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Abstract

We propose a new, nonparametric ap-
proach to learning and representing transi-
tion dynamics in Markov decision processes
(MDPs), which can be combined easily with
dynamic programming methods for policy
optimisation and value estimation. This ap-
proach makes use of a recently developed
representation of conditional distributions as
embeddings in a reproducing kernel Hilbert
space (RKHS). Such representations bypass
the need for estimating transition probabili-
ties or densities, and apply to any domain on
which kernels can be defined. This avoids the
need to calculate intractable integrals, since
expectations are represented as RKHS inner
products whose computation has linear com-
plexity in the number of points used to repre-
sent the embedding. We provide guarantees
for the proposed applications in MDPs: in
the context of a value iteration algorithm, we
prove convergence to either the optimal pol-
icy, or to the closest projection of the optimal
policy in our model class (an RKHS), under
reasonable assumptions. In experiments, we
investigate a learning task in a typical classi-
cal control setting (the under-actuated pen-
dulum), and on a navigation problem where
only images from a sensor are observed. For
policy optimisation we compare with least-
squares policy iteration where a Gaussian
process is used for value function estimation.
For value estimation we also compare to the
NPDP method. Our approach achieves bet-
ter performance in all experiments.
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1. Introduction

1.1. Preliminaries

Throughout we denote expectations by E[·], and the
probability over events by P(·). We denote by B(X )
and Cb(X ) the Banach spaces of bounded functions and
bounded continuous functions on X , each equipped
with the sup-norm || · ||∞.

We consider in particular the problem in which we
control a trajectory {xt}∞t=0 over X by sequentially
choosing actions at ∈ A at each time step t ≥ 0, once
xt is revealed, after which we receive a reward rt+1 =
r(xt, at). We denote a set of deterministic policies Π =
AX . The objective is to find a policy π which max-
imises the expected sum of rewards obtained by follow-
ing π: E [

∑∞
t=0 γ

trt+1(Xt, At)|X0 = x,At = π(Xt)].

For a policy π ∈ Π we denote the associated value
function,

V π(x) := E

[ ∞∑
t=0

γtrt+1(Xt, At)|X0 = x,At = π(Xt)

]
,

and recall that V π(x) = r(x, π(x)) +
γEX∼P (·|x,π(x))[V

π(X)]. We define the optimal
value function V ∗(x) := maxπ∈Π V

π(x) for all x ∈ X ,
and an optimal policy to be any π∗ such that
π∗ ∈ argmaxπ∈Π V

π(x) for all x ∈ X . For a given
action-value function Q : X × A → R we define the
greedy policy w.r.t. Q by πQ(x) := argmaxa∈AQ(x, a)
(choosing arbitrarily in the case of a tie) and the
optimal action-value function,

Q∗(x, a) := r(x, a) + γEX∼P (·|x,a)[V
∗(X)], (1)

so that π∗ = πQ∗ (see e.g. (Szepesvari, 2009) for this
background). We require the following well-known re-
sult, which is proved in the Appendix for reference
(Grünewälder et al., 2012):

1Equal contribution.
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Lemma 1.1. (Singh & Yee, 1994)[Corollary 2] For
any action-value function Q : X × A → R, the greedy
policy πQ satisfies ||V πQ − V ∗||∞ ≤ 2

1−γ ||Q
∗ −Q||∞.

We are interested in the case where P is unknown
but a sample S := {(xi, ai, x′i)}mi=1 is provided, drawn

i.i.d. from a distribution P̃ such that P̃ (X ′i = x′i|Xi =
xi, Ai = ai) = P (x′i|xi, ai) for all i (the marginal prob-
abilities need not match). Note the abuse of notation
here – subscripts index samples and not time steps.

1.2. Overview of the approach

A number of recent studies have focused on efficient
evaluation of conditional expectations on functions
that are “well behaved” in the sense that they be-
long to a reproducing kernel Hilbert space (RKHS).
These approaches have been particularly successful in
performing inference in graphical models, where the
model parameters are learned nonparametrically from
data (Song et al., 2010b; 2009; 2011). The key in-
sight in these works is that conditional probabilities
can be represented as functions in an RKHS, called
conditional distribution embeddings. The conditional
expectation of any function in the RKHS then becomes
a linear operation, where we take the inner product
with the appropriate distribution embedding.

Many methods for solving problems in MDPs require
the computation of expectations of functions (value
functions for example) with respect to transition dy-
namics, and so (approximations of) the operators

f 7→ EX∼P (·|x,a)[f(X)] (2)

are required. A direct but computationally costly ap-
proach would be to first learn a conditional density es-
timate (difficult in high dimensions), followed by (pos-
sibly intractable) integrals to compute the expecta-
tion. By contrast, our approach is a two stage process
for learning in MDPs: we first use the theory of RKHS
embeddings to estimate the operators (2) directly (over
a specific class of functions in an RKHS), then use
these estimated operators in standard approaches for
solving MDPs – here we consider dynamic program-
ming methods for value estimation and policy optimi-
sation. The application to dynamic programming is
described in more detail in Sec. 3.

1.3. Advantages of the approach

A direct kernel-based approach has a number of ad-
vantages. First, like density estimates, conditional em-
beddings can be learned from a training sample: we do
not need to address the problem of modeling system
dynamics, such as the differential equations governing

a robot arm. Unlike density estimates, however, distri-
bution embedding estimates do not scale poorly with
the dimension d of the underlying space: the risk of
a kernel density estimate increases as O(m−4/(4+d))
when the optimal bandwidth is used (Wasserman,
2006)[Sec. 6.5]. By contrast, the rate of convergence
for conditional mean embeddings is independent of
the dimension of the underlying space (Song et al.,
2010b)[Thm. 1].

Second, the solution to many control problems in-
volves computation of high dimensional integrals to
obtain expectations, which is prohibitively costly. By
contrast, RKHS embeddings explicitly provide a rep-
resentation of the expectation operator as an RKHS
inner product, which reduces calculating expectations
to a computation of linear complexity in the number
of training points used to represent the embedding,
and avoids any intermediate problems such as density
estimation and sample selection for numerical integra-
tion. Thus, the approach provides a framework for
alleviating the curse of dimensionality in MDPs (par-
ticularly if, for example, sparsification of the embed-
ding is considered, which we address briefly in the Ap-
pendix (Grünewälder et al., 2012)). The conditional
distribution embeddings themselves may be computed
exactly at cost cubic in the training sample size, and
approximated to good accuracy at linear cost.

A third advantage is that we can provide convergence
results in the infinite sample case. Thm. 3.2 demon-
strates how a performance guarantee for value itera-
tion using embeddings decomposes into guarantees for
value iteration and gurantees for the embeddings, up-
per bounding the difference ||V π̂κ − V ∗||∞ between
the optimal value V ∗ and the value V π̂κ of the pol-
icy π̂κ found by performing value iteration using the
embeddings after κ iterations. This bound contains a
term involving how well we can approximate V ∗ in our
model class (a chosen RKHS) – which usually corre-
sponds to smoothness assumptions on V ∗ – and can
decrease by increasing the richness of the RKHS. A
second term captures how quickly we can learn the
embeddings for the operator (2) over functions in the
chosen RKHS. This bound can be specialised to give
convergence guarantees for specific settings by plug-
ging in guarantees for the two components: in Corol-
lary 3.3, we specialise to the common setting of finite
state space and positive definite kernel and obtain that
||V π̂κ − V ∗||∞ → 0.

As a final advantage, the method applies wherever ker-
nels may be defined, including on high dimensional
or continuous state spaces, manifolds (kernels on the
surface of a sphere (Wendland, 2005) are of particu-
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lar interest in robotics), and partially observable tasks
where only sensor measurements are available.

1.4. Relation to existing methods

Kernel methods have become increasingly popular in
RL. Methods include kernel LSTD (Xu et al., 2005)
and GPTD (Engel et al., 2005). Both can be used
to estimate (q-)values and they differ in this mainly
through the regulariser (Taylor & Parr, 2009). Based
on the q-value estimates it is possible to optimise the
policy. Other related approaches include Rasmussen
& Kuss (2003), Deisenroth et al. (2009), Ormoneit &
Sen (1999) and Kroemer & Peters (2011). Here, tran-
sition models (densities) are learned with the help of
Gaussian processes or kernel density estimates. Us-
ing them for value estimation or policy optimisation
usually leads to difficult integration to be solved nu-
merically via, e.g., an intermediate sampling method.
In contrast we use kernels to directly learn the ex-
pectation operators and avoid numerical integration.
Finally, in (Parr et al., 2008) a way is proposed to
approximate expectations in a low dimensional state
representation. In contrast to our approach the paper
assumes that the true expectation is known.

2. RKHS embeddings of transition
probability kernels

Given a set Z and a positive semi-definite (p.s.d.) ker-
nel K : Z ×Z → R (see e.g. Steinwart & Christmann,
2008, for details) we denote byHK ⊆ RZ its unique re-
producing kernel Hilbert space (RHKS), and by 〈·, ·〉K
the inner product in HK . Due to the reproducing
property of K in HK we have h(x) = 〈K(x, ·), h〉K
for all h ∈ HK . We recall the notion of a universal
kernel: given a Banach space of functions F ⊆ RZ a
kernel is F-universal if HK is dense in F . We denote
ρK := supz∈Z

√
K(z, z) and refer to kernels K such

that ρK <∞ as bounded kernels.

Following Sriperumbudur et al. (2010), given any prob-
ability distribution P and p.s.d. kernel K on a set Z a
distribution embedding of P in HK is an element µ ∈
HK such that 〈µ, h〉K = EZ∼P [h(Z)] for all h ∈ HK .
In our application, given p.s.d. kernels L : X ×X → R
and K : (X ×A)× (X ×A)→ R, we are interested in
the embedding of the expectation operator (2) corre-
sponding to the state transition probability kernel P ,
over the domain HL; that is, an element µ(x,a) ∈ HL
such that 〈µ(x,a), f〉L = E[f(Xt+1)|Xt = x,At = a],
for all f ∈ HL and for all t ≥ 0 – recall that the
Markov property implies such a µ(x,a) is independent
of time. Recalling Sec. 1.1, given the sample S, we
will consider a sample-based estimate of the expecta-

tion operator (2). This will be achieved by identifying
an element µ(x,a) ∈ HL such that, for all f ∈ HL,
〈µ(x,a), f〉L approximates EX∼P (·|x,a)[f(X)]. Follow-
ing (Song et al., 2009; 2010b) an estimate is

µ(x,a) :=

m∑
i=1

αi(x, a)L(x′i, ·) ∈ HL, (3)

where αi(x, a) =
∑m
j=1WijK((xj , aj), (x, a)),

and where W := (K + λmI)−1, K =
(K((xi, ai), (xj , aj)))

m
ij=1, and λ is a regulariza-

tion parameter. We assume w.l.o.g. x′i 6= x′j for all

x′i, x
′
j in the expansion (3).1 In some situations, the

estimate (3) is consistent in the RHKS norm sense
and uniformly over X × A: the following result,
proved in the appendix, follows directly from (Song
et al., 2010b)[Thm. 1].

Lemma 2.1. Suppose K is a bounded kernel and
the conditions of (Song et al., 2010b)[Thm. 1] are
satisfied.2 Then sup(x,a)∈X×A{||µ(x,a) − µ(x,a)||L} ∈
OP̃ (λ

1
2 + λ−

3
2m−

1
2 ), and thus by choosing λ → 0,

λ3m→∞ we have that, for any ε > 0,

PS∼P̃m

(
sup

(x,a)∈X×A
||µ(x,a) − µ(x,a)||L > ε

)
→ 0.

By the reproducing property of L, we have

〈µ(x,a), f〉L =

m∑
i=1

αi(x, a)f(x′i)

In this work, for theoretical analysis, we consider a
normalised version of (3):

µ̂(x,a) :=

m∑
i=1

α̂i(x, a)L(x′i, ·) ∈ HL, (4)

where α̂i(x, a) = αi(x,a)∑m
j=1 |αj(x,a)| . This is a technical con-

sideration which will later ensure that we can define

1We can otherwise form a new expansion in which the
x′i are unique by summing any αi(x, a) as necessary.

2These conditions require that the mapping (x, a) 7→
EX∼P (·|(x,a))[f(X)] be an element of HK for all f ∈ HL,

and that the operator CYXC
−3/2
XX be Hilbert-Schmidt,

where CYX and CXX are covariance operators: see (Song
et al., 2009) or Appendix D.1 for details (Grünewälder
et al., 2012). The first condition is a smoothness assump-
tion on the distribution, and for the convergence guarantee
of Corollary 3.3 we specialise to the simple setting of finite
state space, in which case this condition is trivially satis-
fied.The second condition is guaranteed in our case when,
for example, the marginal density of the initial state X

from P̃ is bounded away from zero and the RKHSs HK ,
HL are of finite dimensionality.
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Algorithm 1 Estimate Conditional Expectation

input Sample of transitions S := {(x1, a1, x′1), . . . , (xm, am, x
′
m)}, kernel K on X ×A and a kernel L on states X

output A conditional expectation estimate µ(x,a)

Build kernel matrix K for samples {(x1, a1), . . . , (xm, am)}
Calculate coefficient vector αi :=

∑
j≤mWijK((xj , aj), (x, a)), where W := (K + λmI)−1

Calculate the estimate µ(x,a) :=
∑m
i=1 αi(x, a)L(x′i, ·)

Algorithm 2 Estimate Value

input Sample S, policy π, conditional expectation estimate
µ(x,a), discount γ, max. number of iterations N , error
threshold θ, reward function r

output Value estimate V̂
n = 1, error = 1; define a value vector for states x′1, ..., x

′
m:

V := 0
while n ≤ N and error > θ do

for all i ≤ m do
V ′(x′i)← r(x′i, π(x′i)) + γ〈µ(x′i,π(x

′
i))
, V 〉L

end for
n← n+ 1, error ← ||V ′ − V ||∞, V ← V ′

end while

return V̂ (x) = r(x, π(x)) + γ〈µ(x,π(x)), V 〉L

Algorithm 3 Approximate Value Iteration

input Sample S, discount γ, maximum number of iterations
N , reward function r, error threshold θ

output µ(x,a), approximate optimal value V̂

n = 1, error = 1; define a value vector for states x′1, ..., x
′
m:

V := 0
Run Alg. 1 to get µ(x,a)

while n ≤ N and error > θ do
for all i ≤ m do
V ′(x′i)← maxa∈A r(x

′
i, a) + γ〈µ(x′i,a)

, V 〉L
end for
n← n+ 1, error ← ||V ′ − V ||∞, V ← V ′

end while

return V̂ (x) = maxa∈A r(x, a) + γ〈µ(x,a), V 〉L

a certain contraction mapping. We now demonstrate
the consistency of the estimators defined by (4) for fi-
nite state spaces, by showing that in the limit of large
data the normalization of α̂ has no effect. The follow-
ing lemma is proved in the Appendix (Grünewälder
et al., 2012).

Lemma 2.2. Under the conditions of Lemma 2.1, and
if |X | <∞ and L is strictly positive definite, by choos-
ing λ→ 0, λ3m→∞ we have that, for any ε > 0,

PS∼P̃m

(
sup

(x,a)∈X×A
||µ(x,a) − µ̂(x,a)||L > ε

)
→ 0.

3. Application to MDPs

The learnt embeddings are applied to MDPs by recall-
ing (4) and defining an operator

Ê(x,a)[f ] :=

m∑
i=1

α̂i(x, a)f(x′i). (5)

When f ∈ HL we have that Ê(x,a)[f ] = 〈µ̂(x,a), f〉L ≈
EX∼P (·|(x,a))[f(x)]. When f /∈ HL the quality of the
approximation will further depend upon how well f
can be approximated by a low norm function in HL.
This operator can be used in place of the true un-
known expectation operator (2) in any MDP method
which makes use of such expectations, such as dynamic
programming. As an example below, we analyse value
iteration, but similar considerations yield similar anal-
yses for other methods. We summarize a joint value es-
timation algorithm and policy optimisation approach
in the Algorithm boxes above.

If we knew P , and could efficiently compute expecta-
tions, we could define the Bellman operator B as

(BV )(x) := max
a∈A
{r(x, a) + γEX∼P (·|x,a)[V (X)]}, (6)

where we suppose that the image of B is always a
measurable function.3 Recall that picking an arbitrary
V0 and iterating Vk+1 = BVk converges in sup-norm,
Vk → V ∗ (see e.g. Szepesvari, 2009). Since we do not
know P , we use the embeddings µ̂(x,a) and, recalling

(5), define the operator B̂ : B(X )→ B(X ) as

(B̂V )(x) := max
a∈A
{r(x, a) + γÊ(x,a)[V ]}. (7)

It is necessary to define B̂ on functions which are not
in HL, and this possibility introduces a term in the
analysis which captures how well V ∗ can be approxi-
mated in HL (See Thm. 3.2). By Lemma 2.2, in the
limit of large data, the operator defined by (7) con-
verges to an expectation operator on functions in HL,
and thus B̂ can be seen to approximate B defined by
(6) on HL. The following result is proved in the Ap-
pendix (Grünewälder et al., 2012):

Proposition 3.1. B̂ is a sup-norm contraction on the
space B(X ) with Lipschitz constant γ.

Since B̂ defines a sup-norm contraction mapping on
a complete metric space, by Banach’s fixed point the-
orem (e.g. Granas & Dugundji, 2003) there exists a

3We suppose for simplicity that any necessary condi-
tions to ensure this are met, since strictly speaking B is de-
fined only on measurable functions, see for example (Bert-
sekas & Shreve, 1978) for a discussion of the issues. In
particular, these conditions are met when |X | <∞.
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unique fixed point V̂ ∗ of B̂, such that choosing V̂0 arbi-
trarily and iterating V̂k+1 = B̂V̂k converges, V̂k → V̂ ∗,
in sup-norm,

||V̂k − V̂ ∗||∞ ≤
γk

1− γ
||V̂1 − V̂0||∞. (8)

Suppose we perform κ iterations, obtaining the esti-
mate V̂κ ≈ V̂ ∗. Once V̂κ is obtained we form a policy
π̂κ on-the-fly4 by acting greedily w.r.t. Q̂κ(x, a), where

Q̂κ(x, a) := r(x, a) + γÊ(x,a)[V̂κ], (9)

so that the learned policy is

π̂κ(x) := argmax
a∈A

Q̂κ(x, a). (10)

for each x in a trajectory.

Consistency: We now discuss the consistency of π̂κ
as an estimate of an optimal policy π∗. The following
theorem decomposes the convergence of V π̂κ to the op-
timal value function V ∗, in terms of the convergence
of value iteration, the convergence of the embeddings
and how well we can approximate V ∗ in sup-norm by
a (low || · ||L-norm) function in HL. This is a generic
bound into which we can plug any suitable guarntees
for an embedding method. In Corollary 3.3, we spe-
cialise the result to the finite state space case, where
we can approximate V ∗ arbitrarily well.

Theorem 3.2.

||V π̂κ − V ∗||∞ ≤
2γ

(1− γ)2

(
γκ||V̂1 − V̂0||∞

+ 2||V ∗−Ṽ ∗||∞+ sup
(x,a)

||µ(x,a) − µ̂(x,a)||L||Ṽ ∗||L
)
, (11)

where Ṽ ∗ is any element of HL. Thus, whenever
sup(x,a) ||µ(x,a) − µ̂(x,a)||L → 0 in P̃ -probability, we

have that, for any chosen Ṽ ∗ ∈ HL,

||V π̂κ − V ∗||∞ ≤
4γ

(1− γ)2
||V ∗ − Ṽ ∗||∞ + εκ + εm,

(12)

where εκ → 0 and εm → 0 with convergence in P̃ -
probability.

Proof. (Sketch, see Appendix for full proof
(Grünewälder et al., 2012).) The proof hinges
upon obtaining the following chain of convergences,

Ê(x,a)[V̂κ]→(a) Ê(x,a)[V̂
∗] ≈(b) Ê(x,a)[V

∗]

≈ Ê(x,a)[Ṽ
∗]→(c) EX∼P (·|(x,a))[Ṽ

∗(X)]

≈ EX∼P (·|(x,a))[V
∗(X)].

4Meaning that we only need to calculate π̂κ(x) at points
x in a trajectory as and when required.

The convergence (a) is a standard result for contrac-
tion mappings, (b) requires a new lemma relating the
fixed points of similar contraction mappings, and (c)

is possible using Lemma 2.2 because Ṽ ∗ ∈ HL. Once
this is obtained we recall that π̂κ is greedy w.r.t. Q̂κ
defined by (9), and apply Lemma 1.1, since the opti-
mal policy is greedy w.r.t. Q∗.

We now interpret Thm. 3.2. The upper bound is,

||V π̂κ − V ∗||∞ ≤
2γ

(1− γ)2

( (i)︷ ︸︸ ︷
γκ||V̂1 − V̂0||∞

+ 2||V ∗ − Ṽ ∗||∞︸ ︷︷ ︸
(ii)

+ sup
(x,a)

||µ(x,a) − µ̂(x,a)||L||Ṽ ∗||L︸ ︷︷ ︸
(iii)

)
.

Here (i) is the standard difference between the value
estimate of the initial policy and the value estimate
of the policy that we get after applying one dynamic
programming update. This term decreases to 0 with
growing κ because γ < 1. (ii) is the distance from

the optimal value V ∗ to any approximation Ṽ ∗ in the
RKHS, and is therefore small when Ṽ ∗ is close to V ∗

and so can be smaller when HL is chosen to be a richer
class. Finally, (iii) measures the quality of the learned
embedding: ||µ(x,a)− µ̂(x,a)||L is the distance between
the empirical estimate µ̂ of the conditional distribu-
tion embedding of x′ given (x, a), and the population
conditional embedding µ, measured in the RKHS with
kernel L. This difference is weighted by ||Ṽ ∗||L, the

RKHS norm of the approximation Ṽ ∗. Intuitively, a
lower RKHS norm implies a smoother function: when
the norm is smaller, Ṽ ∗ is smoother, and the conver-
gence faster. Thus (iii) requires us to obtain a better
conditional mean embedding (via more training sam-
ples) when the value function is non-smooth. In other
words, our approach favors smooth value functions,
although given sufficient evidence, non-smooth func-
tions can also be learned. One specialization is to the
case when V ∗ ∈ Cb(X ) and L is a Cb(X )-universal ker-
nel (Steinwart & Christmann, 2008, Section 4.6). In

this case we can choose Ṽ ∗ such that ||V ∗ − Ṽ ∗||∞ is
arbitrarily small in (11).

We now specialise Thm. 3.2 to the case where |X | <∞
and where L is strictly positive definite kernel on X
(we then know from Lemma 2.2 that sup(x,a) ||µ(x,a)−
µ̂(x,a)||L → 0 and that all real-valued functions are in
the associated RKHS). Thus consistency is attained
in otherwise very general conditions – the following is
proved in the appendix:

Corollary 3.3. Let |X | < ∞ and L be strictly posi-
tive definite. Under the conditions of Lemma 2.2 we
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Figure 1. The left column shows the (true) value of
the learned policy (color coded). The middle column
shows the estimated value and the right column shows
the policy. Actions are shown in the plot via a color
code: yellow: go down; brown: left; dark blue: up;
light blue: right. The 5000 sample policy is better
(see for example the scale on the value color bars) and
estimated value is close to true value. The patchy col-
oring is not a problem as, for example, in the bottom
right it does not matter if the agent first goes up or to
the left. The method has essentially learnt the task.

have that ||V π̂κ − V ∗||∞ → 0 with convergence in P̃ -
probability.

Complexity analysis: Once the embeddings are
learnt, the complexity of learning the approximate
value function Q̂κ is O(m2|A|κ): due to the expan-
sion of µ̂(x,a) in the m points in S, computing each
expectation is O(m) and we only ever need to know

the evaluation of each iterate V̂k at the m points in
S. Applying the learnt policy (10) to a trajectory
(x0, x1, . . . , xT ) of length T , is similarly O(m|A|T ).
In Sec. B of the Supplementary material, we propose
a sparser representation of the embedding, using an
incomplete Cholesky approximation (Shawe-Taylor &
Cristianini, 2004)[Sec. 5.2]. This reduces the cost of
learning the embeddings from cubic to linear in m,
and allows us to compute subsequent expectations in
O(`), where generally `� m.

4. Experiments

We performed three experiments, using the embed-
dings in value estimation and policy optimization. The
first experiment was an MDP with a fully observed dis-
crete state space, to demonstrate convergence of the
value function with increasing training sample size.
The second and third experiments evaluate our ap-
proach on a classical control task and a task with high
dimensional states. In policy optimisation we compare
to LSPI (Lagoudakis & Parr, 2003) where we use the
q-value estimator from (Engel et al., 2005), and for
value estimation we compare to NPDP5 (Kroemer &
Peters, 2011). We achieve better performance in all
our experiments.

We briefly address the choice of the regularization term
λ. It can be shown that the conditional embeddings

5We thank the authors for providing code.

solve,

µ̂ := argmin
µ∈H

[
m∑
i=1

‖L(x′i, ·)− µ(xi, ai)‖
2
L + λ ‖µ‖2H

]
.

where H ⊆ (HL)(X×A), recovering the vector-valued
regression setting of Micchelli & Pontil (2005) (see
Sec. D for details) which provides cross validation
scheme for the parameter λ.

4.1. Experiment 1

The first experiment is a navigation experiment in a 50
x 50 room. The reward is a Gaussian centered in the
middle of the room. The agent has four actions: go
north, east, south or west. Each action has a success
rate of 80 % and results in random movement with
20 % chance. The state space is fully observed. We
learn the conditional distribution embedding from ei-
ther 1000 or 5000 uniformly sampled transitions, uni-
formity ensuring we avoid exploration artifacts. We
used a Gaussian kernel and cross-validated to deter-
mine the regulariser. Results are shown in Figure 1.

4.2. Experiment 2

We consider the under-actuated pendulum swing up
task (Deisenroth et al., 2009). We generate a discrete-
time approximation of the continuous-time pendulum
dynamics as done in (Deisenroth et al., 2009). Start-
ing from an arbitrary state the goal is to swing the
pendulum up and balance it in the inverted position.
The applied torque is u ∈ [−5, 5]Nm and is not suf-
ficient for a direct swing up. The state space is de-
fined by the angle θ ∈ [−π, π] and the angular ve-
locity, ω ∈ [−7, 7]. The reward is given by the func-
tion r(θ, ω) = exp(−θ2 − 0.2ω2). For policy learning
we compared to the GP-based LSPI approach and for
value learning to NPDP. The results of the comparison
are shown in Fig. 2.
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Figure 2. We compared our approach in policy learning to the GP based LSPI approach (1st and 4th plot) and in value
learning to NPDP (2nd and 3rd plot). 1st and 4th plot: y-axis shows the average difference of the value of the learnt
policy to the optimal value (averaged over the state space). In experiment 2 LSPI improves slowly after 500 samples
and has problems with the two room task for small samples. 2nd plot: y-axis shows the prediction error of the value
estimators (averaged over the state space). The embedding-based estimator is significantly better, especially for higher
sample numbers. 3rd plot: run time for the two methods – the embedding method is 50-110 times faster on this task.

Details for the policy learning setting: We sam-
pled uniformly from the state and action space and
used a Gaussian kernel on both, selecting as kernel
width the average K-neighbour distance, where K is
one quarter of the sample size. We considered a dis-
cretization of the action space into 25 actions and we
measured the difference between the value function
evaluated on a grid of 25 × 25 points to the optimal
value obtained by dynamic programming using the de-
terministic system dynamics. We compared over dif-
ferent sample sizes and averaged the performance over
10 repetitions.

Details for the value estimation setting: We
used the optimal policy to generate samples. The goal
was to predict the value of the optimal policy. The
performance of NPDP depends strongly on the band-
width parameter of the used kernel (a Gaussian). For
parameter selection, we optimised performance on a
validation set over a grid all free parameters (band-
width for NPDP, bandwidth and λ for the embedding),
and report the error on an independent test set. The
relatively poor scaling of NPDP with increased sample
size is due to the numerical integration step in (Kroe-
mer & Peters, 2011, Algorithm 1).

4.3. Experiment 3

Our final experiment is a high dimensional task where
sensor measurements are available, and no state de-
scription is present. The environment consists of two
rooms connected via a short corridor (Böhmer, 2012).
The sensor measurements are images from a 3D ren-
derer, and we aggregate four orientations (north, east,
south and west) for a panorama, since the camera im-
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Figure 3. Results for Experiment 3 with 4000 data points.
Top figure: optimal value. Middle figure: value of the
learned policy. Bottom figure: the predicted value. The
policy is nearly perfect in the room containing the ob-
jective. The performance degrades when the corridor is
reached due to the challenging ambiguous nature of the
images, which are insufficient to accurately distinguish be-
tween the locations. Similarly, the left wall has a high
predicted value. The bottom picture shows that the value
estimate is close to the optimal value.

ages are ambiguous, especially close to the walls. The
task of the agent is to reach a goal located in one
of the rooms, using only the images to orient itself.
Training points were chosen uniformly over the input
space. We used a Gaussian kernel and cross-validated
the regularization parameter. Results for 4000 train-
ing points are shown in Figure 3. We compared to the
GP based LSPI approach using the same kernel and
settings for both approaches; results are shown in Fig-
ure 2. Our method improves with increasing sample
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numbers. The GP based LSPI approach has obvious
difficulties with this task and does not improve. We
did not apply NPDP to exp. 3, as it would be compu-
tationally intractable in given the high dimensionality.

5. Conclusions and Outlook

We have proposed a novel application of RKHS embed-
dings to learning expectation operators associated to
transition dynamics in MDPs, with particular focus on
their use in dynamic programming methods. The ap-
proach avoids the need for density estimates, sampling
methods for evaluation of integrals, or explicit mod-
els of the system; is computationally efficient, having
cost linear in the number of samples used in training
(or even sublinear, with appropriate approximations);
and has performance guarantees. Future work will fo-
cus on generalizing to more complex state and action
spaces, and extending the convergence results to con-
tinuous state spaces. Another important generaliza-
tion concerns the sampling distribution, which here is
assumed to be iid, but one can expect similar results
to hold in the non-iid case.
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A. Approximate Policy Iteration

Algorithm 4 Approximate Policy Iteration

input Sample S, discount γ, maximum number of iterations N , reward function r
output µ(x,a), optimised policy π and value V on x′1, ..., x

′
m

n = 1, π′ = 0
Initialise a random policy π,
Run Alg. 1 to get µ(x,a)

while n ≤ N and π′ 6= π do
π′ ← π, n← n+ 1, Run Alg. 2 to get V for π
for all i ≤ m do
π(x′i)← arg maxa∈A r(x

′
i, a) + γ〈µ(x′i,a)

, V 〉L
end for

end while

B. Complexity improvements via sparse representations

We propose a low rank approximation to efficiently compute the conditional expectation of the reward, assuming
this is in an RKHS, and following the approach of (Song et al., 2011)[Sec. 5]. For ease of notation, we define the
current state x, the next state x′, and the action a. If we assume V is an RKHS function, our estimate of the
expected conditional value can be written as

Eµ̄(x,a)[V ] =

m∑
i=1

αi(x, a)V (x′i) =

m∑
i=1

αi(x, a) 〈V (x′), l(x, x′i)〉 = 〈V,Φα〉

where α is a vector with ith entry αi(x, a), and Φ :=
[
l(x′1, ·) . . . l(x′m, ·)

]
. We expand V = Φβ,

since any component of V orthogonal to the span of Φ will project to zero. We further define Υ :=[
k((x1, a1), ·) . . . k((xm, am), ·)

]
, the embedding of the training sample of state-action pairs used in ob-

taining α. We define the Gram matrices L := Φ>Φ and K := Υ>Υ as before. Following (Shawe-Taylor &
Cristianini, 2004)[Sec. 5.2], we may approximate Φ ≈ QR using an incomplete Gram-Schmidt procedure, where
Q contains ` orthonormal columns spanning a subspace of Φ, and R ∈ R`×m is upper triangular in its first `
columns, assuming the columns of Φ are in the order of elimination in the Gram Schmidt procedure. Generally,
` � m yields a good approximation to Φ: see (Bach & Jordan, 2002)[Appendix C]. In the same way, we can
define Υ ≈ GH, where G is a set of orthonormal functions spanning a subspace of Υ, H has dimension `2 ×m,
and `2 � m. Denote by I the index set of the first ` columns of Φ, and by J the indices of the first `2 columns
of Υ. Then

ΦI = QRI hence Q = ΦIR
−1
I ,

from which Φ ≈ QR = ΦIR
−1
I R =: ΦIA, where A ∈ R`×m. Similarly, Υ ≈ ΥJ (HJ )

−1
H =: ΥJB. Given that

α(·) = (K + λmI)−1Υ>k((x, a), ·),

the expected value is

Eµ̄(x,a)[V ] =
〈
Φ(K + λmI)−1Υ>k((x, a), ·),Φβ

〉
≈
〈
ΦIA

(
B>Υ>JΥJB + λmI

)−1B>Υ>J k((x, a), ·),ΦIAβ
〉

=β>A>LIAB
> (BB> + λmK−1

J
)−1

K−1
J kJ (x, a)

where LI andKJ are the submatrices indexed by I and J , respectively, kJ (x, a) is a vector of kernels between
the set J of retained points and the new observation (x, a), and we use the form of the Woodbury identity for
positive definite matrices in (Petersen & Pedersen, 2008)[eq. (147) p. 17] for the final line. A nice feature of this
approach is that we only need evaluate the inner product of a new state-action pair with the points in the index
set J , which allows us to rapidly compute the expected value function over a wide range of state-action pairs at
reasonable cost.
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C. Proofs

C.1. Auxiliary results

Theorem C.1. (e.g. Smola & Kondor, 2003, Thm. 4) Given a finite set of points Z = {z1, . . . , zt}, consider
h ∈ RZ as a vector h ∈ Rt via h(zi) := h>ei = hi. Then, for a symmetric, p.s.d. matrix R the Hilbert
space H = im(R) ⊆ Rt of real-valued functions on Z with inner product 〈h, g〉H = h>Rg is an RHKS whose
reproducing kernel K : Z ×Z → R is given by the pseudoinverse R+, i.e. such that K(zi, zj) := R+

ij = e>i R
+ej.

C.2. Proof of Lemma 1.1

The proof is due to (Singh & Yee, 1994).

Proof. For any action-value function Q : X × A → R and any x let a∗ = argmaxa∈AQ
∗(x, a), â =

argmaxa∈AQ(x, a). Suppose that ||Q∗ −Q||∞ ≤ ε. We have Q∗(x, a∗)− ε ≤ Q(x, a∗) ≤ Q(x, â) ≤ Q∗(x, â) + ε.
Therefore,

r(x, a∗) + γEX∼P (·|x,a∗)[V
∗(X)]− ε ≤ r(x, â) + γEX∼P (·|x,â)[V

∗(X)] + ε

r(x, a∗) + γEX∼P (·|x,a∗)[V
∗(X)]− r(x, â) ≤ γEX∼P (·|x,â)[V

∗(X)] + 2ε.

Now,

V ∗(x)− V πQ(x) = r(x, a∗) + γEX∼P (·|x,a∗)[V
∗(X)]− r(x, â)− γEX∼P (·|x,â)[V

πQ(X)]

≤ γEX∼P (·|x,â)[V
∗(X)]− γEX∼P (·|x,â)[V

πQ(X)] + 2ε

≤ γ sup
x′∈X

|V ∗(x′)− V πQ(x′)|+ 2ε

sup
x∈X
|V ∗(x)− V πQ(x)| ≤ 2ε

1− γ
.

C.3. Proof of Lemma 2.1

Proof. Following (Song et al., 2009) there exists a conditional embedding operator U : HK → HL such that
U(K((x, a), ·)) = µ(x,a) for all (x, a) ∈ X × A. From (Song et al., 2010b) there exists an empirical embedding

operator U : HK → HL such that µ(x,a) = U(K((x, a), ·)) and,

sup
(x,a)∈X×A

{||µ(x,a) − µ(x,a)||L} = sup
(x,a)∈X×A

||(U − U)(K((x, a), ·))||L

≤ sup
(x,a)∈X×A

||K((x, a), ·)||K ||(U − U)||HS

= ρK ||(U − U)||HS,

where || · ||HS denotes the Hilbert-Schmidt norm, and the result follows directly from (Song et al., 2010b)[Thm. 1].

C.4. Proof of Lemma 2.2

Proof. Since L is strictly positive definite on a finite set (Smola & Kondor, 2003, Thm. 4) (reproduced in
the appendix as Thm. C.1) demonstrates that HL consists of all bounded functions on X = {x1, . . . , xn} and
〈f, g〉L = f>L−1g where L = (L(xi, xj))

n
i,j=1 and f := (f(xi))

n
i=1 is the vector of point evaluations of f on X .

Thus HL contains all binary functions on X , bin(X ) := {−1, 1}X ⊂ HL, and let b := maxf∈bin(X ) ||f ||L < ∞.
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Now, given any ε > 0, Lemma 2.1 implies that, uniformly over all (x, a),

PS∼P̃

(
max

f∈bin(X )
|EX∼P (·|(x,a))[f(X)]−

m∑
i=1

αi(x, a)f(x′i)| > ε

)

= PS∼P̃

(
max

f∈bin(X )
|〈µ(x,a) − µ(x,a), f〉L| > ε

)
≤ PS∼P̃

(
||µ(x,a) − µ(x,a)||Lb > ε

)
→ 0. (13)

Consideration of the all ones function, f : x 7→ 1 ∈ bin(X ), in (13) implies that

PS∼P̃

(
sup

(x,a)∈X×A
|1−

m∑
i=1

αi(x, a)| > ε

)
→ 0. (14)

Consideration of the function g(xi) = −1 if αi(x, a) < 0 and which is equal to +1 otherwise, in (13), implies that

PS∼P̃

(
sup

(x,a)∈X×A
|c−

m∑
i=1

|αi(x, a)|| > ε

)
→ 0, (15)

where c = EX∼P (·|(x,a))[g(X)] ≤ 1. Together (14) and (15) imply that

PS∼P̃

(
sup

(x,a)∈X×A
|1−

m∑
i=1

|αi(x, a)|| > ε

)
→ 0.

This implies that sup{i,(x,a)} |α̂i(x, a) − αi(x, a)| → 0 in P̃ -probability. And since ||µ̂(x,a) − µ(x,a)||2L =∑
ij(α̂i(x, a) − αi(x, a))L−1

ij (α̂j(x, a) − αj(x, a)) this implies that, sup(x,a)∈X×A ||µ̂(x,a) − µ(x,a)||L → 0 in P̃
probability and the result follows from the consistency of µ(x,a), uniformly over (x, a), Lemma 2.1.

C.5. Proof of Proposition 3.1

Proof. for any V,W ∈ B(X ) we have,

sup
x∈X
|(B̂V )(x)− (B̂W )(x)| = sup

x∈X
|max
a∈A
{r(x, a) + γÊ(x,a)[V ]} −max

a∈A
{r(x, a) + γÊ(x,a)[W ]|}

≤ sup
(x,a)

|γÊ(x,a)[V −W ]|

≤ γ sup
x∈X
|V (x)−W (x)|.

C.6. Proof of Thm. 3.2

We will require the following lemma regarding contraction mappings:

Lemma C.2. Suppose that C, Ĉ are contraction mappings on Banach spaces (V, || · ||), (V̂, || · ||) with V ⊆ V̂ and

with fixed points v∗, v̂∗ respectively. Suppose that ||(C − Ĉ)(v∗)|| < ε and that ||Ĉ(v)− Ĉ(w)|| < γ||v −w||, then
||v∗ − v̂∗|| ≤ ε

1−γ .

Proof. There exist sequences vn → v∗, v̂n → v̂∗ where vn+1 = C(vn), v̂n+1 = Ĉ(v̂n) so that ||v̂n+1 − vn+1|| =

||Ĉ(v̂n)−C(vn)|| ≤ ||Ĉ(v̂n)− Ĉ(vn)||+ ||(Ĉ −C)(vn)|| ≤ γ||v̂n− vn||+ ||(Ĉ −C)(vn)||. Taking the limit n→∞,

and the continuity of (Ĉ − C) implies ||v̂∗ − v∗|| ≤ γ||v̂∗ − v∗||+ ||(Ĉ − C)(v∗)|| ≤ γ||v̂∗ − v∗||+ ε.

Corollary C.3. ||V ∗ − V̂ ∗||∞ ≤ γ
2||V ∗−Ṽ ∗||∞+sup(x,a) ||µ(x,a)−µ̂(x,a)||L||Ṽ ∗||L

1−γ where Ṽ ∗ is any element of HL.
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Proof. We have that,

||(B − B̂)(V ∗)||∞ := sup
x∈X
|max
a∈A
{r(x, a) + γEX∼P (·|x,a)[V

∗(X)]} −max
a∈A
{r(x, a) + γÊ(x,a)[V

∗]}|

≤ γ sup
(x,a)

|EX∼P (·|x,a)[V
∗(X)]− Ê(x,a)[V

∗]|

≤ γ sup
(x,a)

(
|(EX∼P (·|x,a) − Ê(x,a))[V

∗ − Ṽ ∗]|+ |〈µ(x,a) − µ̂(x,a), Ṽ
∗〉L|

)
≤ γ

(
2||V ∗ − Ṽ ∗||∞ + sup

(x,a)

||µ(x,a) − µ̂(x,a)||L||Ṽ ∗||L
)
,

and the result follows from Lemma C.2.

We can now prove Thm. 3.2:

Proof. We recall definition (1) and (9), and we have,

||Q∗ − Q̂κ||∞ = sup
(x,a)

|Q̂κ(x, a)−Q∗(x, a)|

≤ γ sup
(x,a)

|Ê(x,a)[V̂κ(X)]− EX∼P (·|x,a)[V
∗(X)]|

≤ γ
(

sup
(x,a)

|Ê(x,a)[V̂κ − V̂ ∗]|+ sup
(x,a)

|Ê(x,a)[V̂
∗ − V ∗]|

+ sup
(x,a)

|(Ê(x,a) − EX∼P (·|x,a))[V
∗ − Ṽ ∗]|

+ sup
(x,a)

|(Ê(x,a) − EX∼P (·|x,a))[Ṽ
∗]|
)
, (16)

where Ṽ ∗ is any element of HL. Continuing,

(16) ≤ γ
(
||V̂κ − V̂ ∗||∞ + ||V̂ ∗ − V ∗||∞ + 2||V ∗ − Ṽ ∗||∞ + sup

(x,a)

|〈µ(x,a) − µ̂(x,a), Ṽ
∗〉L|

)
≤ γ

1− γ

(
γκ||V̂1 − V̂0||∞ + 2||V ∗ − Ṽ ∗||∞ + sup

(x,a)

||µ(x,a) − µ̂(x,a)||L||Ṽ ∗||L
)
,

where the final line follows by applying (8) and Corollary C.3 to the first and second terms of the preceding line.
Lemma 1.1 then implies that,

||V π̂κ − V ∗||∞ ≤
2γ

(1− γ)2

(
γκ||V̂1 − V̂0||∞ + 2||V ∗ − Ṽ ∗||∞ + sup

(x,a)

||µ(x,a) − µ̂(x,a)||L||Ṽ ∗||L
)
,

proving (11), and (12) follows by applying Lemma 2.2.

C.7. Proof of Corollary 3.3

Proof. Recalling Thm. C.1, since L is strictly positive definite kernel on a finite set the RHKS HL consists of all
bounded real-valued functions on X so we can choose Ṽ ∗ = V ∗ in (12).

D. Kernel conditional embeddings as solution to regression problem

We demonstrate that kernel conditional mean embedding can be obtained as the solution to a regression problem,
where the output space is an RKHS and the loss is described by the associated RKHS norm. Our discussion is
in general terms, rather than using the specific spaces required in the MDP setting.
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Let F be an RKHS on the set X with kernel K and feature map φ(x), and G be an RKHS on Y with kernel L
and feature map ϕ(y). Consider the problem of finding a mapping f : X → G such that,

EX
(
EY∼P (·|X)[g]− 〈f(x), g〉G

)2
, (17)

is small over all g in some ball G̃ ⊂ G. This is clearly minimized (to zero) when f(x) is the true embedding µ(x)
of P (·|x) in G. In particular,

EX
(
EY∼P (·|X)[g]− 〈f(x), g〉G

)2
= EX

〈
g, µ(X) − f(X)

〉2
G

≤ EX
∥∥µ(X) − f(X)

∥∥2

G ‖g‖
2
G

≤ EXY ‖L(Y, ·)− f(X)‖2G ‖g‖
2
G

where we successively use Cauchy-Schwarz and Jensen’s inequality. Thus, minimizing

EXY ||L(Y, ·)− µ(X)||2G (18)

is a good surrogate to the objective (17) over balls in G, and should give better guarantees on “smoother”
functions g (that is, low norm functions).

There are two ways to think about this problem: either µ is a mapping between φ(x) ∈ F and G, i.e., a
mapping between feature spaces, in which case the solution is regularized least squares regression in feature
space (Sec. D.1); or µ maps directly from X to G, and the solution is a special case of the approach of (Micchelli
& Pontil, 2005) (Sec. D.2).

D.1. Regression between feature spaces

To describe the solution to the regression problem (18), we must first introduce the tensor space of functions
F ⊗ G, which is a subspace of H := GF . The tensor product in Hilbert spaces is an immediate extension of the
outer product ab> of vectors a ∈ Rd, b ∈ Rd′ , and is described e.g. in (Reed & Simon, 1980)[Ch. 2.4]. The inner
product between two elements of F ⊗ G is

〈f1 ⊗ g1, f2 ⊗ g2〉HS := 〈f1, f2〉F 〈g1, g2〉G .

Note that the tensor inner product is defined in terms of the inner products on F and G, which must therefore
be Hilbert spaces (although X and Y need only be sets). The action of the operator g ⊗ f ∈ H is

(g ⊗ f1) f2 := g 〈f1, f2〉 .

We will be solving a regression problem which maps φ(x) to ϕ(y). The link with conditional mean embeddings
is immediate from the map from F → G, since the conditional mean embedding is a map from feature space to
feature space. For instance, if X is a finite set of size d (as is Y), then it has the natural feature map φ(x) := ex,
where es is the unit vector in Rp taking value 1 in dimension s, and zero in the remaining entries. In this case,
the conditional mean embedding is the conditional probability, and the conditional mean is indeed a mapping
from the feature space F to the feature space G: see (Song et al., 2010a)[Sec. 3.3] for details. A second special
case is where X := F , Y := G, and x and y are jointly Gaussian distributed with zero mean. In this case, the
conditional mean embedding is the conditional mean of y given x, or in other words, the solution to a standard
least squares regression problem (which may or may not be regularized). Note that in this case, we rely on X
and Y being Hilbert spaces and having well defined inner products, which allows us to identify them with F and
G, respectively. This will not necessarily be true in general.

We next introduce the (uncentered) cross-covariance operator, CXY . This belongs to the space HS(G,F) of
Hilbert-Schmidt operators mapping from G to F , and is defined such that

〈f, CXY g〉F := cov(f(X), g(Y )) = EXY [f(X)g(Y )]

for all f ∈ F and g ∈ G. The uncentered covariance operator CXX ∈ HS(F ,F) may be defined by analogy: for
all f1, f2 ∈ F ,

〈f1, CXXf2〉F := EX [f1(X)f2(X)].
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For more details, see e.g. (Song et al., 2009; 2010b) and references therein.

We now turn to the minimization of problem (18). Define the operator A : F → G (assumed to be Hilbert-
Schmidt). Then the problem of minimizing (18) can be written,

min
A

(
EXY ‖ϕ(y)−Aφ(x)‖2G + λ ‖A‖2HS

)
. (19)

where we have added a regularizing term ‖A‖2HS . The solution is

EXY ‖ϕ(y)−Aφ(x)‖2G + λ ‖A‖2HS
=EY L(Y, Y )− 2 〈CY X , A〉HS + 〈A∗A,CXX〉HS + λ 〈A∗A, I〉
=EY L(Y, Y )− 2 〈CY X , A〉HS + 〈A∗A,CXX + λI〉HS
=EY L(Y, Y )− 2

〈
CY X , B (CXX + λI)

−1/2
〉
HS

+ 〈B,B〉HS defining B := A (CXX + λI)
1/2

=EY L(Y, Y )−
∥∥∥CY X (CXX + λI)

−1/2
∥∥∥2

HS
+
∥∥∥CY X (CXX + λI)

−1/2 −B
∥∥∥2

HS

where in the final row we complete the square. Since the final norm is non-negative, this is minimized when

B = CY X (CXX + λI)
−1/2

, and hence A = CY X (CXX + λI)
−1

. This is the population expression for the
regularized kernel conditional mean embedding (Song et al., 2009). To condition on a particular value of x, we
apply this operator to its feature map φ(x) ∈ F .

Because this is the solution to a least squares regression problem, the regularization term λ can be found by cross-
validation, replacing A with its empirical estimate, and the expectations in the loss with empirical expectations.
Note also that density estimation is never required when computing conditional expectations in this manner.

D.2. The general vector-valued regression setting

We now describe a modified formulation of the problem of minimizing (18), where the mapping µ(x) is directly
from the set X to the Hilbert space G. This might seem to be a minor change from the previous formulation
(i.e., rather than having a map µ : F → G, we define a new map µ̃ := µ ◦ φ which is the composition of the
feature map and the conditional mean embedding). In the latter formulation, however, it can be shown that the
conditional mean embedding is a special case of (Micchelli & Pontil, 2005)[Thm. 4.1].

To compare directly with (Micchelli & Pontil, 2005), we move to the finite sample setting, replacing EY∼P (·|X)[f ]
with an estimate based on a sample {(xi, yi)}mi=1. At each xi the sample estimate of EY∼P (·|xi)[f ] is just f(yi),
and the loss function we minimize is

∑m
i=1 ||L(yi, ·) − µ̃(xi)||2L . We add a regularizer to make the problem

well-posed,

µ̂ = argmin
µ̃

{
m∑
i=1

||L(yi, ·)− µ̃(xi)||
2
L + λ||µ̃||2

K̃

}
. (20)

Here K̃ is the kernel for a G-valued RKHS HK̃ ⊆ G
X : in other words, we have regression problem with the

training data {(xi, L(yi, ·))}mi=1.

We now need to choose the kernel K̃, which in the setting (Micchelli & Pontil, 2005) is a map G → G indexed
by a pair (x, x′) ∈ X × X . Starting with the real-valued kernel K : X × X → R, a natural choice for the RKHS
HK̃ has the inner product

〈gK(x, ·), hK(x′, ·)〉K̃ := 〈g, h〉LK(x, x′) (21)

for all g, h ∈ HL. Its easy to check that this satisfies the conditions to be a vector-valued RKHS in (Micchelli &

Pontil, 2005) – in fact, it corresponds to the choice K̃(x, x′) = K(x, x′)Id, where Id : G → G is the identity map
on G. We then recover the conditional mean embedding via (Micchelli & Pontil, 2005)[Thm. 4.1].
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