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Abstract

A mean function in a reproducing kernel Hilbert
space (RKHS), or a kernel mean, is an impor-
tant part of many algorithms ranging from kernel
principal component analysis to Hilbert-space
embedding of distributions. Given a finite sam-
ple, an empirical average is the standard estimate
for the true kernel mean. We show that this esti-
mator can be improved due to a well-known phe-
nomenon in statistics called Stein’s phenomenon.
After consideration, our theoretical analysis re-
veals the existence of a wide class of estimators
that are better than the standard one. Focusing
on a subset of this class, we propose efficient
shrinkage estimators for the kernel mean. Em-
pirical evaluations on several applications clearly
demonstrate that the proposed estimators outper-
form the standard kernel mean estimator.

1. Introduction

This paper aims to improve the estimation of the mean
function in a reproducing kernel Hilbert space (RKHS)
from a finite sample. A kernel mean of a probability distri-
butionP over a measurable spaceX is defined by

µP ,

∫

X

k(x, ·) dP(x) ∈ H, (1)
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whereH is an RKHS associated with a reproducing kernel
k : X ×X → R. Conditions ensuring that this expectation
exists are given inSmola et al.(2007). Unfortunately, it is
not practical to computeµP directly because the distribu-
tion P is usually unknown. Instead, given an i.i.d sample
x1, x2, . . . , xn from P, we can easily compute the empiri-
cal kernel mean by the average

µ̂P ,
1

n

n∑

i=1

k(xi, ·) . (2)

The estimatêµP is the most commonly used estimate of the
true kernel mean. Our primary interest here is to investigate
whether one can improve upon this standard estimator.

The kernel mean has recently gained attention in
the machine learning community, thanks to the intro-
duction of Hilbert space embedding for distributions
(Berlinet and Agnan, 2004; Smola et al., 2007). Repre-
senting the distribution as a mean function in the RKHS
has several advantages: 1) the representation with ap-
propriate choice of kernelk has been shown to preserve
all information about the distribution (Fukumizu et al.,
2004; Sriperumbudur et al., 2008; 2010); 2) basic oper-
ations on the distribution can be carried out by means
of inner products in RKHS, e.g.,EP[f(x)] = 〈f, µP〉H
for all f ∈ H; 3) no intermediate density estimation
is required, e.g., when testing for homogeneity from fi-
nite samples. As a result, many algorithms have bene-
fited from the kernel mean representation, namely, maxi-
mum mean discrepancy (MMD) (Gretton et al., 2007), ker-
nel dependency measure (Gretton et al., 2005), kernel two-
sample-test (Gretton et al., 2012), Hilbert space embed-
ding of HMMs (Song et al., 2010), and kernel Bayes rule
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(Fukumizu et al., 2011). Their performances rely directly
on the quality of the empirical estimatêµP.

However, it is of great importance, especially for our read-
ers who are not familiar with kernel methods, to realize
a more fundamental role of the kernel mean. It basi-
cally serves as a foundation to most kernel-based learn-
ing algorithms. For instance, nonlinear component anal-
yses, such as kernel PCA, kernel FDA, and kernel CCA,
rely heavily on mean functions and covariance operators in
RKHS (Scḧolkopf et al., 1998). The kernelk-means algo-
rithm performs clustering in feature space using mean func-
tions as the representatives of the clusters (Dhillon et al.,
2004). Moreover, it also serves as a basis in early develop-
ment of algorithms for classification and anomaly detection
(Shawe-Taylor and Cristianini, 2004, chap. 5). All of those
employ (2) as the estimate of the true mean function. Thus,
the fact that substantial improvement can be gained when
estimating (1) may in fact raise a widespread suspicion on
traditional way of learning with kernels.

We show in this work that the standard estimator (2) is, in a
certain sense, not optimal, i.e., there exist better estimators
(more below). In addition, we propose shrinkage estima-
tors that outperform the standard one. At first glance, it was
definitely counter-intuitive and surprising for us, and will
undoubtedly also be for some of our readers, that the em-
pirical kernel mean could be improved, and, given the sim-
plicity of the proposed estimators, that this has remained
unnoticed until now. One of the reasons may be that there
is a common belief that the estimatorµ̂P already gives a
good estimate ofµP, and, as sample size goes to infinity, the
estimation error disappears (Shawe-Taylor and Cristianini,
2004). As a result, no need is felt to improve the kernel
mean estimation. However, given a finite sample, substan-
tial improvement is in fact possible and several factors may
come into play, as will be seen later in this work.

This work was partly inspired by Stein’s seminal work in
1955, which showed that a maximum likelihood estimator
(MLE), i.e., the standard empirical mean, for the mean of
the multivariate Gaussian distributionN (θ, σ2

I) is inad-
missible (Stein, 1955). That is, there exists an estimator
that always achieves smaller total mean squared error re-
gardless of the trueθ, when the dimension is at least 3.
Perhaps the best known estimator of such kind is James-
Steins estimator (James and Stein, 1961). Interestingly, the
James-Stein estimator is itself inadmissible, and there ex-
ists a wide class of estimators that outperform the MLE,
see e.g.,Berger(1976).

However, our work differs fundamentally from the Stein’s
seminal works and those along this line in two as-
pects. First, our setting isnon-parametric in a sense
that we do not assume any parametric form of the dis-
tribution, whereas most of traditional works focus on

some specific distributions, e.g., Gaussian distribution.
Second, our setting involves anon-linear feature map
into a high-dimensional space, if not infinite. As a re-
sult, higher moments of the distribution may come into
play. Thus, one cannot adopt Stein’s setting straightfor-
wardly. A direct generalization of James-Stein estimator to
infinite-dimensional Hilbert space has already been consid-
ered (Berger and Wolpert, 1983; Mandelbaum and Shepp,
1987; Privault and Rveillac, 2008). In those works,θ
which is the parameter to be estimated is assumed to be
the mean of a Gaussian measure on the Hilbert space from
which samples are drawn. In our case, on the other hand,
the samples are drawn fromP and not from the Gaussian
distribution whose mean isµP.

The contribution of this paper can be summarized as fol-
lows: First, we show that the standard kernel mean estima-
tor can be improved by providing an alternative estimator
that achieves smaller risk (§2). The theoretical analysis re-
veals the existence of a wide class of estimators that are
better than the standard. To this end, we propose in§3 a
kernel mean shrinkage estimator(KMSE), which is based
on a novel motivation for regularization through the notion
of shrinkage. Moreover, we propose an efficient leave-one-
out cross-validation procedure to select the shrinkage pa-
rameter, which is novel in the context of kernel mean esti-
mation. Lastly, we demonstrate the benefit of the proposed
estimators in several applications (§4).

2. Motivation: Shrinkage Estimators

For an arbitrary distributionP, denote byµ and µ̂ the
true kernel mean and its empirical estimate (2) from the
i.i.d. samplex1, x2, . . . , xn ∼ P (we remove the sub-
script for ease of notation). The most natural loss func-
tion considered in this work isℓ(µ, µ̂) = ‖µ − µ̂‖2

H
. An

estimatorµ̂ is a mapping which is measurable w.r.t. the
Borel σ-algebra ofH and is evaluated by its risk func-
tionR(µ, µ̂) = EP[ℓ(µ, µ̂)] whereEP indicates expectation
over the choice of i.i.d. sample of sizen from P.

Let us consider an alternative kernel mean estimator:µ̂α ,

αf∗ + (1 − α)µ̂ where0 ≤ α < 1 andf∗ ∈ H. It is
essentially a shrinkage estimator that shrinks the standard
estimator toward a functionf∗ by an amount specified by
α. If α = 0, µ̂α reduces to the standard estimatorµ̂. The
following theorem asserts that the risk of shrinkage estima-
tor µ̂α is smaller than that of standard estimatorµ̂ given
an appropriate choice ofα, regardless of the functionf∗

(more below).

Theorem 1. For all distributionsP and the kernelk, there
existsα > 0 for whichR(µ, µ̂α) < R(µ, µ̂).

Proof. The risk of the standard kernel mean estimator sat-
isfies E‖µ̂ − µ‖2 = 1

n
(E[k(x, x)]− E[k(x, x̃)]) =: ∆
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where x̃ is an independent copy ofx. Let us define
the risk of the proposed shrinkage estimator by∆α :=
E‖µ̂α − µ‖2 where α is a non-negative shrinkage pa-
rameter. We can then write this in terms of the stan-
dard risk as∆α = ∆ − 2αE 〈µ̂− µ, µ̂− µ+ µ− f∗〉 +
α2

E‖f∗‖2 − 2α2
E[f∗(x)] + α2

E‖µ̂‖2. It follows from
the reproducing property ofH that E[f∗(x)] = 〈f∗, µ〉.
Moreover, using the fact thatE‖µ̂‖2 = E‖µ̂ − µ + µ‖2 =
∆ + E[k(x, x̃)], we can simplify the shrinkage risk by
∆α = α2(∆ + ‖f∗ − µ‖2) − 2α∆ + ∆. Thus, we have
∆α−∆ = α2(∆+‖f∗−µ‖2)−2α∆ which is non-positive
where

α ∈

[
0,

2∆

∆+ ‖f∗ − µ‖2

]
(3)

and minimized atα∗ = ∆/(∆ + ‖f∗ − µ‖2). �

As we can see in (3), there is a range ofα for which a non-
positive∆α −∆, i.e.,R(µ, µ̂α)−R(µ, µ̂), is guaranteed.
However, Theorem1 relies on the important assumption
that the true kernel mean of the distributionP is required to
estimateα. In spite of this, the theorem has an important
implication suggesting that the shrinkage estimatorµ̂α can
improve uponµ̂ if α is chosen appropriately. Later, we
will exploit this result in order to construct more practical
estimators.

Remark 1. The following observations follow immediately
from Theorem1:

• The shrinkage estimator always improves upon the
standard one regardless of the direction of shrinkage,
as specified byf∗. In other words, there exists a wide
class of kernel mean estimators that are better than
the standard one.

• The value ofα also depends on the choice off∗. The
furtherf∗ is fromµ, the smallerα becomes. Thus, the
shrinkage gets smaller iff∗ is chosen such that it is
far from the true kernel mean. This effect is akin to
James-Stein estimator.

• The improvement can be viewed as a bias-variance
trade-off: the shrinkage estimator reduces variance
substantially at the expense of a little bias.

Remark1 sheds light on how one can practically construct
the shrinkage estimator: we can choosef∗ arbitrarily as
long as the parameterα is chosen appropriately. More-
over, further improvement can be gained by incorporat-
ing prior knowledge as to the location ofµP, which can
be straightforwardly integrated into the framework viaf∗

(Berger and Wolpert, 1983). Inspired by James-Stein esti-
mator, we focus onf∗ = 0. We will investigate the effect
of different priorf∗ in future works.

3. Kernel Mean Shrinkage Estimator

In this section we give a novel formulation of kernel mean
estimator that allows us to estimate the shrinkage parame-
ter efficiently. In the following, letφ : X → H be a fea-
ture map associated with the kernelk and〈·, ·〉 be an inner
product in the RKHSH such thatk(x, x′) = 〈φ(x), φ(x′)〉.
Unless stated otherwise,‖ · ‖ denotes the RKHS norm. The
kernel meanµP and its empirical estimatêµP can be ob-
tained as a minimizer of the loss functionals

E(g) , Ex∼P ‖φ(x)− g‖2 ,

Ê(g) ,
1

n

n∑

i=1

‖φ(xi)− g‖2 ,

respectively. We will call the estimator minimizing the loss
functionalÊ(g) akernel mean estimator (KME).

Note that the lossE(g) is different from the one considered
in §2, i.e.,ℓ(µ, g) = ‖µ − g‖2 = ‖E[φ(x)] − g‖2. Never-
theless, we haveℓ(µ, g) = Exx′k(x, x′)−2Exg(x)+‖g‖2.
SinceE(g) = Exk(x, x)−2Exg(x)+‖g‖2, the lossℓ(µ, g)
differs fromE(g) only byExk(x, x)− Exx′k(x, x′) which
is not a function ofg. We introduce the new form here
because it will give a more tractable cross-validation com-
putation (§3.1). In spite of this, the resulting estimators are
always evaluated w.r.t. the loss in§2 (cf. §4.1).

From the formulation above, it is natural to ask if mini-
mizing the regularized version of̂E(g) will give better es-
timator. On the one hand, one can argue that, unlike in the
classical risk minimization, we do not really need a reg-
ularizer here. The standard estimator (2) is known to be,
in a certain sense, optimal and can be estimated reliably
(Shawe-Taylor and Cristianini, 2004, prop. 5.2). More-
over, the original formulation of̂E(g) is a well-posed prob-
lem. On the other hand, since regularization may be viewed
as shrinking the solution toward zero, it can actually im-
prove the kernel mean estimation, as suggested by Theorem
1 (cf. discussions at the end of§2).

Consequently, we minimize a modified loss functional

Êλ(g) , Ê(g) + λΩ(‖g‖)

=
1

n

n∑

i=1

‖φ(xi)− g‖2 + λΩ(‖g‖), (4)

whereΩ(·) denotes a monotonically-increasing regulariza-
tion functional andλ is a non-negative regularization pa-
rameter.1 In what follows, we refer to the shrinkage es-
timator µ̂λ minimizing Êλ(g) as akernel mean shrinkage
estimator (KMSE).

1The parametersα andλ play similar role as a shrinkage pa-
rameter. They specify an amount by which the standard estimator
µ̂ is shrunk towardf∗

= 0. Thus, the term shrinkage parameter
and regularization parameter will be used interchangeably.
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It follows from the representer theorem thatg lies in a sub-
space spanned by the data, i.e.,g =

∑n

j=1 βjφ(xj) for
someβ ∈ R

n. By consideringΩ(‖g‖) = ‖g‖2, we can
rewrite (4) as

1

n

n∑

i=1

∥∥∥∥∥∥
φ(xi)−

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

+ λ

∥∥∥∥∥∥

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

= β⊤
Kβ − 2β⊤

K1n + λβ⊤
Kβ + c, (5)

wherec is a constant term,K is ann×n Gram matrix such
that Kij = k(xi, xj), and1n = [1/n, 1/n, . . . , 1/n]⊤.
Taking a derivative of (5) w.r.t. β and setting it to zero
yield β = (1/(1 + λ))1n. By settingα = λ/(1 + λ) the
shrinkage estimate can be written asµ̂λ = (1−α)µ̂. Since
0 < α < 1, the estimator̂µλ corresponds to a shrinkage
estimator discussed in§2 whenf∗ = 0. We call this esti-
mator asimple kernel mean shrinkage estimator (S-KMSE).

Using the expansiong =
∑n

j=1 βjφ(xj), we may con-
sider when the regularization functional is written in term
of β, e.g., β⊤β. This leads to a particularly inter-
esting kernel mean estimator. In this case, the opti-
mal weight vector is given byβ = (K + λI)−1

K1n

and the shrinkage estimate can be written accordingly as
µ̂λ =

∑n
j=1 βjφ(xj) = Φ⊤(K + λI)−1

K1n whereΦ =

[φ(x1), φ(x2), . . . , φ(xn)]
⊤. Unlike the S-KMSE, this es-

timator shrinks the usual estimate differently in each coor-
dinate (cf. Theorem2). Hence, we will call it aflexible
kernel mean shrinkage estimator (F-KMSE).

The following theorem characterizes the F-KMSE as a
shrinkage estimator.

Theorem 2. The F-KMSE can be written aŝµλ =∑n

i=1
γi

γi+λ
〈µ̂,vi〉vi where {γi,vi} are eigenvalue and

eigenvector pairs of the empirical covariance operator
Ĉxx in H.

In words, the effect of F-KMSE is to reduce high fre-
quency components of the expansion ofµ̂λ, by expand-
ing this in terms of the kernel PCA basis and shrinking
the coefficients of the high order eigenfunctions, e.g., see
Rasmussen and Williams(2006, sec. 4.3). Note that the
covariance operator̂Cxx itself does not depend onλ.

As we can see, the solution to the regularized version is
indeed of the form of shrinkage estimators whenf∗ = 0.
That is, both S-KMSE and F-KMSE shrink the standard
kernel mean estimate towards zero. The difference is that
the S-KMSE shrinks equally in all coordinate, whereas the
F-KMSE also constraints the amount of shrinkage by the
information contained in each coordinate.

Moreover, the squared RKHS norm‖ · ‖2 can be decom-
posed as a sum of squared loss weighted by the eigenval-
uesγi (cf. Mandelbaum and Shepp(1987, appendix)). By

the same reasoning as Stein’s result in finite-dimensional
case, one would suspect that an improvement of shrinkage
estimators inH should also depend on how fast the eigen-
values ofk decay. That is, one would expect greater im-
provement if the values ofγi decay very slowly. For exam-
ple, the Gaussian RBF kernel with larger bandwidth gives
smaller improvement when compared to one with smaller
bandwidth. Similarly, we should expect to see more im-
provement when applying a Laplacian kernel than when
using a Gaussian RBF kernel.

In some applications of kernel mean embedding, one may
want to interpret the weightβ as a probability vector
(Nishiyama et al., 2012). However, the weight vectorβ
output by our estimators is in general not normalized. In
fact, all elements will be smaller than1/n as a result of
shrinkage. However, one may impose a constraint thatβ

must sum to one and resort to a quadratic programming
(Song et al., 2008). Unfortunately, this approach has unde-
sirable effect of sparsity which is unlikely to improve upon
the standard estimator. Post-normalizing the weights often
deteriorates the estimation performance.

To the best of our knowledge, no previous attempt has
been made to improve the kernel mean estimation. How-
ever, we discuss some closely related works here. For ex-
ample, instead of the loss functionalÊ(g), Kim and Scott
(2012) consider a robust loss function such as the Huber’s
loss to reduce the effect of outliers. The authors con-
sider kernel density estimators, which differ fundamentally
from kernel mean estimators. They need to reduce the ker-
nel bandwidth with increasing sample size for the estima-
tors to be consistent. Regularized version of MMD was
adopted byDanafar et al.(2013) in the context of kernel-
based hypothesis testing. The resulting formulation re-
sembles our S-KMSE. Furthermore, the F-KMSE is of a
similar form as the conditional mean embedding used in
Grüneẅalder et al.(2012), which can be viewed more gen-
erally as a regression problem in RKHS with smooth oper-
ators (Grüneẅalder et al., 2013).

3.1. Choosing Shrinkage Parameterλ

As discussed in§2, the amount of shrinkage plays an im-
portant role in our estimators. In this work we propose
to select the shrinkage parameterλ by an automatic leave-
one-out cross-validation.

For a given shrinkage parameterλ, let us consider the ob-
servationxi as being a new observation by omitting it from
the dataset. Denote bŷµ(−i)

λ =
∑

j 6=i β
(−i)
j φ(xj) the

kernel mean estimated from the remaining data, using the
valueλ as a shrinkage parameter, so thatβ(−i) is the mini-
mizer ofÊ(−i)

λ (g). We will measure the quality of̂µ(−i)
λ by

how well it approximatesφ(xi). The overall quality of the
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estimate is quantified by the cross-validation score

LOOCV (λ) =
1

n

n∑

i=1

∥∥∥φ(xi)− µ̂
(−i)
λ

∥∥∥
2

H

. (6)

By simple algebra, it is not difficult to show that the op-
timal shrinkage parameter of S-KMSE can be calculated
analytically, as stated by the following theorem.

Theorem 3. Let ρ , 1
n2

∑n

i=1

∑n

j=1 k(xi, xj) and ̺ ,
1
n

∑n

i=1 k(xi, xi). The shrinkage parameterλ∗ = (̺ −
ρ)/((n − 1)ρ + ̺/n − ̺) of the S-KMSE is the minimizer
of LOOCV (λ).

On the other hand, finding the optimalλ for the F-KMSE is
relatively more involved. Evaluating the score (6) näıvely
requires one to solve for̂µ(−i)

λ explicitly for everyi. Fortu-
nately, we can simplify the score such that it can be evalu-
ated efficiently, as stated in the following theorem.

Theorem 4. The LOOCV score of F-KMSE satisfies
LOOCV (λ) = 1

n

∑n

i=1(β
⊤
K − Ki)

⊤
Cλ(β

⊤
K − Ki)

where β is the weight vector calculated from the full
dataset with the shrinkage parameterλ andCλ = (K −
1
n
K(K+ λI)−1

K)−1
K(K− 1

n
K(K+ λI)−1

K)−1.

Proof of Thorem4. For fixed λ and i, let µ̂
(−i)
λ be the

leave-one-out kernel mean estimate of F-KMSE and let
A , (K + λI)−1. Then, we can write an expression for
the deleted residual as∆(−i)

λ := µ̂
(−i)
λ − φ(xi) = µ̂λ −

φ(xi) + 1
n

∑n

j=1

∑n

l=1 Ajl〈φ(xl), µ̂
(−i)
λ − φ(xi)〉φ(xj).

Since ∆
(−i)
λ lies in a subspace spanned by the sam-

ple φ(x1), . . . , φ(xn), we have∆(−i)
λ =

∑n
k=1 ξkφ(xk)

for some ξ ∈ R
n. Substituting∆

(−i)
λ back yields∑n

k=1 ξkφ(xk) = µ̂λ − φ(xi) +
1
n

∑n

j=1{AKξ}jφ(xj).
By taking the inner product on both sides w.r.t. the sam-
ple φ(x1), . . . , φ(xn) and solving forξ, we haveξ =
(K− 1

n
KAK)−1(β⊤

K−K·i) whereK·i is theith column
of K. Consequently, the leave-one-out score of the sample
xi can be computed by‖∆(−i)

λ ‖2 = ξ⊤Kξ = (β⊤
K −

K·i)
⊤(K − 1

n
KAK)−1

K(K − 1
n
KAK)−1(β⊤

K −
K·i) = (β⊤

K − K·i)
⊤
Cλ(β

⊤
K − K·i). Averag-

ing ‖∆
(−i)
λ ‖2 over all samples givesLOOCV (λ) =

1
n

∑n

i=1 ‖∆
(−i)
λ ‖2 = 1

n

∑n

i=1(β
⊤
K −K·i)

⊤
Cλ(β

⊤
K −

K·i), as required. �

It is interesting to see that the leave-one-out cross-
validation score in Theorem4 depends only on the non-
leave-one-out solutionβλ, which can be obtained as a by-
product of the algorithm.

Computational complexity The S-KMSE requires
O(n2) operations to select shrinkage parameter. For

the F-KMSE, there are two steps in cross-validation.
First, we need to compute(K + λI)−1 repeatedly
for different values ofλ. Assume that we know the
eigendecompositionK = UDU

⊤ where D is diag-
onal with dii ≥ 0 and UU

⊤ = I. It follows that
(K + λI)−1 = U(D + λI)−1

U
⊤. Consequently, solving

for βλ takesO(n2) operations. Since eigendecomposition
requiresO(n3) operations, findingβλ for many λ’s is
essentially free. A low-rank approximation can also be
adopted to reduce the computational cost further.

Second, we need to compute the cross-validation score (6).
As shown in Theorem4, we can compute it using onlyβλ

obtained from the previous step. The calculation ofCλ

can be simplified further via the eigendecomposition ofK

asCλ = U(D − 1
n
D(D + λI)−1

D)−1
D(D − 1

n
D(D +

λI)−1
D)−1

U
⊤. Since it only involves the inverse of diag-

onal matrices, the inversion can be evaluated inO(n) oper-
ations. The overall computational complexity of the cross-
validation requires onlyO(n2) operations, as opposed to
the näıve approach that requiresO(n4) operations. When
performed as a by-product of the algorithm, the computa-
tional cost of cross-validation procedure becomes negligi-
ble as the dataset becomes larger. In practice, we use the
fminsearch and fminbnd routines of the MATLAB
optimization toolbox to find the best shrinkage parameter.

3.2. Covariance Operators

The covariance operator fromHX toHY can be viewed as
a mean function in a product spaceHX ⊗HY . Hence, we
can also construct a shrinkage estimator of covariance oper-
ator in RKHS. Let(HX , kX) and(HY , kY ) be the RKHS
of functions on measurable spaceX andY, respectively,
with p.d. kernelkX andkY (with feature mapφ andϕ).
We will consider a random vector(X,Y ) : Ω → X × Y
with distributionPXY , with PX andPY as marginal dis-
tributions. Under some conditions, there exists a unique
cross-covariance operatorΣY X : HX → HY such
that〈g,ΣY Xf〉HY

= EXY [(f(X) − EX [f(X)])(g(Y ) −
EY [g(Y )])] = Cov(f(X), g(Y )) holds for allf ∈ HX

andg ∈ HY (Fukumizu et al., 2004). If X equalsY , we
get the self-adjoint operatorΣXX called the covariance op-
erator.

Given an i.i.d sample from PXY written as
(x1, y1), (x2, y2), . . . , (xn, yn), we can write the empirical
cross-covariance operator aŝΣY X := 1

n

∑n
i=1 φ(xi) ⊗

ϕ(yi) − µ̂X ⊗ µ̂Y where µ̂X = 1
n

∑n

i=1 φ(xi) and

µ̂Y = 1
n

∑n

i=1 ϕ(yi). Let φ̃ and ϕ̃ be the centered
feature maps ofφ andϕ, respectively. Then, it can be
rewritten aŝΣY X := 1

n

∑n

i=1 φ̃(xi)⊗ ϕ̃(yi) ∈ HX ⊗HY .
It follows from the inner product property in product
space that〈φ̃(x) ⊗ ϕ̃(y), φ̃(x′) ⊗ ϕ̃(y′)〉HX⊗HY

=

〈φ̃(x), φ̃(x′)〉HX
〈ϕ̃(y), ϕ̃(y′)〉HY

= k̃X(x, x′)k̃Y (y, y
′).
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Figure 1.The average loss of KME (left), S-KMSE (middle), and F-KMSE (right) estimators with different values of shrinkage param-
eter. Inside boxes correspond to estimators. We repeat the experiments over 30 different distributions withn = 10 andd = 30.

Then, we can obtain the shrinkage estimators for
the covariance operator by plugging the kernel
k((x, y), (x′, y′)) = k̃X(x, x′)k̃Y (y, y

′) in our KM-
SEs. We will call this estimator acovariance-operator
shrinkage estimator (COSE). The same trick can be easily
generalized to tensors of higher order, which have been
previously used, for example, inSong et al.(2011).

4. Experiments

We focus on the comparison between our shrinkage esti-
mators and the standard estimator of the kernel mean using
both synthetic datasets and real-world datasets.

4.1. Synthetic Data

Given the true data-generating distributionP, we evalu-
ate different estimators using the loss functionℓ(β) ,

‖
∑n

i=1 βik(xi, ·)− EP[k(x, ·)]‖
2

H
whereβ is the weight

vector associated with different estimators. To allow for
an exact calculation ofℓ(β), we consider whenP is a
mixture-of-Gaussians distribution andk is the following
kernel function: 1) linear kernelk(x, x′) = x⊤x′; 2) poly-
nomial degree-2 kernelk(x, x′) = (x⊤x′ + 1)2; 3) poly-
nomial degree-3 kernelk(x, x′) = (x⊤x′ + 1)3; and 4)
Gaussian RBF kernelk(x, x′) = exp

(
−‖x− x′‖2/2σ2

)
.

We will refer to them as LIN, POLY2, POLY3, and RBF,
respectively.

Experimental protocol. Data are generated from ad-
dimensional mixture of Gaussians:

x ∼
4∑

i=1

πiN (θi,Σi) + ε, θij ∼ U(−10, 10),

Σi ∼ W(2× Id, 7), ε ∼ N (0, 0.2× Id),

whereU(a, b) andW(Σ0, df) represent the uniform dis-
tribution and Wishart distribution, respectively. We set
π = [0.05, 0.3, 0.4, 0.25]. The choice of parameters here
is quite arbitrary; we have experimented using various pa-

rameter settings and the results are similar to those pre-
sented here. For the Gaussian RBF kernel, we set the
bandwidth parameter to square-root of the median Eu-
clidean distance between samples in the dataset (i.e.,σ2 =
median

{
‖xi − xj‖

2
}

throughout).

Figure1 shows the average loss of different estimators us-
ing different kernels as we increase the value of shrinkage
parameterλ. Here we scale the shrinkage parameter by the
minimum non-zero eigenvalueγ0 of kernel matrixK. In
general, we find S-KMSE and F-KMSE tend to outperform
KME. However, asλ becomes large, there are some cases
where shrinkage deteriorates the estimation performance,
e.g., see LIN kernel and some outliers in the figures. This
suggests that it is very important to choose the parameterλ
appropriately (cf. the discussion in§2).

Similarly, Figure2 depicts the average loss as we vary the
sample size and dimension of the data. In this case, the
shrinkage parameter is chosen by the proposed leave-one-
out cross-validation score. As we can see, both S-KMSE
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Figure 2.The average loss over 30 different distributions of KME,
S-KMSE, and F-KMSE with varying sample size (n) and dimen-
sion (d). The shrinkage parameterλ is chosen by LOOCV.
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Table 1.Average negative log-likelihood of the modelQ on test points over 10 randomizations. The boldface represents the result whose
difference from the baseline, i.e., KME, is statistically significant.

Dataset
LIN POLY2 POLY3 RBF

KME S-KMSE F-KMSE KME S-KMSE F-KMSE KME S-KMSE F-KMSE KME S-KMSE F-KMSE
1. ionosphere 33.2440 33.0325 33.1436 53.1266 53.7067 50.8695 51.6800 49.9149 47.4461 40.8961 40.5578 39.6804
2. sonar 72.6630 72.8770 72.5015 120.3454 108.8246 109.9980 102.4499 90.3920 91.1547 71.3048 70.5721 70.5830
3. australian 18.3703 18.3341 18.3719 18.5928 18.6028 18.4987 41.1563 34.4303 34.5460 17.5138 17.5637 17.4026
4. specft 56.6138 55.7374 55.8667 67.3901 65.9662 65.2056 63.9273 63.5571 62.1480 57.5569 56.1386 55.5808
5. wdbc 30.9778 30.9266 30.4400 93.0541 91.5803 87.5265 58.8235 54.1237 50.3911 30.8227 30.5968 30.2646
6. wine 15.9225 15.8850 16.0431 24.2841 24.1325 23.5163 35.2069 32.9465 32.4702 17.1523 16.9177 16.6312
7. satimage∗ 19.6353 19.8721 19.7943 149.5986 143.2277 146.0648 52.7973 57.2482 45.8946 20.3306 20.5020 20.2226
8. segment 22.9131 22.8219 22.0696 61.2712 59.4387 54.8621 38.7226 38.6226 38.4217 17.6801 16.4149 15.6814
9. vehicle 16.4145 16.2888 16.3210 83.1597 79.7248 79.6679 70.4340 63.4322 48.0177 15.9256 15.8331 15.6516

10. svmguide2 27.1514 27.0644 27.1144 30.3065 30.2290 29.9875 37.0427 36.7854 35.8157 27.3930 27.2517 27.1815
11. vowel 12.4227 12.4219 12.4264 32.1389 28.0474 29.3492 25.8728 24.0684 23.9747 12.3976 12.3823 12.3677
12. housing 15.5249 15.1618 15.3176 39.9582 37.1360 32.1028 50.8481 49.0884 35.1366 14.5576 14.3810 13.9379
13. bodyfat 17.6426 17.0419 17.2152 44.3295 43.7959 42.3331 27.4339 25.6530 24.7955 16.2725 15.9170 15.8665
14. abalone∗ 4.3348 4.3274 4.3187 14.9166 14.4041 11.4431 20.6071 23.2487 23.6291 4.6928 4.6056 4.6017
15. glass 10.4078 10.4451 10.4067 33.3480 31.6110 30.5075 45.0801 34.9608 25.5677 8.6167 8.4992 8.2469

and F-KMSE outperform the standard KME. The S-KMSE
performs slightly better than the F-KMSE. Moreover, the
improvement is more substantial in the “larged, smalln”
paradigm. In the worst cases, the S-KMSE and F-KMSE
perform as well as the KME.

Lastly, it is instructive to note that the improvement varies
with the choice of kernelk. Briefly, the choice of kernel
reflects the dimensionality of feature spaceH. One would
expect more improvement in high-dimensional space, e.g.,
RBF kernel, than the low-dimensional, e.g., linear kernel
(cf. discussions at the end of§3). This phenomenon can be
observed in both Figure1 and2.

4.2. Real Data

We consider three benchmark applications: density es-
timation via kernel mean matching (Song et al., 2008),
kernel PCA using shrinkage mean and covariance
operator (Scḧolkopf et al., 1998), and discriminative
learning on distributions (Muandet and Scḧolkopf, 2013;
Muandet et al., 2012). For the first two tasks we employ
15 datasets from the UCI repositories. We use only real-
valued features, each of which is normalized to have zero
mean and unit variance.

Density estimation. We perform density estimation via
kernel mean matching (Song et al., 2008). That is, we fit
the densityQ =

∑m

j=1 πjN (θj , σ
2
j I) to each dataset by

minimizing ‖µ̂ − µQ‖2H s.t.
∑m

j=1 πj = 1. The kernel
meanµ̂ is obtained from the samples using different esti-
mators, whereasµQ is the kernel mean embedding of the
densityQ. Unlike experiments inSong et al.(2008), our
goal is to compare different estimators ofµP whereP is
the true data distribution. That is, we replaceµ̂ with a ver-
sion obtained via shrinkage. A better estimate ofµP should
lead to better density estimation, as measured by the neg-
ative log-likelihood ofQ on the test set. We use 30% of

the dataset as a test set. We setm = 10 for each dataset.
The model is initialized by running 50 random initializa-
tions using the k-means algorithm and returning the best.
We repeat the experiments 10 times and perform the paired
sign test on the results at the 5% significance level.2

The average negative log-likelihood of the modelQ, op-
timized via different estimators, is reported in Table1.
Clearly, both S-KMSE and F-KMSE consistently achieve
smaller negative log-likelihood when compared to KME.
There are however few cases in which KME outperforms
the proposed estimators, especially when the dataset is rel-
atively large, e.g.,satimage andabalone. We suspect
that in those cases the standard KME already provides an
accurate estimate of the kernel mean. To get a better es-
timate, more effort is required to optimize for the shrink-
age parameter. Moreover, the improvement across different
kernels is consistent with results on the synthetic datasets.

Kernel PCA. In this experiment, we perform the KPCA
using different estimates of the mean and covariance op-
erators. We compare the reconstruction errorEproj(z) =
‖φ(z)−Pφ(z)‖2 on test samples whereP is the projection
constructed from the first 20 principal components. We use
a Gaussian RBF kernel for all datasets. We compare 5 dif-
ferent scenarios: 1) standard KPCA; 2) shrinkage center-
ing with S-KMSE; 3) shrinkage centering with F-KMSE;
4) KPCA with S-COSE; and 5) KPCA with F-COSE. To
perform KPCA on shrinkage covariance operator, we solve
the generalized eigenvalue problemKc

BK
c
V = K

c
VD

whereB = diag(β) andKc is the centered Gram matrix.
The weight vectorβ is obtained from shrinkage estima-
tors using the kernel matrixKc ◦ K

c where◦ denotes the
Hadamard product. We use 30% of the dataset as a test set.

2The paired sign test is a nonparametric test that can be used to
examine whether two paired samples have the same distribution.
In our case, we compare S-KMSE and F-KMSE against KME.
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Figure 3.The average reconstruction error of KPCA on hold-out test samples over 10 repetitions. The KME represents the standard
approach, whereas S-KMSE and F-KMSE use shrinkage means to perform centering. The S-COSE and F-COSE directly use the
shrinkage estimate of the covariance operator.

Figure 3 illustrates the results of KPCA. Clearly, the S-
COSE and F-COSE consistently outperforms all other esti-
mators. Although we observe an improvement of S-KMSE
and F-KMSE over KME, it is very small compared to that
of S-COSE and F-COSE. This makes sense intuitively,
since changing the mean point or shifting data does not
change the covariance structure considerably, so it will not
significantly affect the reconstruction error.

Discriminative learning on distributions. A positive
semi-definite kernel between distributions can be defined
via their kernel mean embeddings. That is, given a
training sample(P̂1, y1), . . . , (P̂m, ym) ∈ P × {−1,+1}

where P̂i := 1
n

∑n

k=1 δxi
k

and xi
k ∼ Pi, the lin-

ear kernel between two distributions is approximated
by 〈µ̂Pi

, µ̂Pj
〉 = 〈

∑n

k=1 β
i
kφ(x

i
k),

∑n

l=1 β
j
l φ(x

j
l )〉 =∑n

k,l=1 β
i
kβ

j
l k(x

i
k, x

j
l ). The weight vectorsβi and βj

come from the kernel mean estimates ofµPi
andµPj

, re-
spectively. The non-linear kernel can then be defined ac-
cordingly, e.g.,κ(Pi,Pj) = exp(‖µ̂Pi

− µ̂Pj
‖2
H
/2σ2).

Our goal in this experiment is to investigate if the shrink-
age estimate of the kernel mean improves the perfor-
mance of the discriminative learning on distributions.
To this end, we conduct experiments on natural scene
categorization using support measure machine (SMM)
(Muandet et al., 2012) and group anomaly detection on a
high-energy physics dataset using one-class SMM (OC-
SMM) (Muandet and Scḧolkopf, 2013). We use both lin-
ear and non-linear kernels where the Gaussian RBF ker-
nel is employed as an embedding kernel (Muandet et al.,
2012). All hyper-parameters are chosen by 10-fold cross-
validation. For our unsupervised problem, we repeat the
experiments using several parameter settings and report the
best results.

Table2 reports the classification accuracy of SMM and the
area under ROC curve (AUC) of OCSMM using different

Table 2.The classification accuracy of SMM and the area under
ROC curve (AUC) of OCSMM using different kernel mean esti-
mators to construct the kernel on distributions.

Estimator
Linear Non-linear

SMM OCSMM SMM OCSMM
KME 0.5432 0.6955 0.6017 0.9085
S-KMSE 0.5521 0.6970 0.6303 0.9105
F-KMSE 0.5610 0.6970 0.6522 0.9095

kernel mean estimators. Both shrinkage estimators consis-
tently lead to better performance on both SMM and OC-
SMM when compared to KME.

To summarize, we find sufficient evidence to conclude
that both S-KMSE and F-KMSE outperforms the standard
KME. The performance of S-KMSE and F-KMSE is very
competitive. The difference depends on the dataset and the
kernel function.

5. Conclusions

To conclude, we show that the commonly used kernel mean
estimator can be improved. Our theoretical result suggests
that there exists a wide class of kernel mean estimators that
are better than the standard one. To demonstrate this, we
focus on two efficient shrinkage estimators, namely, sim-
ple and flexible kernel mean shrinkage estimators. Empir-
ical study clearly shows that the proposed estimators out-
perform the standard one in various scenarios. Most im-
portantly, the shrinkage estimates not only provide more
accurate estimation, but also lead to superior performance
on real-world applications.
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