity, 
x is the position along t he rod as measured rrom the middle, r 
is time, and W(.u) is the of the rod fTOm 
equilibrium, 

Eqoation (I) is a "thin beam" approximation that neglects 
such effect, as shear and rotary inertia, and on ly models 
bending modes. For this appHlximation to be tr ue, the 
wavelength of the modes mu,t be large compared "ith the rod 
diameter, since otherwise shear distortioo is non-negligible in 
comparison with bending, Since we on ly considcrthe first six 
m(K\es of the rod (the most audible modes), this tnmslate> as a 
requirement that the length 10 dimeter ratio for the roo should 
be around 60:1 or greater. In practice, this requirement may 
be relal<ed a little. 

The solutions to (I) take the form of sums of members of 
theserie. 

'1'. - l/I.(x)cos(m.t). (2) 

(3) 

Here v. - (wl- ;dpj" is the wave velocity of mode n with 
angular freqllency W., alldA" B .. C. and D, are COnstallts. 

For a rod wi th both ends free, the solutions to equation (I) 
have A,- C.-o lor even 1/ and B,=D.«fJ for odd n, 1\', is 
C\'CIl for odd n and odd for even n. Bendingosc illationsina 
rod of COil stant radius with both ends frce occur at frequcllcies 
f .. given by 

2,2 Frequenq shifts to a cylindrical rod due tn in 
rod radius 
A general perturbation theory that can be used to determine 
the en"ect on rod frequencies of perturbations to the rod radius 
is now deseribed_ This theory takes a form similar 10 that 
proposed by Tsc, Morse and Hinkle [7]. Only first order 
pcnurbations will be taken into account. which means that the 
frequell CY >hifts predicted are appro,;imatc As a starting 
point, il is to .....nle (1) in the form 

(5) 

whe,.,., S is a !inear dilferential operator, given by 

(6) 
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perturbations 

in (5). Expanding (5), and retaining only first order or lower 
terms, g1V(:S 

where we have written C • • for ease ofreference. 
We now derive a formula for the 1;,. due to perturbations ill 

the rod radius . The expression for ill thc case ofthc rod is 
givcnby (6). l\.l aking the ehanges ,....rt-br(x) and in 
(6), retaining only fin;t order and lower tenns in the resulting 
expansion, and then substituting thi s expression for b:J into 
(R) , gives 

C. ' ( J"«),:)" ,'*'J] f.("';'l';;,.ll],'" (9) 

( to) 

2.3 Design of a chime a spet:ified set of frequencies 
Equat ions (9) and (8) may now be nsed to obtain a cylindrical 
metal chime whose rrequencies of bending oscillation can be 
assigned spccified values, Given that N mode frequencies are 
to be eontroUed, the perturbation to the chime radius will take 
the form of a srun of N terms, 

(II) 

wher-c thellr.(x) repre>enl perturbation> to the chime radillSas 
fun d ions of longi tudinal coordioate x, and each constant b. 
scales the perturbation m. A set of functions for thc is 
flow choscn, with the iotention thateach perturbing function 
should have as large an effect as possible on only one modal 
freqncncy, and a minimum effect on all other frequencies 

For a given increase in chime radins 6r, the sti ffnoss will 
increase by a factor l+4br whi le the mass will increase by 
1+2br. In addition, for all modes, regions of high latend 

from equilibrium correspond 10 regions of large 
curvature over most of the chime (the e,; ception being near the 
ends, where thc ditoplacement is significant but the CUJVature 
approaches zero). Therefore if the chime radius is ine,.,.,ased 
in regions where a given mode has a large curvature, then thc 
freqncney increase for this mode due to the higher stiffness 
will be greater than the drop in frequency due to the increased 
ma:;s, ami thc net effect will hcan incrca,e in lll()de frequency. 

From Ihis property, il seems likely that the perturbing 
functions will have larger effecls on unique mode 
frequcncies if each perturbing function only has a large 
arnpJirude \\1Jere the mode that it targets has large enrvature. 
Thus the set ofpcrturbing functions adopted is 
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The purpose of the integral is to avoid applying an 
upwards shift on all modes when the radius is penurbed. 
Substituting(Jl) into (9) aUows (9) to bc rewritten as 

(13) 

where 

Uo .. -f:,( -To: Cn[f,( (14) 

Once the N desired frequency shifts 0010 have been 
speeificd, (8) maybc solved 10 obtaintheNquantitiesl;... The 
SCI oflinearcqualions (J3) can then be soJvedto givc the 
amplitudcs of the perturbing functions in (11). 

3. CHOOSI NG A TARG ET SPECT RUM 
Now that an approximate process for controlling thc 
frcqueneiesofacylindrical chime has been iHustrated,the 
chime goal spectrum that .... as used to test this proccdure is 
described. Given that the object of this project to find a 
design process that can be used to create chimcs for a givcn 
sca1c,wededded to tcst this process by sclccting a genuinely 
arbitrary scale and working towards a set of chimes with 
appropriate spectra 

The scale that was chosen for the chimes is an unequally 
stretched Pythagorean major scale. The unstretchcd 
l>ythagorean major scale sounds quitc similar to the l2-tet 
major seale, but with slightly sharper major thirds and slightly 
ftallcrminor thirds (3]. The steps of the Pylhagoreanscale, 
whether stretched orunstretched, can be written 

(1. a, a'. a'h, a't., a' h, a'b, a'b')"I. ' (15) 

where/, rerrescnts the frequency of the first note in the scale 
and <I and b are tbe two basic frequency step ratios. The 
ROtation in (IS) means that the first ROte in the seale has 
frequency Ix/ .. the second note has frequency ax/ .. and so 
on. The unstretched Pythagorean scale has and 
b=2561243. Our stretched seale had a=6J5 and "," 16.115. This 
means that the"octave" (literally thc eighth note) occurs at 
1.990.656 / 703,125 .. 2.83 times the frequencyofthc lowest 
TlOtcin this scalc, rathcrthan the usual faClOrof2 for 
unSlretehed scales. For this reason. the tenn p)·eudo--<>ela,"C 
will be uscd to dcsignate the stretcl!ed"oclavc" interval 

One possible chimespeclTUm for the seale described in 
(15). as detennincd using the procedure outl ined by Sethares 
[2 .3], is 

where the notalion of equation ( 15) has been used and the 
number of partials is N - 6. The required frequency shifts 10 
the modes of the unperturbed chime. as fractions of the 
unperturbcdmodefrequencies.V3ryfrom -8% 109".4 
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To see why thc target spe<:lTUm in equatiQn (16) rcpresenls 
a good spectrum for the scale in (15), it is necessary to 
introduce !he concept of the diSSQnarr.cecurve for a spectrum 
This is a plot of the dissonance (as dermed by Plomp and 
Levcl! [1]) perceived when two notes are played 
simultancously, wherethc frequencicsofthe panialsofthe 
higher nOle are increased by a factor R with respect to the 
partials of the 10weT note. Plomp and Levclt found that whcn 
Ihese two notes are pure sinusoids, the dissonance d(u J• 

J,) between them isa funct ion of the amplitudesuJ and a, of 
thcsinusoids,andtheirfrcquencics/, and/," Thedissonance 
berween the sinusoids iSlcro when Iheir frequencics are equal, 
riscs rapidly liS the frcqucncy diffcrence increa.ses. and then 
drops slowly upon further incrcase in Ihe frequency 
difference. A plot orthe dissonance between two 
sin\l5Oids is given in Figure I, where a, - <I , - I andf, - R >< 
f,. Plomp alld Levcll found thai this function d(a" 
closely approximated Ihe average dis.o;onance measured ina 
series of tests involving 90 musically untraincd volunleers 

The dissonance g(R) of a spe<:trum containing partials al 
scveralfrcqueneicsisobtainedbyaddingthedissonanceof 
cvcrypai r ofpanials,sothat 

(\7) 

wllere a; and aJ are the amplitudes of the partials with 
frequcncies J.and f, rcspectivcly. The dissonancccur ... e fora 
givcnspcctrum is a plot ofg(R) for that spectrum. 

F'ilQuencv ratio R 

figuret : dissonance between rnosinusoidswithf""'lucnciesf, 
and/" whcrof, oo R><f,. Thesinusoidshavccqualarnptitudc. 

The dissonance curve for the spcctrum in (l6)is illustrated 
in Figure 2, whcre stems an: used to show the location of the 
slepsofthe seale described in (15). We see from Ihis plol that 
dissonance is low at mosl of the seale steps, indicating that 
chords played using thesc intervals will sound pleasant 
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Figure 2: Dissonanoe curve ofa the stretched Pythagorean 
",,"Ie, for tile spe<:tnlm defined in (Ilil. 
!OIaw; representtiwinten'3.lsdefmedin(15). lunplitudcsofaU 
partial<areasswne<iequllltoone. 

4. DESIGN OF THE CmME 
The approximate chime design procedure described in section 
2 "''liS applied to design" chime to play in the goal spcctrwn. 
A finite clemenl mooel of was used a fast and 
inexpcTlSive means of testing and refining tbe results obtained 
using perturbation theory. The finite element model was 
fOrmulated using the STRAND 6 finite clemenl 
packuge. 
4..1 Chime profile obtained pertnrbation theory 
The profile for a chime that produces the spectrum given by 
(J6) was generated in accordance with section 2.3. The 
unperhlTbedcyJimlt:ron which the chime was based has length 
L=O.5215m and diameter 6.02mm. These dimensioru; satisfY 
the thin rod approximation for the firs! six modes as described 
in 2.1. The sill perturbing functions for the chime, 
detennincd in accordance with equation (12) of section 2.3, 
are illustrated in Figure 3 

I 
f 0 .: 

_1 __ 

PertlJ"t>i"1l !u"l<;l'>nJ ..... ,,'>lngt,.-.cuoo. 

! .fAWAj' 
Figure3:The .ixperturbingfunctioruforthechime 
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The solid profile in Figure 4 illustrates the chime obtained 
by summing the sca led perturbing functions and adding the 
result to the unperturbed cylindrical chime. it ",as 1I0t 
possible to manufacture the smooth profile illustrated in 
Figure 4, the chimes were too long and thin to 00 
machinable wiing a computer controlled lathe, and the 
sinusoidal was too difficult to reproduce by band. For 
this reason, a step approximation to the prome, as illustrated 
by the dashed curve in Figure 4, was designed. Although this 
step approximation caused slight shifts to the goal 
frequencies, these remained .mall (0_7% oflhe original goal 
frequencies at most, when using perturbation 
thoory), and were in any case reduced by the refinement 
proce!i-' to be described in the following section. 

o 
DlstallCltalong chjme 

Figure 4: Profileootained usingfrrstordcr",,'Ilurbation\heory, 
and manufacturab le step to this profile 
-: idealprofile ... 

4.2 Refinement of chime prome using finite dement 
metbods 
The finite element analysis package STRAND 6 wa< used to 
model the chime shown in the step approximation from Figure 
4. The natural frequencies calculated by the finite element 
model for this chime profile differed from the goal 
frequencies by amounts ranging from 2.0"10 to -2.4%. of the 
goal frequencies An improvement in the musical 
performance ofthe chimes, howcver, is deemed to occur when 
the differences between the goal frcquencie> and the 
STRAND 6 simulation frcqllencies drop below 1%, since our 
experience (based on a computer simulation or "chime-like" 
chords) 1-'.'35 that perceptible improvements in consonance 
occur once the error in the panial frequencies falls below 1%. 

For this reason, an optimisation process was undenaken 
using STRAND 6. Small changes to the profile of the finite 
element model were made, and the changes to the natural 
frequencies calculated by the model were observed. This data 
was used to make small changes to the chime profile that 
improved the agreement of the calculated chimc frequencies 
with the goal frequencies. Simulation of the optimiscd profile 
in STRAND 6 resulted in frequency differences hetween the 
simulation and goal frequencies of 0.89% of the goal 
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frequencies or less, which is below the le,·e1 "I' 1% mentioned become too difficult to The dimensions of the two 
above. The optimiscd profile is illustrated in Figure 5. chimes manufactured are given in Table I . Both chimes w""," 

, 
Distance along chime 

Figure 5 : Chinle prolilc obtained using STRAND 6 

-:STR.'l.ND6optimised .... ·perturootiootheoryonly. 

5. l\lANUFACWRlNG AND TESTING THE 
CHIMES 
The chime design arrived at using STRAND 6 optimisation 
was tested experimentally by manufacturiDg two chimes, and 
measuring their frequencies of oscillation. nil results of 
these mca>urcments arc sll11lll1llrised, and explanations are 
proposed for the differences the measured results and 
the STRAND 6 frllquencies 
5.1 C himc dimension selection 
Since funds were only available to make two chimes, these 
chimes were designed so that one plays a "pseudo·octave" 
above the other. reason for thi> is that this interval 
represents the limits ofthc seale in which the chimes are to be 
played. Thus the interval gives a good indication of whether 
the:;e limits are attainable using the cbimes. Another 
advantage of using this interval is that unperturbed chimes 
sound dissonant when played in the same interval. Enaliy, the 
octave is usually tbe mnst cnnsonant inter;al in the 
commonly used temperaments, and so it is especially 
interesting to improve its consonance in new t imbreltuning 
combinations. 

A fundamental of around 170Hz was chosen for the chime 
that plays the tonic in the intcrval. This ensures that tbe fi rst 
six panials of both chimes are audible, When scaling the 
chimes to produce these two notes, a constant average radillS 
was maintain.,.] and only the chime lengths were varied. This 
causes tho radiated sound volumc from botb chimes to be 
fairly similar. 

A disadvantage of this scaling method is Ihallhe length to 
diameter ndio for IlK: chime is at most 35: 1, which is 
bolow the ratio required fnr tbe Ihin rod approximati<JTl to hold 
for the fOllrth to sixth modes. The predi<.;ted by 
STRAND 6 for these modcs, especially for the fitlh and sixth 
modes, may therefore be inaccurate. This elIccl could be 
countered using thinner chimes, however such chimes would 
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turned from an alwniniwn rod using a manually controlled 

""" 
Table I : tonic chime. 

Dimension Tonic chime Octave chime 
LengthL(nun) 372.8 221.7 
Mean diameter (mm) 5.83 5.83 

5.2 Measurement of manufactured chime frequencies, 
comparison with STRAND 6 model, 
The cbime frequencies were measured lL'ing a microphone 

to a computcr. Sound from the microphone OUlpllt 
was sampled for 2 seconds at 44. lkHz, and the frequency 
spectrum was obtained by taking the FFT of this signal 
Chimes were suspended using conon to simulate the boundary 
conditions (the chime must be free at both ends). 

Table 2 contains a comparison between the spectra of the 
manufactured chimes and the goal spectrum in equation (16) 
The partials of the goal spectrum are CJ!pressed as ratios with 
re;-pect to the goal fundamental. The measured panial 
frequencies are expressed as ratios of the scaled fundam ental 
j., which is equal to 

! .. N!(t'o.J'",f (18) 

where/is the mea.,ured fundamental frequc:nq, is the ratio 
of Ibe nih goal frequency tn the goal fundamental, and r". is 
the ralio of lhe 11th measured frequency 10 tho measured 
fundamental. This scaled fundamental is used so that the 
measured frequencies are compared with the pitch centroid of 
the goal frequencies. 

Table 2 : Results or the mcasU!"CTTICt't or tonic and pseudo-

Goalfrequeocy 
ratio with respectto""aJedftmdamcntal 

rre<[uency 

f,equency 

5.26 529 
9.S8 9,SS 
14.84 14.73 

20.91 20.63 

As was noted pn--viously, a significant reduction in 
dissonance occurs once the errors in the partial frequencies 
drop below 1% (approximately 116tb "fa semitone in the 12-
tet scale). In the right hand column "fTable 2, "'"e note that 
the errors in tbe "f f"ur "r the for the chime at 
the tonic, <Ind three of the partials for the chime at tbe pseudo-
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octave, are less than 1%. Thus consonanctl will be improved 
for at least some of the chords playable in the scale proposed 
in (15), when comparing chimes manufactured with the 
STRAND 6 optimised profIle to unperturbed chimes. 

There are a number offactors contribnting to the errors in 
the STRAND 6 predictions of the perturbed chime 
frequencies. These inclnde differences in segment length and 
chime radius when comparing the manufactured chimes to the 
finite element model, and the uneertainty in the location of the 
measured partials due to the resolution of the recording 
equipment. These effects, ho-ver, are less important than the 
cOllllequences of ina.!x:ura.cies in our finite element model. 
The STRAND 6 simulation used to predict the chime 
frequencies made use of a thin rod approximation that neglects 
shear effects, as well as being slightly inaccurate in its 
treatment of the forees between adjacent cylindrical segments 
These effects cause our simulation to yield higher frequencies 
than expected for higher modes, hence the downward trend in 
the measured frequency ratios when comparing to the goal 
frcquencyratios 

6. CONCLUSION 
The results obtained in this study are encouraging, since they 
indicate that the musical performance of designed 
using the method proposed is perceptibly superior to the 
perfonnance of unperturbed cylindrical rods, for the stretched 
Pythagorean scale. Error with respect to the goal spectrum in 
the partials of the 1lllII1nfactured chimes was mainly due to 
shear effects not modelled by our finite element simulation, 
and/or the incorrect assumptions made in this simulation when 
joining thin beam elements end to end 

There are a number of ways to further improve the 
perfonnance of these chimes. The chimes eould be tuned by 
hand, or by ehanging the goal frequencies nsed in the finite 
element optimisation of the profile derived using perturbation 
theory. Another approach would be to use a more 
sophisticated finite clement model of the chimes. 
Alternatively, the chime profile could be designed by 
perturbing the beam equations [7], which take 
shear effects into account and do not require a thin beam 
approximation to hold. This would allow the diameter of the 
ehimcs to be greatly increased, thus increasing both 
manufacturabllity and acoustic radiation efficiency. Once a 
single mch chime has been produced with a slitisfactory 
spectrum, a set of chimes could easily be manufactured by 
linearly scaling the length and diameter of the successful 
design 

Perhaps the most exciting outcome of this research is that 
these chimes represent, to our knowledge, the first attempt at 
applying Scthares' method [2,3] of creating a ilpectnnn for a 
musical scale in a non-electronic instrument. Musical 
imltrument design methods such as the one proposed in this 
study have the possibility of opening up vast new realms of 
musical potential to composers. The evolution of these design 
methods, both for cylindrical chimes and for other non-
harmonic instruments, will undoubtedly be a fascinating 
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