Kernel Mean Estimation and Stein Effect

Krikamol Muandet KRIKAMOL @TUEBINGEN.MPG.DE
Empirical Inference Department, Max Planck Institute futelligent Systems, bingen, Germany

Kenji Fukumizu
The Institute of Statistical Mathematics, Tokyo, Japan

FUKUMIZU @ISM.AC.JP

Bharath Sriperumbudur
Statistical Laboratory, University of Cambridge, CampedUnited Kingdom

BS493@sTATSLAB.CAM.AC.UK

Arthur Gretton ARTHUR.GRETTON@GMAIL .COM
Gatsby Computational Neuroscience Unit, University Gg@léondon, London, United Kingdom

Bernhard Scholkopf BS@TUEBINGEN.MPG.DE
Empirical Inference Department, Max Planck Institute faelligent Systems, Ubingen, Germany

Abstract

A mean function in a reproducing kernel Hilbert
space (RKHS), or a kernel mean, is an impor-
tant part of many algorithms ranging from kernel
principal component analysis to Hilbert-space
embedding of distributions. Given a finite sam-
ple, an empirical average is the standard estimate
for the true kernel mean. We show that this esti-
mator can be improved due to a well-known phe-
nomenon in statistics called Stein’s phenomenon.

where is an RKHS associated with a reproducing kernel
k: X x X — R. Conditions ensuring that this expectation
exists are given irsmola et al(2007). Unfortunately, it is
not practical to computgp directly because the distribu-
tion P is usually unknown. Instead, given an i.i.d sample
z1,T2,..., %, fromP, we can easily compute the empiri-
cal kernel mean by the average
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After consideration, our theoretical analysis re-

veals the existence of a wide class of estimators
that are better than the standard one. Focusing
on a subset of this class, we propose efficient
shrinkage estimators for the kernel mean. Em-

The estimatéip is the most commonly used estimate of the
true kernel mean. Our primary interest here is to investigat
whether one can improve upon this standard estimator.

The kernel mean has recently gained attention in
the machine learning community, thanks to the intro-

pirical evaluations on several applications clearly
demonstrate that the proposed estimators outper-
form the standard kernel mean estimator.

duction of Hilbert space embedding for distributions
(Berlinet and Agnan2004 Smola et al. 2007). Repre-
senting the distribution as a mean function in the RKHS
has several advantages: 1) the representation with ap-
propriate choice of kernet has been shown to preserve
all information about the distributionFUkumizu et al.
nZOO4 Sriperumbudur et 31.2008 2010; 2) basic oper-
ations on the distribution can be carried out by means
of inner products in RKHS, e.gEp[f(z)] = (f, up)x

for all f € H; 3) no intermediate density estimation
is required, e.g., when testing for homogeneity from fi-
nite samples. As a result, many algorithms have bene-
fited from the kernel mean representation, namely, maxi-
mum mean discrepancy (MMD§fetton et al.2007), ker-
Proceedings of thef1*" International Conference on Machine nel dependency measu@rgtton et al.2005, kernel two-
L_earning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- sample-test Gretton et al. 2012, Hilbert space embed-
right 2014 by the author(s). ding of HMMs (Song et al. 2010, and kernel Bayes rule

1. Introduction

This paper aims to improve the estimation of the mea
function in a reproducing kernel Hilbert space (RKHS)
from a finite sample. A kernel mean of a probability distri-
butionP over a measurable spadgis defined by

up = /X k(x,-) dP(z) € H, @)


mailto:krikamol@tuebingen.mpg.de
mailto:fukumizu@ism.ac.jp
mailto:bs493@statslab.cam.ac.uk
mailto:arthur.gretton@gmail.com
mailto:bs@tuebingen.mpg.de

Kernel Mean Estimation and Stein Effect

(Fukumizu et al.2011). Their performances rely directly some specific distributions, e.g., Gaussian distribution.
on the quality of the empirical estimafe. Second, our setting involves @aon-linear feature map

into a high-dimensional space, if not infinite. As a re-
sult, higher moments of the distribution may come into
play. Thus, one cannot adopt Stein’s setting straightfor-

However, it is of great importance, especially for our read-
ers who are not familiar with kernel methods, to realize
a more fundamental role_of the kemel mean. It baSI_Wardly. A direct generalization of James-Stein estimador t
cally serves as a foundation to most kernel-based learn

) . . : infinite-dimensional Hilbert space has already been censid
ing algorithms. For instance, nonlinear component anal-

yses, such as kernel PCA, kernel FDA, and kernel CCAered Berger and Wolpeyt1983 Mandelbaum and Shepp

; . . 1987 Privault and Rveillac 2008. In those works,0
rely heavily on mean functions and covariance operators in

RKHS (Sclblkopf et al, 1998. The kerneli-means algo- which is the parame’Fer to be estimated is assumed to be
. ] . the mean of a Gaussian measure on the Hilbert space from
rithm performs clustering in feature space using mean func- .
. : . which samples are drawn. In our case, on the other hand,
tions as the representatives of the clust@&hil{on et al, .
. . the samples are drawn frofhand not from the Gaussian

2004). Moreover, it also serves as a basis in early develop-,. _ >~ . .

. e . “distribution whose mean jsp.
ment of algorithms for classification and anomaly detection
(Shawe-Taylor and Cristianif2004 chap. 5). All of those The contribution of this paper can be summarized as fol-
employ @) as the estimate of the true mean function. ThusJows: First, we show that the standard kernel mean estima-
the fact that substantial improvement can be gained whetor can be improved by providing an alternative estimator
estimating 1) may in fact raise a widespread suspicion onthat achieves smaller riskZ). The theoretical analysis re-
traditional way of learning with kernels. veals the existence of a wide class of estimators that are
o . . better than the standard. To this end, we proposiia
We show in this work that the standard estimag)iig, in a . . Con

) . . . . kernel mean shrinkage estimatg¢MSE), which is based
certain sense, not optimal, i.e., there exist better estirna - A .
. . .~ _on a novel motivation for regularization through the notion

(more below). In addition, we propose shrinkage estima-

tors that outperform the standard one. At first glance, it wasOf shrinkage. Moreover, we propose an efficient leave-one-

. S o . out cross-validation procedure to select the shrinkage pa-
definitely counter-intuitive and surprising for us, andlwil S ) .
undoubtedly also be for some of our readers, that the emr_ameter, which is novel in the context of kernel mean estl-
pirical kernel mean could be improved, and, given the sim-ma.t'on' Las_tly, we demon_strqte the benefit of the proposed
plicity of the proposed estimators, that this has remainet?snmators in several applicatiorig.
unnoticed until now. One of the reasons may be that there o ) ]
is a common belief that the estimatps already gives a 2. Motivation: Shrinkage Estimators
good estimate gfip, and, as sample size goes to infinity, the
estimation error d|sappear§I(§1we-TayI(_)r and Cristianini true kernel mean and its empirical estima® ffom the
2004). As a result, no need is felt to improve the kerneli id sample P (we remove the sub-
mean estimation. However, given a finite sample, substan=""" plexy, T2, . .., Tn
L L . script for ease of notation). The most natural loss func-
tial improvement is in fact possible and several factors may, . o . Iy 9
come into play, as will be seen later in this work. lon considered in this work ié(u, i) = |l — fill3. An

' estimatory: is a mapping which is measurable w.r.t. the

This work was partly inspired by Stein’s seminal work in Borel o-algebra of H and is evaluated by its risk func-
1955, which showed that a maximum likelihood estimatortion R (u, 1) = Ep[¢(1, t)] whereEp indicates expectation
(MLE), i.e., the standard empirical mean, for the mean ofover the choice of i.i.d. sample of sizefrom P.
the multivariate Gaussian distributiox (0, o°I) is inad- Let us consider an alternative kernel mean estimatore
missible Stein 1955. That is, there exists an estimator af* + (1 — a)fiwhere0 < a < 1andf* € H It ;
that always achieves smaller total mean squared error re- . ’ ~. . :

ardless of the trué. when the dimension is at least 3 essentially a shrinkage estimator that shrinks the standar
9 ’ : . " _estimator toward a functiofi* by an amount specified by
Perhaps the best known estimator of such kind is James- If o = 0, fi,, reduces to the standard estimaforThe
Steins estimatorJames and Steii961). Interestingly, the a. A= U fa : . .
James-Stein estimator is itself inadmissible, and there e>{0”(lwmg theorem asserts that the risk of sh_rmkagg estima
ists a wide class of estimators that outperform the MLE, O Ha 1S smaller th_an that of standard esUma,‘tbg_weS
see e.g.Berger(1976 an appropriate choice af, regardless of the functioff

-g-Perg ' (more below).

However, our work differs fundamentally from the Stein's Theorem 1. For all distributionsP and the kernek, there
seminal works and those along this line in two aS-existsa > 0 for whichR (s, fia) < R (1, fi).

pects. First, our setting imon-parametricin a sense
that we do not assume any parametric form of the dispyqqt The risk of the standard kernel mean estimator sat-
tribution, whereas most of traditional works focus on isfiesE||fi — pl> = L (Elk(z,2)] — Efk(z,2)]) = A

T n

For an arbitrary distributior®, denote byu and i the
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where 7 is an independent copy of. Let us define 3. Kernel Mean Shrinkage Estimator

the risk of the proposed shrinkage estimator by := hi ) . It lati f i |
E|fi. — 1> where o is a non-negative shrinkage pa- In this section we give a novel formulation of kernel mean

rameter. We can then write this in terms of the Stan_estimator that allows us to estimate the shrinkage parame-
dard risk asA, = A — 2aE (i — i, 7i — p+ p— f*) + ter efficiently. In the following, letp : X — H be a fea-
Q2E||f*|? — 2aa2]E[f*(x)] 1 a2EHZZ’”2. It follows from  ture map associated with the kermeand (-, -) be an inner

the reproducing property of¢ that E[f*(z)] = (f*, p). productin the RKHS{ such thak(z, ') = ($(z), d(z')).
Moreover, using the fact that||jil|? = E||i — u + ul|® = Unless stated otherwisg; || denotes the RKHS norm. The

A + E[k(z,7)], we can simplify the shrinkage risk by kernel meanup and its empirical estimatgp can be ob-
A — 052(A, FUIF* — pl?) — 20A + A. Thus, we have tained as a minimizer of the loss functionals

Ay—A = o?(A+||f*—pl|*) —2aA which is non-positive £(g) 2 Euoupllé(z) - g|
where L ’
2A & N 2
ae |0, — (3) ) = =) llolz) —gl”,
Al = pl? ”;

and minimized at* = A/(A + ||f* — ul]?). B respectively. We will call the estimator minimizing the $os
functional&(g) akernel mean estimator (KME)

As we can see ing), there is a range af for whichanon-  Note that the losg(g) is different from the one considered
positiveA, — A, i.e., R(u, lia) — R(u, 1), is guaranteed. in g2 je. ¢(u,g) = || — g2 = |E[p(z)] — g||2. Never-
However, Theorenti relies on the important assumption theless, we havé(j, g) = Epor k(x, 2') — 2B, g(2) + || g]|2.
that the true kernel mean of the distributiBs required to Since€(g) = E k(z, 2)— 2B, g(z)+ | 9|2, the loss/(y, g)
estimatex. In spite of this, the theorem has an important giffers from&(g) only by E,k(z, #) — Eqpq k(z, 2') which
implication suggesting that the shrinkage estimatocan  is not a function ofg. We introduce the new form here
improve upong: if « is chosen appropriately. Later, we pecause it will give a more tractable cross-validation com-
wiII' exploit this result in order to construct more practica putation §3.1). In spite of this, the resulting estimators are
estimators. always evaluated w.r.t. the loss§a (cf. §4.1).

Remark 1. The following observations follow immediately From the formulation above, it is natural to ask if mini-

from Theorent.: mizing the regularized version &f(¢) will give better es-

_ _ _ timator. On the one hand, one can argue that, unlike in the
e The shrinkage estimator always improves upon theclassical risk minimization, we do not really need a reg-
standard one regardless of the direction of shrinkage,ularizer here. The standard estimatdy ic known to be,
as specified by™*. In other words, there exists a wide in a certain sense, optimal and can be estimated reliably
class of kernel mean estimators that are better than(Shawe-Taylor and Cristianin004 prop. 5.2). More-
the standard one. over, the original formulation of (¢) is a well-posed prob-
, lem. On the other hand, since regularization may be viewed
e The value ofx also depends on the choice Bf. The 45 shrinking the solution toward zero, it can actually im-

further f* is from y, the smallex becomes. Thus, the 5y the kernel mean estimation, as suggested by Theorem
shrinkage gets smaller if* is chosen such thatitis 1 (cf. discussions at the end §2).

far from the true kernel mean. This effect is akin to
James-Stein estimator. Consequently, we minimize a modified loss functional

E(9) + 229l

DS fota) —ol* + 20(lgl), @
=1

[I>

e The improvement can be viewed as a bias-variance Ex(9)
trade-off: the shrinkage estimator reduces variance
substantially at the expense of a little bias.

Remarkl sheds light on how one can practically constructwhere}(-) denotes a monotonically-increasing regulariza-

the shrinkage estimator: we can chog&earbitrarily as  tion functional and\ is a non-negative regularization pa-

long as the parameter is chosen appropriately. More- rametert In what follows, we refer to the shrinkage es-

over, further improvement can be gained by incorporattimator iz, minimizing £,(g) as akernel mean shrinkage

ing prior knowledge as to the location pf:, which can  estimator (KMSE)

be straightforwardly integrated into the framework yia —————— - ,

(Berger and Wolpert1983. Inspired by James-Stein esti- The parameters and\ play similar role as a shrinkage pa-
rameter. They specify an amount by which the standard estimator

mator, we focus orf* = 0. We will investigate the effect 7 is shrunk towardf* = 0. Thus, the term shrinkage parameter
of different prior f* in future works. and regularization parameter will be used interchangeably.
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It follows from the representer theorem thidies in a sub-
space spanned by the data, i.¢.— Z;‘zl Bijo(x;) for

someB € R". By considering(||g||) = ||g|/?, we can
rewrite @) as

2

2
U3l = o siotan)| + A3 o)
i=1 =1 j=1

=B'KB-28"K1, +\8'KB +¢, ()

wherec is a constant terni is ann x n Gram matrix such
that K;; = k(z;,z;), and1, [1/n,1/n,...,1/n]T.
Taking a derivative of §) w.r.t. 3 and setting it to zero
yield 8 = (1/(1 + \))1,. By settingae = A/(1 4+ A) the
shrinkage estimate can be writtenjgs= (1 — o). Since

0 < a < 1, the estimatof:, corresponds to a shrinkage
estimator discussed k2 when f* = 0. We call this esti-

mator asimple kernel mean shrinkage estimator (S-KMSE) (Song et al.2008. Unfortunately,

Using the expansiog = > ", 8;¢(z;), we may con-

the same reasoning as Stein’s result in finite-dimensional
case, one would suspect that an improvement of shrinkage
estimators i should also depend on how fast the eigen-
values ofk decay. That is, one would expect greater im-
provement if the values of; decay very slowly. For exam-
ple, the Gaussian RBF kernel with larger bandwidth gives
smaller improvement when compared to one with smaller
bandwidth. Similarly, we should expect to see more im-
provement when applying a Laplacian kernel than when
using a Gaussian RBF kernel.

In some applications of kernel mean embedding, one may
want to interpret the weighB as a probability vector
(Nishiyama et al.2012. However, the weight vectof
output by our estimators is in general not normalized. In
fact, all elements will be smaller tharyn as a result of
shrinkage. However, one may impose a constraint ghat
must sum to one and resort to a quadratic programming
this approach has unde-
sirable effect of sparsity which is unlikely to improve upon

sider when the regularization functional is written in term the standard estimator. Post-normalizing the weightsiofte

of 3, e.g.,, B'B. This leads to a particularly inter-
esting kernel mean estimator.
mal weight vector is given by3 = (K + \I)"'K1,,
and the shrinkage estimate can be written accordingly
fix = 20— Bio(x;) = @7 (K + AI)"'K1,, where® =
[p(z1), d(x2),...,0(x,)] . Unlike the S-KMSE, this es-

timator shrinks the usual estimate differently in each €00r |gss to reduce the effect of outliers.

dinate (cf. Theoren®2). Hence, we will call it aflexible
kernel mean shrinkage estimator (F-KMSE)

In this case, the opti

deteriorates the estimation performance.

To the best of our knowledge, no previous attempt has

been made to improve the kernel mean estimation. How-

d3ver, we discuss some closely related works here. For ex-

ample, instead of the loss functior‘éﬂg), Kim and Scott
(2012 consider a robust loss function such as the Huber’s
The authors con-
sider kernel density estimators, which differ fundamental
from kernel mean estimators. They need to reduce the ker-

The following theorem characterizes the F-KMSE as a"€l bandwidth with increasing sample size for the estima-

shrinkage estimator.

Theorem 2. The F-KMSE can be written ag,
> S5 (B, vi)vi where {v;,v;} are eigenvalue and

eigenvector pairs of the empirical covariance operator

C,z inH.

In words, the effect of F-KMSE is to reduce high fre-

guency components of the expansionigf, by expand-

ing this in terms of the kernel PCA basis and shrinking

tors to be consistent. Regularized version of MMD was
adopted byDanafar et al(2013 in the context of kernel-
based hypothesis testing. The resulting formulation re-
sembles our S-KMSE. Furthermore, the F-KMSE is of a
similar form as the conditional mean embedding used in
Grunewalder et al(2012, which can be viewed more gen-
erally as a regression problem in RKHS with smooth oper-
ators Grunewalder et al.2013.

the coefficients of the high order eigenfunctions, e.g., seé-1- Choosing Shrinkage Parametei

Rasmussen and William@006 sec. 4.3). Note that the
covariance operatdr,.,. itself does not depend on

As discussed g2, the amount of shrinkage plays an im-
portant role in our estimators. In this work we propose

As we can see, the solution to the regularized version i$0 select the shrinkage parameieby an automatic leave-

indeed of the form of shrinkage estimators whgn= 0.

one-out cross-validation.

That is, both S-KMSE and F-KMSE shrink the standardrqr g given shrinkage parameterlet us consider the ob-
kernel mean estimate towards zero. The difference is thaéervatiormi as being a new observation by omitting it from

the S-KMSE shrinks equally in all coordinate, whereas thethe dataset
F-KMSE also constraints the amount of shrinkage by thek )

information contained in each coordinate.

Moreover, the squared RKHS norin ||? can be decom-

Denote by, = 3=, 8" (x;) the
ernel mean estimated from the remaining data, using the
value)\ as a shrinkage parameter, so tB&t? is the mini-

mizer of€\ " (g). We will measure the quality gt by

posed as a sum of squared loss weighted by the eigenvatow well it approximates(x;). The overall quality of the

ues~; (cf. Mandelbaum and She{t987 appendix)). By
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estimate is quantified by the cross-validation score the F-KMSE, there are two steps in cross-validation.
First, we need to computéd K + M)~! repeatedly
RS ~(=]? for different values of\. Assume that we know the
LOOCV(A) = E,z; H(bm) TN g ©6) eigendecompositioK = UDU' where D is diag-
1=

onal with d;; > 0 and UU'T = 1. It follows that
By simple algebra, it is not difficult to show that the op- (K + AXI)~! = U(D + AI)~'U". Consequently, solving
timal shrinkage parameter of S-KMSE can be calculatedor 3, takesO(n?) operations. Since eigendecomposition
analytically, as stated by the following theorem. requiresO(n?) operations, finding3, for many \'s is

A 1w n N essentially free. A low-rank approximation can also be
Tlhe?lrem 3. Letp = 3 27;:1 =1 Kz, 2;) and e = adopted to reduce the computational cost further.
=21 k(wg,2;). The shrinkage parameter, = (o —

p)/((n —1)p+ o/n — o) of the S-KMSE is the minimizer Second, we need to compute the cross-validation sépre (
of LOOCV (). As shown in Theorem, we can compute it using onf§,
obtained from the previous step. The calculationGf
On the other hand, finding the optimafor the F-KMSE is  can be simplified further via the eigendecompositioof
relatively more involved. Evaluating the sco) pdvely  asC, = U(D — tD(D + AI)~'D)"'D(D — :D(D +
requires one to solve fcﬁ(;l) explicitly for everyi. Fortu-  AI)~'D)~'UT. Since it only involves the inverse of diag-
nately, we can simplify the score such that it can be evaluonal matrices, the inversion can be evaluate@{n) oper-
ated efficiently, as stated in the following theorem. ations. The overall computational complexity of the cross-
Theorem 4. The LOOCV score of F-KMSE satisfies validation requires only)(n?) operations, as opposed to
LOOC’V()\). _ 13" (3TK — K,)TC, (87K — K,) the nave approach that requirg3(n*) operations. When
where 3 is the nweiz]:hlt vector caIZcuIated from thel full performed as a by-product of the algorithm, the computa-

datase i he shinkege parameteand C, — (K — (010 ost 0 1055 aalon Pocequre beroTes o9l
KK+ AD)'K) ' K(K - 1K(K + AI) 1K)~ ger. In practice, we u

fm nsearch andf m nbnd routines of the MATLAB

4 optimization toolbox to find the best shrinkage parameter.
Proof of Thoren#. For fixed A and i, let ﬁ&_“) be the

leave-one-out kernel mean estimate of F-KMSE and leB.2. Covariance Operators

A £ (K + M\I)~!. Then, we can write an expression for

the deleted residual a&(;i) — ﬂ(;i) — d(a) = fir — The covariance operator frofii x to Hy can be viewed as

a mean function in a product spagey ® Hy. Hence, we

1 n ~(—1)
Pai) + 5 251 2 Aqi{e(an), iy — @(@i))d(25)- can also construct a shrinkage estimator of covariance oper
Since A(A_” lies in a subspace spanned by the sam-ator in RKHS. Let(Hx, kx) and(Hy, ky ) be the RKHS
ple ¢(z1), ..., d(z,), we haveA(A_” = Sp_ &olay) of functions on measurable spagdeand), respectively,

for some& € R". Substituting Af\—i) back yields with p.d. kernelkx andky (with feature mapp and ).
n N o~ n We will consider a random vect@X,Y) :  — X x )
Yoot &ed(@r) = fix — dl@i) + 5 ST {AKEY o(x;). R . ’ A
Byktalking the inner product on both sides wir.t. the sam-With distributionPxy, with Px andPy as marginal dis-
ple ¢(z1),...,6(x,) and solving foré, we haveé — tributions. Under some conditions, there exists a unique
(K—lKAK)Ll(ﬂTK—K.i)Whel’eK.i’iStheith column  Cross-covariance operatdyx : Hy — Hy such
of K. Consequently, the leave-one-out score of the sampl%‘a'f <?}’/§}})/]X f >f}g :(f]%é 1)“[({ )(/))() ) rTC)IIE)s( [fJ; (r); il])f(ge(yﬂ){i
_ (=92 _ ¢T — (ATK _ Y19 = Cov Y X
icé 3??12(31:0?%&612)%%}1(”_ lf{fé)_l((‘gf{{ ~andg € Hy (Fukumizu et al.2004. If X equalsY’, we
K.Z) BTK - K,)°C (ﬂTKn K.). Averag get the self-adjoint operatdrx x called the covariance op-
i) = RN A - K). -

] (=i) 12 . erator.
ing ||A) "||* over all samples givedOOCV (\) =

T —i 7 Given an iid sample fromP written  as
P AT = £ (BTK ~ K TCA(BTK - P oy wnten as
K.,), as required. - (z1,11), (x2,Y2), - -, (Tn, yn)A,we can write the empirica

cross-covariance operator as-x = %2?21 o(x;) ®
N o -~ S 1%=m _

It is interesting to see that the leave-one-out crossff(yl) 1”X f@ fiy where jix gzz:l(b(xz) and
validation score in Theorer depends only on the non- Ay = 5 2 i—1¥(%:). Let ¢ and ¢ be the centered
leave-one-out solutiof,, which can be obtained as a by- feature maps of arld <p,nre§pect|vely. Then, it can be
product of the algorithm. rewritten asty x 1= 5 >0 ¢(2:) @ 9(y:) € Hx @ Hy-.

It follows from the inner product property in product

Computational complexity The S-KMSE requires sPace that(¢(z) @ @(y),é(z") @ ¢(y))ocxes, =
O(n?) operations to select shrinkage parameter. Fof¢(z), d(x"))ac (P(y), (Y ) aey = kx(z,2")ky (y, ).
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Figure 1.The average loss of KME (left), S-KMSE (middle), and F-KMSE (rigtsfimators with different values of shrinkage param-
eter. Inside boxes correspond to estimators. We repeat the exptsioven 30 different distributions with = 10 andd = 30.

Then, we can obtain the shrinkage estimators forameter settings and the results are similar to those pre-
the covariance operator by plugging the kernelsented here. For the Gaussian RBF kernel, we set the
E((z,y), (2',y)) = kx(z,2)ky(y,/) in our KM-  bandwidth parameter to square-root of the median Eu-
SEs. We will call this estimator aovariance-operator clidean distance between samples in the datasetd?.es
shrinkage estimator (COSEJhe same trick can be easily median {||z; — «;||?} throughout).

generalized to tensors of higher order, which have bee

oreviously used, for example, Bong et al(2017). IIllgurel shows the average loss of different estimators us-

ing different kernels as we increase the value of shrinkage
] parametel. Here we scale the shrinkage parameter by the
4. Experiments minimum non-zero eigenvalug, of kernel matrixK. In
eneral, we find S-KMSE and F-KMSE tend to outperform
ME. However, as\ becomes large, there are some cases
here shrinkage deteriorates the estimation performance,
e.g., see LIN kernel and some outliers in the figures. This
suggests that it is very important to choose the parameter
appropriately (cf. the discussion §2).

We focus on the comparison between our shrinkage estE
mators and the standard estimator of the kernel mean usin\%
both synthetic datasets and real-world datasets.

4.1. Synthetic Data

Given the true data-generating distributien we evalg— Similarly, Figure2 depicts the average loss as we vary the
ate different estimators using the loss functiéi®) =  gample size and dimension of the data. In this case, the
120021 Bik(wi, ) — Ee[k(x,-)][l5, where is the weight  shrinkage parameter is chosen by the proposed leave-one-
vector associated with different estimators. To allow forgyt cross-validation score. As we can see, both S-KMSE
an exact calculation of(3), we consider wher? is a

mixture-of-Gaussians distribution aridis the following

kernel function: 1) linear kerndl(z, ') = z " 2’; 2) poly- e N o POLY2 0 POLYS  ReF
nomial degree-2 kernél(z,z') = (z "2’ + 1)%; 3) poly- 55 | e
nomial degree-3 kernél(z,z') = (z"2’ +1)%; and 4)  § vl = - FokuisE
Gaussian RBF kerndl(xz, ') = exp (— |z —2/[|*/20%). g :

We will refer to them as LIN, POLY2, POLY3, and RBF, £ ik oot
respectively. ° R b=

0 50 100 20 50 100 3Cl 50 100 o 50 100
ample Size (d=20) Sample Size (d=20) Sample Size (d=20) Sample Size (d=20)

Experimental protocol. Data are generated from & LN \ POLY2 110 POLY3

800 - 12 5 0.06

%]

RBF

dimensional mixture of Gaussians:
0 600
4 § 500 0.04
()
z~ Y mN(0:,5) +e, 05 ~U(-10,10), g -
i=1 <>( 200 ' \ 'I ’I\ ,;
100 0.01 YI T ![
Y~ W2 x14,7), e ~N(0,0.2 x I), . .
0 50 100 0 50 100 0 50 100 o 50 100
Dimension (n=20) Dimension (n=20) Dimension (n=20) Dimension (n=20)

wherel(a,b) and W (X, df) represent the uniform dis-

tribution and Wishart distribution, respectively. We set Figure 2.The average loss over 30 different distributions of KME,
m = [0.05,0.3,0.4,0.25]. The choice of parameters here S-KMSE, and F-KMSE with varying sample size)(and dimen-

is quite arbitrary; we have experimented using various pasion (). The shrinkage parametaris chosen by LOOCV.
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Table 1.Average negative log-likelihood of the modglon test points over 10 randomizations. The boldface represents thiewbhsse
difference from the baseline, i.e., KME, is statistically significant.
LIN POLY2 POLY3 RBF

Dataset KME S-KMSE F-KMSE| KME S-KMSE F-KMSE KME S-KMSE F-KMSE| KME S-KMSE F-KMSE
1. ionospherg 33.2440 33.0325 33.1436 53.1266 53.7067  50.869% 51.6800  49.9149 47.4461 | 40.8961 40.5578  39.6804
2. sonar 72.6630 72.8770 72.501% 120.3454 108.8246 109.9980 102.4499 90.3920 91.1547 | 71.3048 70.5721 70.5830
3. australian | 18.3703 18.3341 18.3719 | 18.5928 18.6028  18.4987 41.1563 34.4303 34.5460| 17.5138 17.5637  17.4026
4. specft 56.6138 55.7374 55.8667 | 67.3901  65.9662  65.2056¢ 63.9273  63.5571 62.1480 | 57.5569 56.1386 55.5808
5. wdbc 30.9778 30.9266 30.4400 | 93.0541 91.5803 87.5265 | 58.8235 54.1237 50.3911 | 30.8227 30.5968  30.2646
6. wine 159225 15.8850 16.0431 24.2841  24.1325 23.5163 | 35.2069 32.9465 32.4702 17.1523 16.9177 16.6312
7. satimagé | 19.6353 19.8721  19.7943 149.5986 143.2277 146.064852.7973  57.2482  45.8946 20.3306 20.5020 20.2226
8. segment | 22.9131 22.8219 22.0696 | 61.2712  59.4387 54.8621 | 38.7226  38.6226  38.4217 17.6801 16.4149 15.6814
9. vehicle 16.4145 16.2888  16.321( 83.1597 79.7248  79.6679| 70.4340 63.4322 48.0177 15.9256 15.8331 15.6516

10. svmguide2?| 27.1514 27.0644 27.1144 | 30.3065 30.2290 29.987% 37.0427 36.7854 35.8157 27.3930 27.2517  27.1815
11. vowel 12.4227 12.4219 12.4264 32.1389 28.0474  29.3492| 25.8728 24.0684  23.9747| 12.3976 12.3823  12.3677
12.  housing 155249 15.1618 15.317¢ 39.9582  37.1360 32.1028 50.8481  49.0884  35.1366 14.5576 14.3810 13.9379
13. bodyfat 17.6426 17.0419 17.2152 | 44.3295 43.7959 42.3331 | 27.4339  25.6530 24.7955% 16.2725 15.9170 15.8665
14. abalongé 4.3348 4.3274 4.3187| 14.9166 14.4041  11.4431 20.6071  23.2487 23.6291 4.6928 4.6056 4.6017
15. glass 10.4078 10.4451 10.4067 | 33.3480 31.6110 30.507% 45.0801 34.9608 25.5677 | 8.6167 8.4992  8.2469

and F-KMSE outperform the standard KME. The S-KMSE the dataset as a test set. Weset= 10 for each dataset.
performs slightly better than the F-KMSE. Moreover, the The model is initialized by running 50 random initializa-
improvement is more substantial in the “largesmalln” tions using the k-means algorithm and returning the best.
paradigm. In the worst cases, the S-KMSE and F-KMSEWe repeat the experiments 10 times and perform the paired
perform as well as the KME. sign test on the results at the 5% significance lével.

Lastly, it is instructive to note that the improvement varie The average negative log-likelihood of the modgl op-
with the choice of kernek. Briefly, the choice of kernel timized via different estimators, is reported in Taldle
reflects the dimensionality of feature spdde One would  Clearly, both S-KMSE and F-KMSE consistently achieve
expect more improvement in high-dimensional space, e.gsmaller negative log-likelihood when compared to KME.
RBF kernel, than the low-dimensional, e.g., linear kernelThere are however few cases in which KME outperforms
(cf. discussions at the end &8). This phenomenon can be the proposed estimators, especially when the dataset is rel

observed in both Figuréand?2. atively large, e.g.sat i mage andabal one. We suspect
that in those cases the standard KME already provides an
4.2. Real Data accurate estimate of the kernel mean. To get a better es-

) o ) timate, more effort is required to optimize for the shrink-
We consider three benchmark applications: density €s3ge harameter. Moreover, the improvement across different

timation via kernel mean matchingSgng etal. 2008,  ernels is consistent with results on the synthetic dataset
kernel PCA using shrinkage mean and covariance

operator Gchblkopfetal, 1998, and discriminative
learning on distributionsMuandet and Sdikopf, 2013 Kernel PCA. In this experiment, we perform the KPCA
Muandet et a].2012. For the first two tasks we employ using different estimates of the mean and covariance op-
15 datasets from the UCI repositories. We use only realerators. We compare the reconstruction etfgr,;(z) =
valued features, each of which is normalized to have zerd¢(z) — P¢(z)||? on test samples wheRis the projection
mean and unit variance. constructed from the first 20 principal components. We use
a Gaussian RBF kernel for all datasets. We compare 5 dif-
Density estimation. We perform density estimation via ferent scenarios: 1) standard KPCA; 2) shrinkage center-
kernel mean matchingSpng et al.2008. That is, we fit  ing with S-KMSE; 3) shrinkage centering with F-KMSE;
the densityQ = Z;":l 7rjj\/(gj,g]?I) to each dataset by 4) KPCA with S-COSE; and 5) KI?CA with F-COSE. To
minimizing ||fi — poll2 st Z;rz:l 7; = 1. The kernel perform KP_CA on_shrmkage covariance operator, we solve
mean;i is obtained from the samples using different esti-the generalized eigenvalue probld"BK“V = K“VD
mators, whereag,, is the kernel mean embedding of the WhereB = diag(3) andK* is the centered Gram matrix.
densityQ. Unlike experiments irSong et al(2009, our The weight vector3 is obtained from shrinkage estima-

goal is to compare different estimators of whereP is  tors using the kernel matriK® o K whereo denotes the
the true data distribution. That is, we replgcevith a ver- ~ Hadamard product. We use 30% of the dataset as a test set.

sion obtained via shrinkage. A better estimatgoshould 2The paired sign test is a nonparametric test that can be used to

lead to better density estimation, as measured by the negxamine whether two paired samples have the same distribution.
ative log-likelihood of@ on the test set. We use 30% of In our case, we compare S-KMSE and F-KMSE against KME.
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reconstruction error

ionosphere sonar australian  specft wdbc wine satimage segment vehicle svmguide2 vowel housing  bodyfat abalone glass

Figure 3.The average reconstruction error of KPCA on hold-out test sampies1® repetitions. The KME represents the standard
approach, whereas S-KMSE and F-KMSE use shrinkage means frrpezentering. The S-COSE and F-COSE directly use the
shrinkage estimate of the covariance operator.

Figure 3 illustrates the results of KPCA. Clearly, the S- S
COSE and F-COSE consistently outperforms all other esti-Table 2.The classification accuracy of SMM and the area under

. ROC curve (AUC) of OCSMM using different kernel mean esti-
mators. Although we observe an improvement of S'KMSEmators to construct the kernel on distributions.

and F-KMSE over KME, it is very small compared to that Estimator Linear Non-linear
of S-COSE and F-COSE. This makes sense intuitively, SMM OCSMM | SMM OCSMM
since changing the mean point or shifting data does not gMKliASE 8'21512? 8-28?3 8-2‘3)(1); g-g(l)gg
change the covariance structure considerably, so it will no ) : : ' :

9 y F-KMSE | 0.5610 0.6970 | 0.6522  0.9095

significantly affect the reconstruction error.

Discriminative learning on distributions. A positive kernel mean estimators. Both shrinkage estimators consis-
semi-definite kernel between distributions can be define l\r/]ltlal Ier?d to better gerf?(rnngnce on both SMM and OC-
via their kernel mean embeddings. That is, given & when compared to )

training sampleP1,y1), ..., (Pm,ym) € P x {-1,+1}  To summarize, we find sufficient evidence to conclude
where P; = D o,; and zi ~ P;, the lin- that both S-KMSE and F-KMSE outperforms the standard
ear kernel between two distributions is approximatedKME. The performance of S-KMSE and F-KMSE is very
by (e, ne,) = (O p_qiBro(x}),> 1 B8/e(x])) =  competitive. The difference depends on the dataset and the

S BiBk(xi, x]). The weight vectors3’ and 37 kernel function.

come from the kernel mean estimatesy@f and g, re-

spegtively. The non-linear kernel can theAn be defined ac5. Conclusions

cordingly, e.g.,x(P;,P;) = exp(||ip, — Az, [|5:/202).

Our goal in this experiment is to investigate if the shrink- To conclude, we show that the commonly used kernel mean
age estimate of the kernel mean improves the perforestimator can be improved. Our theoretical result suggests
mance of the discriminative |earning on distributions. that there exists a wide class of kernel mean estimators that
To this end, we conduct experiments on natural scené@re better than the standard one. To demonstrate this, we
categorization using support measure machine (SMmfocus on two efficient shrinkage estimators, namely, sim-
(Muandet et a].2012 and group anomaly detection on a ple and flexible kernel mean shrinkage es'umatlors. Empir-
high-energy physics dataset using one-class SMM (Ocical study clearly shows that the proposed estimators out-
SMM) (Muandet and Sdsikopf, 2013. We use both lin- perform the standard one in various scenarios. Most im-
ear and non-linear kernels where the Gaussian RBF keportantly, the shrinkage estimates not only provide more
nel is employed as an embedding kerndu@ndet etal. ~ accurate estimation, but also lead to superior performance
2012. All hyper-parameters are chosen by 10-fold cross-on real-world applications.

validation. For our unsupervised problem, we repeat the

experiments using several parameter settings and regort tiicknowledgments

best results, The authors wish to thank David Hogg and Ross Fedely for read-

Table2 reports the classification accuracy of SMM and theing the first draft and anonymous reviewers who gave valuable
area under ROC curve (AUC) of OCSMM using different suggestion that has helped to improve the manuscript.
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