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Abstract

Recent approaches to independent compo-
nent analysis (ICA) have used kernel in-
dependence measures to obtain very good
performance, particularly where classical
methods experience difficulty (for instance,
sources with near-zero kurtosis). We present
fast kernel ICA (FastKICA), a novel opti-
misation technique for one such kernel inde-
pendence measure, the Hilbert-Schmidt inde-
pendence criterion (HSIC). Our search proce-
dure uses an approximate Newton method on
the special orthogonal group, where we esti-
mate the Hessian locally about independence.
We employ incomplete Cholesky decomposi-
tion to efficiently compute the gradient and
approximate Hessian. FastKICA results in
more accurate solutions at a given cost com-
pared with gradient descent, and is rela-
tively insensitive to local minima when ini-
tialised far from independence. These prop-
erties allow kernel approaches to be extended
to problems with larger numbers of sources
and observations. Our method is competi-
tive with other modern and classical ICA ap-
proaches in both speed and accuracy.

1 Introduction

The problem of instantaneous independent component
analysis involves the recovery of linearly mixed, inde-
pendent sources, in the absence of information about
the source distributions beyond their mutual indepen-
dence (Hyvärinen et al., 2001). Classical approaches to
this problem, which use as their independence criterion
the sum of expectations of a fixed nonlinear function
(or a small number of such functions) on each recov-
ered source, scale well to large numbers of sources and
samples. On the other hand, they only ensure local

convergence in the vicinity of independence (Shen and
Hüper, 2006, give one such analysis for FastICA), and
do not guarantee independent sources are recovered
at the global optimum of the independence criterion.
Statistical tests of independence should then be ap-
plied (as by Ku and Fine, 2005) to verify independent
sources are recovered.

A popular modern approach to ICA has been to di-
rectly optimise a criterion that measures the statis-
tical independence of the sources: Stögbauer et al.
(2004); Chen (2006); Learned-Miller and Fisher III
(2003) minimise the mutual information between the
sources, Eriksson and Koivunen (2003); Chen and
Bickel (2005); Murata (2001) optimise a characteris-
tic function-based independence measure, and Bach
and Jordan (2002); Gretton et al. (2005a,b) employ
kernel independence measures. While the above stud-
ies report excellent performance, efficient optimisation
of these dependence measures for ICA remains an on-
going problem,1 and a barrier to using the approaches
when the number of sources, m, is large. ICA is gener-
ally decomposed into two sub-problems: signal decor-
relation, which is straightforward and is not discussed
further, and optimisation over the special orthogonal
group SO(m), for which the bulk of the computation
is required. Bach and Jordan (2002); Gretton et al.
(2005a,b); Chen and Bickel (2005) all do gradient de-
scent on SO(m) in accordance with Edelman et al.
(1998), choosing the step width by a Golden search.
This is inefficient on two counts: gradient descent
can require a very large number of steps for conver-
gence even on relatively benign cost functions, and the
Golden search requires many costly evaluations of the
independence measure. Although Jegelka and Gretton
(2007) propose a cheaper local quadratic approxima-
tion to choose the step size, this does not address the
question of better search direction choice.

1Most of the effort in increasing efficiency has gone into
cheaply and accurately approximating the independence
measures (Chen, 2006; Bach and Jordan, 2002; Jegelka and
Gretton, 2007).



Recent work by Hüper and Trumpf (2004) on Newton-
like methods for optimisation on manifolds applies in
particular to SO(m). This technique has successfully
been used for one-unit ICA (Shen et al., 2006), and
a similar fully parallelised method on SO(m) applies
to multi-unit ICA (Shen and Hüper, 2006), when inde-
pendence measures from FastICA are used. The exten-
sion of these Newton-like geometric methods to multi-
unit kernel ICA is therefore of interest. In this study,
we introduce a novel approximate Newton method to
optimise a kernel independence measure on the spe-
cial orthogonal group, using a similar local Hessian
approximation about independence to Shen and Hüper
(2006): we call this algorithm fast kernel ICA (Fast-
KICA). An additional advantage of this approximate
Newton approach over gradient descent is that it is
resistant to local minima, i.e. it converges more often
to the correct solution even in the absence of a good
initialisation. Previous kernel methods require either
a large number of restarts or a good initial guess (pro-
vided for instance by another algorithm).

We begin our presentation in Section 2, where we intro-
duce the problem of ICA, and describe independence
measures based on covariance operators in RKHSs.
We compute the gradient and approximate Hessian of
our independence measure in Section 3, and describe
a Newton-like method based on these quantities. We
also show that incomplete Cholesky approximations of
the Gram matrices can be used to speed the algorithm
substantially. Finally, we present our experiments in
Section 4.

2 Linear ICA and independence

measures

We describe the goal of instantaneous indepen-
dent component analysis (ICA), drawing mainly on
(Hyvärinen et al., 2001; Cardoso, 1998), as well as the
core properties of ICA explored by Comon (1994). We
then describe the Hilbert-Schmidt independence crite-
rion (HSIC), which is the independence measure we
optimise when doing ICA. We are given an m×n ma-
trix of mixtures C, where m is the number of sources
and n the number of samples. We denote as c a partic-
ular column of the mixture matrix, which corresponds
to a single sample of all the mixtures. Each sample is
drawn independently and identically from the distri-
bution Pc. The matrix C is related to the matrix S of
sources (also of dimension m×n) by the linear mixing
process

C = AS, (1)

where A is an m × m matrix with full rank. We re-
fer to our ICA problem as being instantaneous as a
way of describing the dual assumptions that any ob-

servation vector c depends only on the source vector
s at that instant, and that the samples s are drawn
independently and identically.

The components si of s are assumed to be mutually
independent: this model codifies the assumption that
the sources are generated by unrelated phenomena (for
instance, one component might be an EEG signal from
the brain, while another could be due to electrical noise
from nearby equipment). Random variables are mu-
tually independent if and only if their probability dis-
tribution factorises, Ps =

∏m
i=1 Psi

. It follows easily
that the random variables are pairwise independent if
they are mutually independent, where pairwise inde-
pendence is defined as Psi

Psj
= Psisj

for all i 6= j.
The reverse does not hold, however: pairwise inde-
pendence does not imply mutual independence. That
said, we are able to find a unique optimal unmixing
matrix using only the pairwise independence between
elements of the estimated sources Y , which is equiva-
lent to recovering the mutually independent terms of
S. This is due to Theorem 11 of Comon (1994).

The task of ICA is to recover the independent sources
via an estimate B of the inverse of the matrix A, such
that the recovered vector Y = BAS has mutually in-
dependent components.2 In practice, B is found in
two steps: first, the mixtures are decorrelated using a
matrix V to give the whitened signalsW = V C. Next,
all remaining dependence is removed using an orthog-
onal matrix3 X ∈ R

m×m (i.e. X>X = I), yielding
Y = X>W .

Next, we describe our independence criterion. A ver-
sion of this bivariate criterion was originally proposed
by Feuerverger (1993). Gretton et al. (2005a) obtained
Feuerverger’s independence criterion in a more general
setting, proving that it is the Hilbert-Schmidt (HS)
norm of the covariance operator between mappings to
RKHSs, and thus integrating it into the family of ker-
nel independence measures (Bach and Jordan, 2002;
Gretton et al., 2005b). Thus, we introduce the crite-
rion from this perspective. Consider a Hilbert space
F of functions from a compact subset Y ⊂ R to R.
The Hilbert space F is an RKHS if at each yu ∈ Y,
the point evaluation operator δyu

: F → R, which
maps f ∈ F to f(yu) ∈ R, is a bounded linear func-
tional. To each point yu ∈ Y, there corresponds an

2It turns out that the problem described above is inde-
terminate in certain respects. For instance, our measure
of independence does not change when the ordering of ele-
ments in s is swapped, or when components of s are scaled
by different constant amounts. Thus, source recovery takes
place up to these invariances, and BA = PD, where P is
a permutation matrix and D a diagonal scaling matrix.

3Our notation differs from that in other ICA presenta-
tions since X is the variable for which we wish to solve; i.e.
we adopt a standard convention used in optimisation.



element φ(yu) ∈ F (we call φ the feature map) such
that 〈φ(yu), φ(y′u)〉F = k(yu, y

′
u), where k : Y×Y → R

is a unique positive definite kernel. We also define a
second RKHS G with respect to Y, with feature map
ψ and kernel 〈ψ(yv), ψ(y′v)〉G = l(yv, y

′
v).

Let Pyu,yv
be a joint measure on (Y ×Y,Γ×Λ) (here

Γ and Λ are Borel σ-algebras on Y), with associated
marginal measures Pyu

and Pyv
. The covariance op-

erator Cuv : G → F is defined by Fukumizu et al.
(2004) such that for all f ∈ F and g ∈ G,

〈f, Cuvg〉F = E[f(yu)g(yv)] − E[f(yu)]E[g(yv)].

The HS norm of the covariance operator Cuv, which
we denote the Hilbert-Schmidt independence criterion
(HSIC), is written (Gretton et al., 2005a)

h(Pyu,yv
) := ‖Cuv‖

2
HS = E†,‡

[

k
(

y†u, y
‡
u

)

l
(

y†v, y
‡
v

)]

+ E†,‡

[

k
(

y†u, y
‡
u

)]

E†,‡

[

l
(

y†v, y
‡
v

)]

− 2E†

[

E‡

[

k
(

y†u, y
‡
u

)]

E‡

[

l
(

y†v, y
‡
v

)]]

,

where (y†u, y
†
v) ∼ Pyu,yv

, E† is the expectation over
these random variables, (y‡u, y

‡
v) ∼ Pyu,yv

are indepen-
dent copies4 of (y†u, y

†
v), and E†,‡ is the expectation

over both independent copies. We require F and G
to be universal in the sense of Steinwart (2002), since
under these conditions hu,v(Pyu,yv

) = 0 if and only if
yu and yv are independent (see Gretton et al., 2005a).
The Gaussian and Laplace kernels are both universal
on compact domains. In this work, we confine our-
selves to a Gaussian kernel,5 and use an identical ker-
nel for both F and G,

k(a, b) = l(a, b) = exp(−σ−2 ‖a− b‖2 /2).

The first derivative of this kernel is k′(a, b) = (b −
a)σ−2k(a, b), and the second derivative is k′′(a, b) =
(a− b)2σ−4k(a, b) − σ−2k(a, b).

HSIC belongs to a family of kernel independence mea-
sures that differ in the way they summarise the co-
variance operator spectrum, and in the normalisation
they use. The simplest alternative to HSIC is the spec-
tral norm of the covariance operator, or COCO (Gret-
ton et al., 2005b). The kernel canonical correlation
(Bach and Jordan, 2002) is similar to COCO, but rep-
resents the regularised spectral norm of the functional

4That is, random variables drawn independently ac-
cording to the same law.

5Gretton et al. (2005a,b) also used the Laplace kernel
for ICA: this gives slightly better performance, but requires
a higher rank in the incomplete Choleksy approximations
used when obtaining HSIC and its derivatives (see the end
of Section 3.2), and hence is slower. Non-universal kernels,
such as polynomial kernels, could also be used, if certain
properties of the source distributions are assumed (Bach
and Jordan, 2002).

correlation operator, rather than the covariance opera-
tor. The kernel generalised variance (Bach and Jordan,
2002) and kernel mutual information (Gretton et al.,
2005b) were shown by Gretton et al. (2005b) to up-
per bound the mutual information near independence
(and to be tight at independence). Experiments by
Gretton et al. (2005a), however, indicate that these
methods do not outperform HSIC in linear ICA for
large sample sizes, at least on the benchmark data of
Bach and Jordan (2002).

HSIC was used for ICA by Eriksson and Koivunen
(2003); Gretton et al. (2005a), where the former solved
for pairwise independence by searching over all Jacobi
rotations that make up X , and the latter obtained
pairwise independence via the same gradient descent
method as Bach and Jordan (2002). Jegelka and Gret-
ton (2007) further reduced the cost of the second ap-
proach using a series of local quadratic approxima-
tions, rather than a Golden search. A generalisation of
HSIC to a measure of mutual independence for more
than two variables was proposed by Kankainen (1995),
and was applied to ICA by Chen and Bickel (2005), us-
ing gradient descent on SO(m) with a Golden search.

For the purpose of multivariate ICA, however, it is suf-
ficient to enforce pairwise independence, and we sim-
ply sum the pairwise criteria to get our multivariate
criterion,

H(Py) :=

m
∑

u,v=1,u6=v

hu,v(Pyu,yv
). (2)

The pairwise independence criterion can be restated
as an explicit function of columns xu of the unmixing
matrix X ,

huv : SO(m) → R

huv(X) := E†,‡[k(x
>
uw

†, x>uw
‡)k(x>v w

†, x>v w
‡)]

+ E†,‡[k(x
>
uw

†, x>uw
‡)]E†,‡[k(x

>
v w

†, x>v w
‡)]

− 2E†[E‡[k(x
>
uw

†, x>uw
‡)]E‡[k(x

>
v w

†, x>v w
‡)]],

where yu := (Xeu)>w = x>uw is the uth estimated
source, w† and w‡ are independent copies of the ran-
dom variable w, and E†,E‡,E†,‡ denote expectations
over the first, second, or both copies, respectively. An
important advantage of the pairwise criterion is its di-
agonal Hessian (with respect to the parameter space
of X ; see below) at independence, which we use in Sec-
tion 3.2 to obtain an inexpensive approximate Newton
method. Kankainen’s multivariate generalisation does
not have this property.

3 Derivation of Newton-ICA

We now present an approximate Newton-like algo-
rithm for optimisation of HSIC on the special orthog-



onal group, following Hüper and Trumpf (2004). We
first give definitions of our terms and variables, fol-
lowed by expressions for the gradient and Hessian of
HSIC in the parameter space of SO(m). We demon-
strate that HSIC has a non-degenerate critical point
at independence, and that the Hessian at this point
is diagonal. This leads us to an approximate Newton
method. Finally, we show the gradient and approx-
imate Hessian may be efficiently estimated using the
incomplete Cholesky decomposition.

We begin with some definitions and terminology. Let
SO(m) := {X ∈ R

m×m|X>X = I, det(X) = 1} be
the special orthogonal group. A local parametrisation
of SO(m) around a point X ∈ SO(m) is

αX : so(m) → SO(m), Ω 7→ X exp(Ω),

where so(m) := {Ω ∈ R
m×m|Ω = −Ω>} is the

set of skew-symmetric matrices. We denote by z ∈
R

m(m−1)/2 the vector of unique entries in Ω, i.e. ωu,v

for v > u. Without any ambiguity, we might likewise
use αX to denote the mapping R

m(m−1)/2 → SO(m).
The tangent space of SO(m) at a point X is

TXSO(m) := {Ξ ∈ R
m×m|Ξ = XΩ,Ω ∈ so(m)},

where Ξ = [ξ1, . . . , ξm] ∈ TXSO(m) with ξu := Ξeu.
Here eu is the u-th standard basis vector in R

m×m.
Moreover, by means of the matrix exponential map, a
geodesic emanating from a point X ∈ SO(m) is de-
fined as

γX : R → SO(m), ε 7→ X exp(εΩ),

such that γX(0) = X, and γ̇X(0) = Ξ ∈ TXSO(m).

We now outline the Newton-like method for optimi-
sation of HSIC on SO(m). Let ∇(H ◦ αX)(0) and
H(H ◦ αX)(0) be the gradient and Hessian of the
smooth composition H ◦αX at 0 ∈ so(m), respectively
(these are simply computed with respect to the stan-
dard Euclidean inner product in the parameter space
R

m(m−1)/2). A Newton-like method for optimisation
of HSIC on SO(m) can then be summarised as follows:

Newton-like method for optimising HSIC on SO(m)

Step 1: Given an initial guess X ∈ SO(m);
Step 2: Compute the Euclidean direction

z := −H−1(H ◦ αX)(0)∇(H ◦ αX)(0)
Step 3: Update X by setting X = αX(z);
Step 4: Go to step 2 until convergence.

In the following sections, we give explicit expressions
for the derivative and Hessian, as well as an approxi-
mation to the Hessian that is exact at independence.

3.1 Gradient and critical point analysis of

HSIC on SO(m)

We now obtain the gradient of the multivariate inde-
pendence criterion in (2), and show that this quantity
has a critical point when the sources are correctly un-
mixed. Since the first derivative of H is a sum of the
pairwise derivatives, we begin by obtaining the first
derivative of a single hu,v. By the chain rule, the first
derivative of the composition hu,v ◦ γX of HSIC is

d
d ε (hu,v ◦ γX)(ε)

∣

∣

ε=0

= E†,‡

[

k′
(

y†u, y
‡
u

)

ξ>u (w† − w‡)k
(

y†v, y
‡
v

)]

+ E†,‡

[

k′
(

y†u, y
‡
u

)

ξ>u (w† − w‡)
]

E†,‡

[

k
(

y†v, y
‡
v

)]

− 2E†

[

E‡

[

k′
(

y†u, y
‡
u

)

ξ>u (w† − w‡)
]

E‡

[

k
(

y†v, y
‡
v

)]]

+ · · · ,

where for brevity we omit the terms with respect to
ξv = Ξev (which are obtained by interchanging u and
v in the above). We next use this quantity to obtain
the derivative of (2) in terms of the parameter space
representation Ω at X . This is

d
d ε(H ◦ αX)(εΩ)

∣

∣

ε=0
=

m
∑

u,v=1,u<v

ωuv · (φuv − φvu), (3)

where

φuv =E†,‡

[

k′
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‡
u

)
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‡
v
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+ E†,‡

[
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‡
u
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k
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(
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‡
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)

(y†u − y‡u)
]

E‡

[

k
(

y†v, y
‡
v

)]]

.

To arrive at this form, we replace Ξ = XΩ, and
simplify further using that the diagonal entries of Ω
are zero, and that many of the remaining terms van-
ish when we take expectations over the independent
copies.

Let us now consider critical points of H , at which the
derivative is zero. While we do not attempt to ob-
tain all the critical points (which are a function of the
source distributions), we need to ensure a global opti-
mum X∗ is a critical point of H (in the next section,
we see this point is nondegenerate). At a global opti-
mum X∗, we know6 y†u = s†u, y†v = s†v, and s†u, s

†
v are

independent. We are left with

d
d ε (hu,v ◦ γX∗)(ε)

∣

∣

ε=0

= ωuvE†,‡

[

k′
(

s†u, s
‡
u

)]

E†,‡

[

(s†v − s‡v)k
(

s†v, s
‡
v

)]

− 2ωuvE†,‡

[

k′
(

s†u, s
‡
u

)]

E†

[

(s†v − s‡v)E‡

[

k
(

s†v, s
‡
v

)]]

+ · · · ,

again omitting the symmetric terms in ξv. Using the
symmetry of the kernel, we have E†,‡

[

k′
(

s†u, s
‡
u

)]

= 0,
and thus H has a critical point at X∗.

6We ignore the issue of permutation and scaling of the
unmixed sources, which does not change the analysis.



3.2 The Hessian and its approximation near

independence

In this section, we show that, at a critical point X∗

corresponding to correctly recovered sources, the Hes-
sian of the composition H ◦ αX at 0 ∈ so(m) is di-
agonal. In other words, an unmixing matrix X∗ is a
nondegenerate critical point of H . We approximate
the Hessian by retaining only those terms that do not
vanish at independence, which, due to the smoothness
of HSIC, yields an accurate and easily invertible ap-
proximation of the Hessian near independence. Conse-
quently, we observe in our experiments that a Newton-
like approach using the approximate Hessian converges
rapidly once the solution is close to independence.

By computing the second derivative of the pairwise
term hu,v at X ∈ SO(m), we get

d2

d ε2 (hu,v ◦ γX) (ε)
∣

∣

∣

ε=0

= E†,‡[k
′′(y†u, y

‡
u)ξ>u (w† − w‡)(w† − w‡)>ξuk(y

†
v, y

‡
v)]

− E†,‡[k
′(y†u, y

‡
u)ξ>u ΞX>(w† − w‡)k(y†v, y

‡
v)]

+ E†,‡[k
′(y†u, y

‡
u)ξ>u (w† − w‡)(w† − w‡)>ξvk
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‡
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‡
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‡
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‡
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‡
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− 2E†

[
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+ 2E†
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+ · · · ,

omitting the terms for ξv as above. Let X = X∗ and
recall the structure of TXSO(m). Following a tremen-
dous amount of fairly straightforward algebra, many
of the terms vanish. By substituting the appropriate
derivatives for the Gaussian kernel, the second deriva-
tive of H ◦ αX∗ in terms of the parameter space rep-
resentation Ω ∈ so(m) at 0 is

d2

d ε2 (H ◦ αX∗) (εΩ)
∣

∣

∣

ε=0
=

m
∑

u,v=1,u<v

ω2
uvψuv, (4)

where

ψuv =
2

σ2
m1(u)m2(v) +

2

σ2
m2(u)m1(v)

+
4

σ4
m2(u)m2(v) −

4

σ4
m3(u)m3(v)

and

m1(u) := E†‡[k(s
†
u, s

‡
u)]

m2(u) := E†‡[k(s
†
u, s

‡
u)s†us

‡
u]

m3(u) := E†‡[k(s
†
u, s

‡
u)(s†u)2].

Thus, the Hessian of H ◦αX∗ at 0 is diagonal in terms
of ωuv. Since HSIC has global minima at indepen-
dence (Gretton et al., 2005b), and by the smoothness
of HSIC, we can easily show that every entry ψuv

of the Hessian must be positive. The simple struc-
ture of the Hessian of H ◦ αX∗ at 0 ∈ so(m) leads
us to use this expression to approximate the Hessian
H(H ◦ αX)(0) at all X , by replacing the true recov-
ered sources s†u, s

‡
u, s

†
v, s

‡
v with their current estimates

y†u, y
‡
u, y

†
v, y

‡
v. Since the approximate Hessian is diag-

onal, the inversion required for the Newton step can
then be done very cheaply. If we initialise close to in-
dependence, this approximation is accurate, since the
missing terms are negligible. Remarkably, when we
initialise far from the true solution, this approxima-
tion appears to make us less likely to be diverted to
local minima than using gradient descent, since these
minima will generally not have the Hessian structure
specific to independence. These behaviours are illus-
trated in our experimental results in the next section.

We now outline how we use the incomplete Cholesky
decomposition (Fine and Scheinberg, 2001) to esti-
mate the approximate Hessian efficiently. Let K be
the Gram matrix corresponding to the uth recovered
source. An incomplete Cholesky G of size n×d, where
d � n, can be computed in time O(nd2), yielding
an approximation K = GG> that greedily minimises
tr(K − GG>). Greater values of d result in a more
accurate reconstruction of K, however, as Bach and
Jordan (2002, Appendix C) point out, the spectrum
of a Gram matrix based on the Gaussian kernel gen-
erally decays rapidly, and a small d yields a very good
approximation. Using this estimate, the three terms
in the Hessian are written

m1(u) =
1

n2
(1>G)(1>G)>

m2(u) =
1

n2
(s>uG)(s>uG)>

m3(u) =
1

n2
((su � su)>G)(G>1),

where � is the entry-wise product of the vectors of
samples. Similar reasoning is used for the easier prob-
lem of cheaply approximating the gradient using the
incomplete Cholesky decomposition.

We end this section with a brief note on the over-
all computational cost of FastKICA. As discussed by
Jegelka and Gretton (2007, Section 1.5), the gradient
and Hessian are computable in O(nm3d2). A more de-
tailed breakdown of how we arrive at this cost may be



5 10 15 20 25 30
0.1

0.15

0.2

0.25

Iteration

10
0x

 H
S

IC

FastKICA
QGD

5 10 15 20 25 30

10
−0.4

10
−0.3

10
−0.2

10
−0.1

10
0

Iteration

10
0x

 A
m

ar
i e

rr
or

FastKICA
QGD

Figure 1: Convergence of HSIC (top) and the Amari
error (bottom) for FastKICA and QGD. The plots
show averages for 21 runs, n = 40,000,m = 16, with an
initialisation by FastICA. FastKICA converges faster.

found in (Jegelka and Gretton, 2007), bearing in mind
that the Hessian has the same cost as the gradient
thanks to our diagonal approximation.

4 Experiments

In our experiments, we demonstrate three main points:
First, if no alternative algorithm is used to provide
an initial estimate of X , FastKICA demonstrates re-
sistance to local minima, and often converges to the
correct solution. This is by contrast with gradient de-
scent, which is more often sidetracked to local min-
ima. In particular, if we choose sources incompatible
with the initialising algorithm (so that it fails com-
pletely), our method can nonetheless find a good so-
lution.7 Second, when a good initial point is given,
the Newton-like algorithm converges faster than gra-
dient descent. Third, our approach is much faster than
RADICAL and MILCA, and runs sufficiently quickly
on large-scale problems to be used either as a stan-
dalone method (when a good initialisation is impossi-
ble or unlikely), or to fine tune the solution obtained
by another method. Demixing performance of Fast-
KICA was superior to the other methods we tested.

Our artificial data are generated in accordance with

7Note the criterion optimised by FastKICA is also the
statistic of an independence test (Feuerverger, 1993). This
test can be applied directly to the values of HSIC between
pairs of unmixed sources, to verify the recovered signals are
truly independent; no separate hypothesis test is required.
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Figure 2: Comparison for arbitrary initialisations (n =
40,000, m = 8). Left: Data with near-zero kurto-
sis. Jade fails, but FastKICA succeeds in demixing
the data. For FastKICA, the result with the lowest
HSIC was chosen for each run (5 runs, 10 initialisations
each). Right: Amari error histogram of FastKICA vs.
KDICA for mixed artificial sources (10 data sets, 20
initialisations each). FastKICA reaches a global mini-
mum far more often than KDICA.

Gretton et al. (2005b, Table 3), which is similar to the
artificial benchmark data of Bach and Jordan (2002).
Each source is chosen randomly with replacement from
18 different distributions having a wide variety of sta-
tistical properties and kurtoses. Sources are mixed us-
ing a random matrix with condition number between
one and two. We use the Amari divergence, defined by
Amari et al. (1996), as an index of ICA algorithm per-
formance (we multiply this quantity by 100 to make
the performance figures more readable). In all exper-
iments, the precision of the incomplete Cholesky de-
composition is 10−6n. Convergence is measured by the
difference in HSIC values over consecutive iterations.

4.1 Comparison with gradient descent

We first compare the convergence of FastKICA with
a simple gradient descent method (Jegelka and Gret-
ton, 2007). In order to find a suitable step width
along the gradient mapped to SO(m), the latter uses a
quadratic interpolation of HSIC along the geodesic. To
this end HSIC needs to be evaluated at two additional
points. Both FastKICA and quadratic gradient de-
scent (QGD) use the same gradient and independence
measure. Figure 1 compares the convergence of HSIC
and the Amari error for both methods on the same
data. The results are averages over 21 runs. In each
run, 40,000 observations from 16 artificial, randomly
drawn sources were generated and mixed. We initialise
both methods with FastICA (Hyvärinen et al., 2001),
and use a kernel width of σ = 0.5. As illustrated by the
plots, FastKICA approaches the solution much faster
than QGD. The numerical results in Table 1 confirm
that FastKICA has converged after five iterations. We



also observe that the the number of iterations to con-
vergence decreases when the sample size grows. For
arbitrary initialisations, FastKICA is still applicable
with multiple restarts, although a larger kernel width
is more appropriate (local fluctuations in FastKICA
far from independence are smoothed out, although the
bias in the location of the global minimum increases).
We set σ = 1 and a convergence threshold of 10−8 for
both FastKICA and QGD. For 40,000 samples from 8
artificial sources, FastKICA converged on average for
37% of the random restarts with an average error (×
100) of 0.54±0.01, whereas the QGD did not yield any
useful results at all (mean error × 100: 74.14 ± 1.39).
Here, averages are over 10 runs with 20 random initial-
isations each. The solution obtained with FastKICA
can be refined further by shrinking the kernel width
after initial convergence, to reduce the bias.

4.2 Poor initialising matrix and near-zero

kurtosis

We generate sources with near-zero kurtosis using a
mixture of Gaussians (see Gretton et al., 2005b, Sec-
tion 5.4). These data cannot be separated by Jade
(Cardoso, 1998), which uses the sum of the estimated
source kurtoses as its independence measure (FastICA
has also been shown by Gretton et al., 2005b, to
perform less well than recent nonparametric meth-
ods). FastKICA, however, recovers the sources even
with arbitrary initialisations (of course, a good initial
guess should be used if available, since the optimum
is then reached faster). On average over 5 runs with
10 restarts (n = 40,000, m = 8), FastKICA converged
with an Amari error of 0.20±0.01 (convergence thresh-
old: 10−7, σ = 1.0), whereas the error for Jade aver-
ages to 36.73. Figure 2 illustrates these findings. For
FastKICA, averages were only taken over runs that
converged. The example of near-zero kurtosis under-
lines the advantage of kernel methods, where the de-
pendence measure is provably zero if and only if the
signals are independent, as opposed to criteria based
on assumed statistical properties of the sources.

4.3 Performance and cost vs other

approaches

We conclude by comparing the performance and com-
putational cost of FastKICA with Jade, KDICA
(Chen, 2006), MILCA (Stögbauer et al., 2004), RAD-
ICAL (Learned-Miller and Fisher III, 2003), and
quadratic gradient descent (QGD). All timing experi-
ments were performed on 64 bit Opteron CPUs, run-
ning Debian/GNU Linux 3.1. We use 8 sources and
40,000 observations of the artificial data. The run
times include the initialisation by Jade for FastKICA,
QGD, and KDICA. QGD was run for 10 iterations,

and the convergence threshold for FastKICA was 10−5.
Figure 3 displays the error and time for 25 data sets.
Both FastKICA and QGD have lower mean and me-
dian errors than the other methods. The hypothe-
sis that FastKICA does not have a lower mean error
than MILCA, RADICAL, or KDICA can be rejected
at the 5% level, using a left-tailed t-test. In addition,
both QGD and FastKICA are faster than RADICAL
and MILCA. The additional evaluations of HSIC for
the quadratic approximation make QGD slower per
iteration than FastKICA. As shown above, FastKICA
also converges in fewer iterations than QGD, requir-
ing 4.32 iterations on average. Apart from Jade, only
KDICA is faster than FastKICA, although its perfor-
mance (mean and median) is a little worse, and dis-
plays higher variance. We also compared KDICA and
FastKICA when random initialisations are used. We
see in Figure 2 that FastKICA solutions have a clear
bimodal distribution, with a large number of initiali-
sations reaching an identical global minimum: indeed,
the correct solution is clearly distinguishable from lo-
cal optima on the basis of its HSIC value. By contrast,
KDICA appears to halt at a much wider variety of lo-
cal minima, as evidenced by the broad range of Amari
errors in the estimated unmixing matrices. Thus, in
the absence of a good initialising estimate (where clas-
sical methods fail), FastKICA is to be preferred. Fi-
nally, KDICA can use only the Laplace kernel, whereas
FastKICA is applicable with a range of kernels, so we
can select kernels appropriate to the source distribu-
tions, while still benefiting from our optimisation and
approximation techniques.

5 Conclusions

We demonstrate that an approximate Newton-like
method, FastKICA, can improve the speed and per-
formance of kernel ICA methods. We emphasise that
FastKICA is applicable even if no good initialisation
is at hand. With a modest number of restarts and a
kernel width that shrinks near independence (on our
data, from σ = 1.0 to σ = 0.5), the correct global
optimum is consistently found. A good initialisation
results in more rapid convergence, and we do not need
to adapt the kernel size. It is certainly possible that
the method of Chen (2006) would likewise benefit from
an approximate Newton approach, although we would
need to demonstrate that the Hessian behaves well at
independence. This is an area of current research.
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5 iterations 10 iterations 20 iterations
init. AE HSIC AE HSIC AE HSIC AE

FastKICA 0.90 0.11 ± 0.002 0.39 ± 0.01 0.11 ± 0.002 0.39 ± 0.01 0.11 ± 0.002 0.39 ± 0.01
QGD 0.90 0.13 ± 0.004 0.58 ± 0.03 0.12 ± 0.002 0.50 ± 0.02 0.11 ± 0.002 0.42 ± 0.01

Table 1: Average Amari error (AE) and HSIC after 5, 10 and 20 iterations of FastKICA or the gradient descent
with quadratic approximation. Note that both the Amari error and HSIC are multiplied by 100. The data are
the same as in Figure 1.
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Jade 0.82 ± 0.03 1.13±0.0005
KDICA 0.45 ± 0.03 8.1±0.2
MILCA 0.49 ± 0.01 6500±400
RAD 0.44 ± 0.02 15900±500
QGD 0.41 ± 0.02 1210±70
FastKICA 0.39 ± 0.02 270±10

Figure 3: Comparison of run times (left) and performance (middle) for various ICA algorithms. FastKICA is
faster than MILCA, RADICAL, and gradient descent with quadratic approximation, and its results compare
favorably to the other methods. KDICA is even faster, but performs less well than FastKICA. The table displays
mean values over 25 data sets.
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H. Shen, K. Hüper, and A. Smola. Newton-like methods for
nonparametric independent component analysis. In In-
ternational Conference on Neural Information Process-
ing, 2006. to appear.

I. Steinwart. On the influence of the kernel on the con-
sistency of support vector machines. JMLR, 2:67–93,
2002.
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