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Abstract

We consider the scenario where training and test data avendram different
distributions, commonly referred to aample selection biasMost algorithms
for this setting try to first recover sampling distributioasd then make appro-
priate corrections based on the distribution estimate. ksgnt a nonparametric
method which directly produces resampling weights withdistribution estima-
tion. Our method works by matching distributions betweeaning and testing
sets in feature space. Experimental results demonstrateotlr method works
well in practice.

1 Introduction

The default assumption in many learning scenarios is thatitrg and test data are independently
and identically (iid) drawn from theamedistribution. When the distributions on training and test
set do not match, we are facisgmple selection biasr covariate shift Specifically, given a domain
of patternsX and labely, we obtain training samples = {(z1,y1), .-, (Tm, ym)} € X x Y from

a Borel probability distributiofPr(x, y), and test samples’ = {(z},v}), ..., (zl,/, ¥,/ )} € X xY
drawn from another such distributidh’(x, y).

Although there exists previous work addressing this prod® 5, 8, 9, 12, 16, 20], sample selection
bias is typically ignored in standard estimation algorithnNonetheless, in reality the problem
occurs rather frequently : While the available data havaloeiected in a biased manner, the test is
usually performed over a more general target populatiolovideve give two examples; but similar
situations occur in many other domains.

1. Suppose we wish to generate a model to diagnose breagrc&uppose, moreover, that most
women who participate in the breast screening test are evagkd and likely to have attended the
screening in the preceding 3 years. Consequently our samgledes mostly older women and
those who have low risk of breast cancer because they handémsted before. The examples do not
reflect the general population with respect to age (whichuantsoto a bias ifPr(x)) and they only
contain very few diseased cases (i.e. a biarify|x)).

2. Gene expression profile studies using DNA microarraysisee in tumor diagnosis. A common
problem is that the samples are obtained using certain gutstaomicroarray platforms and analysis
techniques. In addition, they typically have small samptes The test cases are recorded under
different conditions, resulting in a different distribomi of gene expression values.

In this paper, we utilize the availability of unlabeled d#&tedirect a sample selection de-biasing
procedure for various learning methods. Unlike previouskwee infer the resampling weigluti-
rectly by distribution matching between training and testing setsature space in a non-parametric



manner. We do not require the estimation of biased densitisslection probabilities [20, 2, 12], or
the assumption that probabilities of the different claggesknown [8]. Rather, we account for the
difference betweeirr(z,y) andPr’(z,y) by reweighting the training points such that the means
of the training and test points in a reproducing kernel Hillspace (RKHS) are close. We call this
reweighting process kernel mean matching (KMM). When thédBKs universal [14], the popula-
tion solution to this miminisation is exactly the rafiv’(z, y)/ Pr(z, y); however, we also derive a
cautionary result, which states that even granted thid igaulation reweighting, the convergence
of the empirical means in the RKHS depends on an upper boutldeoratio of distributions (but
not on the dimension of the space), and will be extremely #idins ratio is large.

The required optimisation is a simple QP problem, and thesiglited sample can be incorpo-
rated straightforwardly into several different regreasaod classification algorithms. We apply our
method to a variety of regression and classification bencksrieom UCI and elsewhere, as well as
to classification of microarrays from prostate and breasteapatients. These experiments demon-
strate that KMM greatly improves learning performance careg with training on unweighted data,
and that our reweighting scheme can in some cases outperfaraighting using the true sample
bias distribution.

Key Assumption 1: In general, the estimation problem with two different disttionsPr(zx, y)
andPr’(z,y) is unsolvable, as the two terms could be arbitrarily far aiplr particular, for arbi-
trary Pr(y|z) andPr’(y|x), there is no way we could infer a good estimator based on #ieirtig
sample. Hence we make the simplifying assumption thdt:, y) and Pr’(z,y) only differ via
Pr(z,y) = Pr(y|z) Pr(z) andPr(y|z) Pr'(z). In other words, the conditional probabilities gifr
remainunchangedthis particular case of sample selection bias has beeretecovariate shift
[12]). However, we will see experimentally that even in attans where our key assumption is not
valid, our method can nonetheless perform well (see Seddion

2 Sample Reweighting

We begin by stating the problem of regularized risk minirti@a In general a learning method
minimizes the expected risk

R[PI‘, 97 Z(Za Y, 9)] = E(a;,y)NPr [l(I, Y, 9)] (1)

of a loss functiori(z, y, ) that depends on a parameter For instance, the loss function could
be the negative log-likelihood log Pr(y|z, #), a misclassification loss, or some form of regression
loss. However, since typically we only observe examples) drawn fromPr(x, y) rather than
Pr’(z, y), we resort to computing the empirical average

m

1
Remp[Z797l(may79)] = Ezl(‘xuylae) (2)
i=1

To avoid overfitting, instead of minimizing.., directly we often minimize a regularized variant
Ries[Z,0,1(x,y,0)] := RemplZ,0,1(x,y,0)] + A\Q2[0], whereQ[6] is a regularizer.

2.1 Sample Correction

The problem is more involved Br(z, y) andPr’(x, y) are different. The training set is drawn from
Pr, however what we would really like is to minimiz@[Pr’, , 1] as we wish to generalize to test
examples drawn frorR1’. An observation from the field of importance sampling is that

R[PI‘I7 97 l(l‘, Y, 9)] = E(a:,y)NPr’ [Z(xv Y, 9)] = E(z,y)NPr 1:1;1;((;75))[(357 Y, 9)} (3)

= R[Pr, 0, B(z, y)l(x,y,0)], =6(z,y) @)

provided that the support dfr’ is contained in the support d*r. Given 3(z,y), we can thus
compute the risk with respect #x’ usingPr. Similarly, we canestimatethe risk with respect to
PI‘I by Compu“ngRemp [Za 9; ﬁ(x7 y)l(l‘, y7 9)]

The key problem is that the coefficientézr, y) are usually unknown, and we need to estimate them
from the data. Whelr andPr’ differ only in Pr(z) andPr’(z), we haves(z,y) = Pr'(z)/Pr(z),
where 3 is a reweighting factor for the training examples. We thuseight every observation



(z,y) such that observations that are under-representBd abtain a higher weight, whereas over-
represented cases are downweighted.

Now we could estimat®r andPr’ and subsequently compuficbased on those estimates. This is
closely related to the methods in [20, 8], as they have teeitistimate the selection probabilities
or have prior knowledge of the class distributions. Althbugtuitive, this approach has two major
problems: first, it only works whenever the density estirmdte Pr andPr’(or potentially, the se-
lection probabilities or class distributions) are goodpémticular, small errors in estimatirigy can
lead to large coefficients and consequently to a serious overweighting of the corredipg obser-
vations. Second, estimating both densities just for thp@se of computing reweighting coefficients
may be overkill: we may be able to directly estimate the coieffitsg; := (G(x;, y;) without having

to estimate the two distributions. Furthermore, we canleg@e 5; directly with more flexibility,
taking prior knowledge into account similar to learning huets for other problems.

2.2 Using the sample reweighting in learning algorithms

Before we describe how we will estimate the reweighting ficiehts3;, let us briefly discuss how
to minimize the reweighted regularized risk

reg[Z B,1 ( x,y,0)] Zﬂz Liy Yi, )+)‘Q[9] %)

=1

in the classification and regression settings (an additidaasification method is discussed in the
accompanying technical report [7]).

Support Vector Classification: Utilizing the setting of [17]we can have the following minimation
problem (the original SVMs can be formulated in the same way)

m

mlnanguze = ||9H + CZ@@ (6a)

=1
subjectto(o(x;, yi) — d(xi,9),0) > 1 — & /Ay, y) forally € Y, andg; > 0. (6b)

Here,¢(z, y) is a feature map frori x Y into a feature spac&, whered € ¥ andA(y, y’) denotes
a discrepancy function betwegrandy’. The dual of (6) is given by

m m

|
minimize | Z iy k(i y, 25,y ZO‘W (7a)
,j=Ly,y'€Y i=ly€Y
subject ton;,, > 0 forall i,y and Y ~ avy /A(yi,y) < BiC. (7b)
y€Y

Herek(x,y,2',y') := (¢(x,y), ¢(a’,y")) denotes the inner product between the feature maps. This
generalizes the observation-dependent binary SV claatifitdescribed in [10]. Modifications of
existing solvers, such as SVMStruct [17], are straightfmdy

Penalized LMS Regression:Assumel(z,y,6) = (y — (¢(x),6))* andQ[8] = ||0||>. Here we
minimize m

Zﬁt Yi L0))7 -+ A10]1* (8)

Denote by the diagonal matrix with dmgon@ﬁl, ...,Bm) and letK € R™*™ be the kernel
matrix K;; = k(z;,z;). In this case minimizing (8) is equivalent to minimizitg— Ka) ' 3(y —
Ka) + Ma' Ka with respect tav. Assuming thatk” and 3 have full rank, the minimization yields

a = (A8~ + K)~ly. The advantage of this formulation is that it can be solveeksasily as solving
the standard penalized regression problem. Essentialyescale the regularizer depending on the
pattern weights: the higher the weight of an observation|éhs we regularize.

3 Distribution Matching

3.1 Kernel Mean Matching and its relation to importance samging

Letd : X — F be a map into a feature spa€eand denote by: : P — F the expectation operator



p(Pr) :=E, pr(z) [@(2)] . 9)

Clearlyp is alinear operator mapping the space of all probability distribusibrinto feature space.
Denote byM(®) := {u(Pr) wherePr € P} the image ofP underu. This set is also often referred
to as thanarginal polytopeWe have the following theorem (proved in [7]):

Theorem 1 The operatory is bijective if F is an RKHS with a universal kernél(z,z’) =
(®(x), ®(2")) in the sense of Steinwart [15].

The use of feature space means to compare distributionstisefuexplored in [3]. The practical
consequence of this (rather abstract) result is that if waenkm(Pr’), we can infer a suitablg by
solving the following minimization problem:

miniﬁmize ||M(Pr/) — E,opi(a) [B(2) ()] H subject tof(x) > 0 andE, py() [6(x)] = 1. (10)

This is the kernel mean matching (KMM) procedure. For a prafothe following (and further
results in the paper) see [7].

Lemma 2 The problem (10) is convex. Moreover, assume thatis absolutely continuous with
respect toPr (so Pr(A) = 0 impliesPr’(A) = 0). Finally assume thak is universal. Then the
solutiong(z) of (10) isPr'(x) = B(x)Pr(z).

3.2 Convergence of reweighted means in feature space

Lemma 2 shows that in principle, if we knédw andu[Pr’], we could fully recovePr’ by solving
a simple quadratic program. In practice, however, neitti€t’) nor Pr is known. Instead, we only
have samplex’ and X’ of sizem andm/, drawn iid fromPr andP1’ respectively.

Naively we could just replace the expectations in (10) by ieicad averages and hope that the
resulting optimization problem provides us with a goodraate of3. However, it is to be expected
that empirical averages will differ from each other due tatdisample size effects. In this section,
we explore two such effects. First, we demonstrate thatarfittite sample case, for a fixet] the
empirical estimate of the expectation @fis normally distributed: this provides a natural limit on
the precision with which we should enforce the constrifitz)d Pr(z) = 1 when using empirical
expectations (we will return to this point in the next seajio

Lemma 3 If 5(z) € [0, B] is some fixed function of € X, then given; ~ Pr iid such thatg(z;)
has finite mean and non-zero variance, the sample rdedn, 3(x;) converges in distribution to a

Gaussian with meaif 5(x)d Pr(z) and standard deviation bounded %

This lemma is a direct consequence of the central limit thedil, Theorem 5.5.15]. Alternatively,
it is straightforward to get a large deviation bound thagtiise converges as/ \/m [6].

Our second result demonstrates the deviation between tpgieah means ofPr’ and 3(x) Pr in
feature space, givefi(x) is chosen perfectly in the population sense. In particthés, result shows
that convergence of these two means will be slow if thereasgel difference in the probability mass
of Pr’ andPr (and thus the boun& on the ratio of probability masses is large).

Lemma 4 In addition to the Lemma 3 conditions, assume that we dkw= {z/,... 2/ ,} iid
from X usingPr’ = 3(x) Pr, and|®(x)| < R for all z € X. Then with probability at least — §

H% > Bi) (i) — % > o) < (1 + \/—210g5/2) RVBm + 1jm (1)
i=1 i=1

Note that this lemma shows that fogaven5(z), which is correct in the population sense, we can
bound the deviation between the feature space me&n’aind the reweighted feature space mean
of Pr. Itis nota guarantee that we will find coefficients that are close t@(x; ), but it gives us a
useful upper bound on the outcome of the optimization.

Lemma 4 implies that we hav@(B+/1/m + 1/m’B?) convergence imn, m’ andB. This means
that, for very different distributions we need a large eglént sample size to get reasonable conver-
gence. Our result also implies that it is unrealistic to assthat the empirical means (reweighted
or not) should match exactly.



3.3 Empirical KMM optimization

To find suitable values of € R™ we want to minimize the discrepancy between means subject
to constraints3; € [0, B] and|L >, 3; — 1| < e. The former limits the scope of discrepancy
betweerPr andPr’ whereas the latter ensures that the meas(re Pr(x) is close to a probability
distribution. The objective function is given by the digzaecy term between the two empirical
means. Using<;; := k(z;, z;) ands; := 7% 3770, k(x;, 2;) one may check that

’
m m
2

H% 2 Bi®(z;) — % Z‘b(mg)

1 2
:WﬁTKﬁ — mf@—rﬁ + const.

We now have all necessary ingredients to formulate a quiagnatblem to find suitablg via

miniﬁmize %ﬁTKﬁ — k' 3 subject to3; € [0, B] and‘z B; — m} < me. (12)
i=1

In accordance with Lemma 3, we conclude that a good choicesbbuld beO(B/,/m). Note
that (12) is a quadratic program which can be solved effijiersing interior point methods or any
other successive optimization procedure. We also pointtait(12) resembles Single Class SVM
[11] using thev-trick. Besides the approximate equality constraint, tleémndifference is the linear
correction term by means af Large values of; correspond to particularly important observations
x; and are likely to lead to large,.

4 Experiments

4.1 Toy regression example

Our first experimentis on toy data, and is intended mainlytwiodle a comparison with the approach
of [12]. This method uses an information criterion to opsmihe weights, under certain restrictions
on Pr andPr’ (namely,Pr" must be known, whilér can be either known exactly, Gaussian with
unknown parameters, or approximated via kernel densitatibn).

Our data is generated according to the polynomial regresstample from [12, Section 2], for
which Pr ~ N(0.5,0.5%) andPr’ ~ N(0,0.3%) are two normal distributions. The observations are
generated according tp= —x + 23, and are observed in Gaussian noise with standard deviation
0.3 (see Figure 1(a); the blue curve is the noise-free signal).

We sampled 100 training (blue circles) and testing (redesgpoints fromPr andPr’ respectively.
We attempted to model the observations with a degree 1 poliailo The black dashed line is a
best-case scenario, which is shown for reference purpitsepresents the model fit using ordinary
least squared (OLS) on the labeled test points. The red dimesecond reference result, derived
only from the training data via OLS, and predicts the tesadaty poorly. The other three dashed
lines are fit with weighted ordinary least square (WOLS)ngsine of three weighting schemes: the
ratio of the underlying training and test densities, KMMdahe information criterion of [12]. A
summary of the performance over 100 trials is shown in Fidifb. Our method outperforms the
two other reweighting methods.
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Figure 1: (a) Polynomial models of degree 1 fit with OLS and WOLS;(b) rage performances of three
WOLS methods and OLS on the test data in (a). Label&atefor ratio of test to training density; KMM for
our approachmin IC for the approach of [12]; an@LSfor the model trained on the labeled test points.



4.2 Real world datasets

We next test our approach on real world data sets, from whigselect training examples using a
deliberately biased procedure (as in [20, 9]). To descrilrebiased selection scheme, we need to
define an additional random varialigfor each point in the pool of possible training samples, wher
s; = 1 means theéth sample is included, and = 0 indicates an excluded sample. Two situations
are considered: the selection bias corresponds to our asisumegarding the relation between
the training and test distributions, at{s; = 1|z;,y;) = P(s;|z;); or s; is dependent only on
vi, 1.€. P(s;|xs,y:) = P(s:i]y:), which potentially creates a greater challenge since Iatés our
key assumption 1. In the following, we compare our methobdledKMM) against two others: a
baseline unweighted methodniweightedl, in which no modification is made, and a weighting by
the inverse of the true sampling distributiamportance sampling as in [20, 9]. We emphasise,
however, that our method doast require any prior knowledge of the true sampling probabsit

In our experiments, we used a Gaussian kesrp(—o||x; — z;]|?) in our kernel classification and
regression algorithms, and parametets (y/m — 1)/+/m and B = 1000 in the optimization (12).
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Figure 2:Classification performance analysis on breast canceretdtasn UCI.
4.2.1 Breast Cancer Dataset

This dataset is from the UCI Archive, and is a binary clasaifim task. It includes 699 examples
from 2 classes: benign (positive label) and malignant (tieg#éabel). The data are randomly split
into training and test sets, where the proportion of exampged for training varies from 10% to
50%. Test results are averaged over 30 trials, and werenglotaising a support vector classifier with
kernel sizes = 0.1. First, we consider a biased sampling scheme based on thefegiures, of
which there are nine, with integer values from 0 to 9. Sincalnfeature values predominate in the
unbiased data, we sample accordin@®(@ = 1|z < 5) = 0.2andP(s = 1|z > 5) = 0.8, repeating
the experiment for each of the features in turn. Results m@avarage over 30 random training/test
splits, with 1/4 of the data used for training and 3/4 foritest Performance is shown in Figure 2(a):
we consistently outperform the unweighted method, andimatexceed the performance obtained
using the known distribution ratio. Next, we consider a stmgpbias that operates jointly across
multiple features. We select samples less often when theefuather from the sample meanover
the training data, i.eP(s;|z;) x exp(—o||lz; — Z||?) whereo = 1/20. Performance of our method
in 2(b) is again better than the unweighted case, and as goodetter than reweighting using the
sampling model. Finally, we consider a simple biased sargpgicheme which depends only on the
labely: P(s = 1ly = 1) = 0.1 andP(s = 1|y = —1) = 0.9 (the data has on average twice as
many positive as negative examples when uniformly samplé@rage performance for different
training/testing split proportions is in Figure 2(c); remkably, despite our assumption regarding the
difference between the training and test distributionsdpe&iolated, our method still improves the
test performance, and outperforms the reweighting by tiereio for large training set sizes. Fig-



ure 2(d) shows the weighfsare proportional to the inverse of true sampling probabeditpositive
examples have higher weights and negative ones have lovghtse

4.2.2 Further Benchmark Datasets

We next compare the performance on further benchmark dstase selecting training data via
various biased sampling schemes. Specifically, for the Baghgistribution bias on labels, we
exp(a + by)/(1 + exp(a + by)) (datasets 1 to 5), or the simple step distri-
bution P(s = 1lly = 1) = a, P(s = 1ly = —1) = b (datasets 6 and 7). For the remaining
datasets, we generate biased sampling schemes over titeirefe We first do PCA, selecting the
first principal component of the training data and the cqoesling projection values. Denoting
the minimum value of the projection as and the mean a&, we apply a normal distribution with
meanm + (m — m)/a and variancém — m)/b as the biased sampling scheme. Please refer to
[7] for detailed parameter settings. We use penalized LMSdgression problems and SVM for
classification problems. To evaluate generalization perémce, we utilize th@ormalized mean

useP(s = 1ly) =

square error (NMSEgiven by 2 > |

Wi—ri) for re

var y

gression problems, and the average test error

for classification problems. In 13 out of 23 experiments,reweighting approach is the most accu-
rate (see Table 1), despite having no prior information atimibias of the test sample (and, in some
cases, despite the additional fact that the data rewemhties not conform to our key assumption
1). In addition, the KMMalwaysimproves test performance compared with the unweightegl. cas
Two additional points should be borne in mind: first, we usedhmesr for the kernel mean match-
ing and the SVM, as listed in Table 1. Performance might beavgd by decoupling these kernel
sizes: indeed, we employ kernels that are somewhat largggesting that the KMM procedure is
helpful in the case of relatively smooth classificationfesgsion functions. Second, we did not find
a performance improvementin the case of data sets withensalinple sizes. This is not surprising,
since a reweighting would further reduce the effective nend§ points used for training, resulting
in insufficient data for learning.
Table 1: Test results for three methods on 18 datasets with diffesantpling schemes. The results are

averages over 10 trials for regression problems (markedd)3 trials for classification problems. We used a
Gaussian kernel of sizefor both the kernel mean matching and the SVM/LMS regressiod set3 = 1000.

NMSE / Test err.
DataSet o Ner selected Pt unweighted importance samp. KMM
1. Abalone* le—1 2000 853 2177| 1.00 + 0.08 1.14+0.2 0.6 +0.1
2. CA Housing* le—1 16512 3470 4128 2.29 £+ 0.01 1.72 £ 0.04 1.24 + 0.09
3. Delta Ailerons(1)* le3 4000 1678 3129| 0.51+0.01 0.51 +0.01 0.401 4+ 0.007
4. Ailerons* le — 5 7154 925 6596| 1.50 + 0.06 0.7+0.1 1.2+0.2
5. haberman(1) le — 2 150 52 156 | 0.50 &+ 0.09 0.37 +£0.03 0.30 £+ 0.05
6. USPS(6vs8)(1) 1/128 500 260 1042| 0.13+0.18 0.1 +0.2 0.1+0.1
7. USPS(3vs9)(1) 1/128 500 252 1145( 0.016 £ 0.006 0.012 + 0.005 0.013 £+ 0.005
8. Bank8FM* le—1 4500 654 3692| 0.5+0.1 0.45 + 0.06 0.47 £ 0.05
9. Bank32nh* le — 2 4500 740 3692 23+ 4.0 19+ 2 19+ 2
10. cpu-act* le — 12 4000 1462 4192 10£1 4.0 £0.2 1.9+0.2
11. cpu-small* le — 12 | 4000 1488 4192 9+ 2 4.0+0.2 2.0+0.5
12. Delta Ailerons(2)* | 1e3 4000 634 3129 2+2 1.5+1.5 1.7+0.9
13. Boston house* le —4 300 108 206 | 0.8£0.2 0.74 + 0.09 0.76 £ 0.07
14. kin8nm* le—1 5000 428 3192 0.85+ 0.2 0.81+0.1 0.81 +0.2
15. puma8nh* le—1 4499 823 3693| 1.1 £0.1 0.77 £ 0.05 0.83 £0.03
16. haberman(2) le — 2 150 90 156 0.27 £ 0.01 0.39 £ 0.04 0.25 + 0.2
17. USPS(6vs8) (2) 1/128 500 156 1042| 0.23£0.2 0.23 £ 0.2 0.16 £+ 0.08
18. USPS(6vs8) (3) 1/128 500 104 1042| 0.54 +0.0002 0.5+0.2 0.16 +£ 0.04
19. USPS(3vs9)(2) 1/128 500 252 1145| 0.46 + 0.09 0.5+0.2 0.2+0.1
20. Breast Cancer le — 1 280 96 419 | 0.05+ 0.01 0.036 + 0.005 0.033 + 0.004
21. India diabetes le — 4 200 97 568 | 0.32+0.02 0.30 £ 0.02 0.30 + 0.02
22. ionosphere le—1 150 64 201 0.32 £ 0.06 0.31 £ 0.07 0.28 + 0.06
23. German credit le — 4 400 214 600 0.283 + 0.004 0.282 + 0.004 0.280 + 0.004

4.2.3 Tumor Diagnosis using Microarrays

Our next benchmark is a dataset of 102 microarrays from @t@stncer patients [13]. Each of these
microarrays measures the expression levels of 12,600 gertes dataset comprises 50 samples
from normal tissues (positive label) and 52 from tumor tss(negative label). We simulate the
realisitc scenario that two sets of microarrays A and B arergwith dissimilar proportions of tumor
samples, and we want to perform cancer diagnosis via cleesifih, training on A and predicting

1Regression data fromt t p: / / www. | i acc. up. pt/ ~I t or go/ Regr essi on/ Dat aSet s. ht i ;
classification data from UCI. Sets with numbers in bracket¢seaamined by different sampling schemes.



on B. We select training examples via the biased selectibareeP(s = 1jy = 1) = 0.85 and
P(s = 1ly = —1) = 0.15. The remaining data points form the test set. We then per@Bvii
classification for the unweighted, KMM, and importance shngpapproaches. The experiment
was repeated over 500 independent draws from the datasetiaagto our biased scheme; the 500
resulting test errors are plotted in [7]. The KMM achievescimiigher accuracy levels than the
unweighted approach, and is very close to the importancelgagrapproach.

We study a very similar scenario on two breast cancer micagatatasets from [4] and [19], mea-
suring the expression levels of 2,166 common genes for Hanthcancer patients [18]. We train
an SVM on one of them and test on the other. Our reweightingatshchieves significant improve-
ment in classification accuracy over the unweighted SVM [8he Hence our method promises to
be a valuable tool for cross-platform microarray classifica
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