Causal Effect Estimation with Context and Confounders

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

AISTATS, 2023

Observation vs intervention

Conditioning from observation: $\mathbb{E}[Y \mid A=a]=\sum_{x} \mathbb{E}[Y \mid a, x] p(x \mid a)$

From our observations of historical hospital data:

- $P(Y=$ cured $\mid A=$ pills $)=0.80$

■ $P(Y=$ cured $A=$ surgery $)=0.72$

Observation vs intervention

Average causal effect (intervention): $\mathbb{E}\left[Y^{(a)}\right]=\sum_{x} \mathbb{E}[Y \mid a, x] p(x)$

From our intervention (making all patients take a treatment):
■ $P\left(Y^{\text {(pills })}=\right.$ cured $)=0.64$
■ $P\left(Y^{\text {(surgery })}=\right.$ cured $)=0.75$
Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality

Questions we will solve

Outline

Causal effect estimation, observed covariates:

- Average treatment effect (ATE), conditional average treatment effect (CATE)

Causal effect estimation, hidden covariates:

- ... instrumental variables, proxy variables

What's new? What is it good for?

- Treatment A, covariates X, etc can be multivariate, complicated...

■ ...by using kernel or adaptive neural net feature representations

Model assumption: linear functions of features

All learned functions will take the form:

$$
\gamma(x)=\gamma^{\top} \varphi(x)=\langle\gamma, \varphi(x)\rangle_{\mathcal{H}}
$$

Model assumption: linear functions of features

All learned functions will take the form:

$$
\gamma(x)=\gamma^{\top} \varphi(x)=\langle\gamma, \varphi(x)\rangle_{\mathcal{H}}
$$

Option 1: Finite dictionaries of learned neural net features $\varphi_{\theta}(x)$ (linear final layer γ)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment. (ICLR 23)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

$$
\left\langle\varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{H}}=k\left(x_{i}, x\right)
$$

Kernel is feature dot product. Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves. (Biometrika, in revision)
Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)

Model fitting: ridge regression

Learn $\gamma_{0}(x):=\mathbb{E}[Y \mid X=x]$ from features $\varphi\left(x_{i}\right)$ with outcomes y_{i} :

$$
\hat{\gamma}=\arg \min _{\gamma \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle\gamma, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|\gamma\|_{\mathcal{H}}^{2}\right) .
$$

Model fitting: ridge regression

Learn $\gamma_{0}(x):=\mathbb{E}[Y \mid X=x]$ from features $\varphi\left(x_{i}\right)$ with outcomes y_{i} :

$$
\hat{\gamma}=\arg \min _{\gamma \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle\gamma, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|\gamma\|_{\mathcal{H}}^{2}\right) .
$$

Neural net solution at x :

$$
\begin{aligned}
\hat{\gamma}(x) & =C_{Y X}\left(C_{X X}+\lambda\right)^{-1} \varphi(x) \\
C_{Y X} & =\frac{1}{n} \sum_{i=1}^{n}\left[y_{i} \varphi\left(x_{i}\right)^{\top}\right] \\
C_{X X} & =\frac{1}{n} \sum_{i=1}^{n}\left[\varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{\top}\right]
\end{aligned}
$$

Model fitting: ridge regression

Learn $\gamma_{0}(x):=\mathbb{E}[Y \mid X=x]$ from features $\varphi\left(x_{i}\right)$ with outcomes y_{i} :

$$
\hat{\gamma}=\arg \min _{\gamma \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle\gamma, \varphi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|\gamma\|_{\mathcal{H}}^{2}\right) .
$$

Kernel solution at x (as weighted sum of y)

$$
\begin{aligned}
\hat{\gamma}(x) & =\sum_{i=1}^{n} y_{i} \beta_{i}(x) \\
\beta(x) & =\left(K_{X X}+\lambda I\right)^{-1} k_{X x} \\
\left(K_{X X}\right)_{i j} & =k\left(x_{i}, x_{j}\right)=\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
\left(k_{X x}\right)_{i} & =k\left(x_{i}, x\right)
\end{aligned}
$$

Observed covariates: (conditional) ATE

Kernel features
(in revision, Biometrika):

```
ar〈iV > econ > arXiv:2010.04855 Search... Help | Advar
```


Economics > Econometrics

```
(Submitted on 10 O九t 2020 (v1), last revised 23 Aug 2022 (this version, v6)I
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
```

Rahul Singh, Liyuan Xu, Arthur Gretton

NN features (ICLR 2023):

Computer Science > Machine Learning
[Submitted on 12 Oct 2022]
A Neural Mean Embedding Approach for Back-door and Front-door Adjustment

Liyuan Xu , Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:

https://github.com/liyuan9988/DeepFrontBackDoor/

Observed covariates: (conditional) ATE

Kernel features

(in revision, Biometrika):

ar Xiv > econ > axivi2010.04855 Help I Adva
 Economics > Econometrics
 ISubmitted on 10 oct 2020 (v1), fast revised 23 Avg 2022 (this version, v6)
 Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves

Rahul Singh, Liyuan Xu, Arthur Gretton

Computer Science > Machine Learning
[Submitted on 12 Oct 2022]
A Neural Mean Embedding Approach for Back-door and Front-door Adjustment
Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:

https://github.com/liyuan9988/DeepFrontBackDoor/

Average treatment effect

Potential outcome (intervention):

$$
\mathbb{E}\left[Y^{(a)}\right]=\int \mathbb{E}[Y \mid a, x] d p(x)
$$

(the average structural function; in epidemiology, for continuous a, the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka "no interference"), (2) Conditional exchangeability $Y^{(a)} \Perp A \mid X$. (3) Overlap.
Example: US job corps, training for disadvantaged youths:

- A: treatment (training hours)
- Y: outcome (percentage employment)
- X : covariates (age, education, marital status, ...)

Multiple inputs via products of kernels

We may predict expected outcome from two inputs

$$
\gamma_{0}(a, x):=\mathbb{E}[Y \mid a, x]
$$

Assume we have:

- covariate features $\varphi(x)$ with kernel $k\left(x, x^{\prime}\right)$
- treatment features $\varphi(a)$ with kernel $k\left(a, a^{\prime}\right)$

(argument of kernel/feature map indicates feature space)

Multiple inputs via products of kernels

We may predict expected outcome from two inputs

$$
\gamma_{0}(a, x):=\mathbb{E}[Y \mid a, x]
$$

Assume we have:

- covariate features $\varphi(x)$ with kernel $k\left(x, x^{\prime}\right)$
- treatment features $\varphi(a)$ with kernel $k\left(a, a^{\prime}\right)$

(argument of kernel/feature map indicates feature space)
We use outer product of features (\Longrightarrow product of kernels):

$$
\phi(x, a)=\varphi(a) \otimes \varphi(x) \quad \mathfrak{K}\left([a, x],\left[a^{\prime}, x^{\prime}\right]\right)=k\left(a, a^{\prime}\right) k\left(x, x^{\prime}\right)
$$

Multiple inputs via products of kernels

We may predict expected outcome from two inputs

$$
\gamma_{0}(a, x):=\mathbb{E}[Y \mid a, x]
$$

Assume we have:

- covariate features $\varphi(x)$ with kernel $k\left(x, x^{\prime}\right)$
- treatment features $\varphi(a)$ with kernel $k\left(a, a^{\prime}\right)$

(argument of kernel/feature map indicates feature space)
We use outer product of features (\Longrightarrow product of kernels):

$$
\phi(x, a)=\varphi(a) \otimes \varphi(x) \quad \mathfrak{K}\left([a, x],\left[a^{\prime}, x^{\prime}\right]\right)=k\left(a, a^{\prime}\right) k\left(x, x^{\prime}\right)
$$

Ridge regression solution:

$$
\hat{\gamma}(x, a)=\sum_{i=1}^{n} y_{i} \beta_{i}(a, x), \quad \beta(a, x)=\left[K_{A A} \odot K_{X X}+\lambda I\right]^{-1} K_{A a} \odot K_{\hat{\partial} Y\}_{8}}
$$

ATE (dose-response curve)

Well-specified setting:
$\mathbb{E}[Y \mid a, x]=: \gamma_{0}(a, x)=\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x)\right\rangle$
ATE as feature space dot product:

$$
\begin{aligned}
\operatorname{ATE}(a) & =\mathbb{E}\left[\gamma_{0}(a, X)\right] \\
& =\mathbb{E}\left[\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(X)\right\rangle\right]
\end{aligned}
$$

ATE (dose-response curve)

Well-specified setting:
$\mathbb{E}[Y \mid a, x]=: \gamma_{0}(a, x)=\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x)\right\rangle$
ATE as feature space dot product:

$$
\begin{aligned}
\operatorname{ATE}(a) & =\mathbb{E}\left[\gamma_{0}(a, X)\right] \\
& =\mathbb{E}\left[\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(X)\right\rangle\right] \\
& =\langle\gamma_{0}, \varphi(a) \otimes \underbrace{\mu_{X}}_{\mathbb{E}[\varphi(X)]}\rangle
\end{aligned}
$$

Feature map of probability $P(X)$,

$$
\mu_{X}=\left[\ldots \mathbb{E}\left[\varphi_{i}(X)\right] \ldots\right]
$$

ATE: example

US job corps: training for disadvantaged youths:

- X: covariate/context (age, education, marital status, ...)
- A: treatment (training hours)
- Y : outcome (percent employment)

Empirical ATE:

$$
\begin{aligned}
\widehat{\operatorname{ATE}}(a) & =\widehat{\mathbb{E}}\left[\left\langle\hat{\gamma}_{0}, \varphi(X) \otimes \varphi(a)\right\rangle\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} Y^{\top}\left(K_{A A} \odot K_{X X}+n \lambda I\right)^{-1}\left(K_{A a} \odot K_{X x_{i}}\right)
\end{aligned}
$$

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national Job Corps study.

ATE: results

■ First 12.5 weeks of classes confer employment gain: from 35% to 47%.
$\square[\mathrm{RKHS}]$ is our $\widehat{\operatorname{ATE}}(a)$.
■ [DML2] Colangelo, Lee (2020), Double debiased machine learning nonparametric inference with continuous treatments.

Singh, Xu, G (2022a)

Conditional average treatment effect

Well-specified setting:

$$
\begin{aligned}
& \mathbb{E}[Y \mid a, x, v]=: \gamma_{0}(a, x, v) \\
& =\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x) \otimes \varphi(v)\right\rangle .
\end{aligned}
$$

Conditional ATE
$\operatorname{CATE}(a, v)$
$=\mathbb{E}\left[Y^{(a)} \mid V=v\right]$

Conditional average treatment effect

Well-specified setting:

$$
\begin{aligned}
& \mathbb{E}[Y \mid a, x, v]=: \gamma_{0}(a, x, v) \\
& =\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x) \otimes \varphi(v)\right\rangle .
\end{aligned}
$$

Conditional ATE
$\operatorname{CATE}(a, v)$

$=\mathbb{E}\left[Y^{(a)} \mid V=v\right]$
$=\mathbb{E}\left[\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(X) \otimes \varphi(V)\right\rangle \mid V=v\right]$

Conditional average treatment effect

Well-specified setting:

$$
\begin{aligned}
& \mathbb{E}[Y \mid a, x, v]=: \gamma_{0}(a, x, v) \\
& =\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x) \otimes \varphi(v)\right\rangle .
\end{aligned}
$$

Conditional ATE
$\operatorname{CATE}(a, v)$

$=\mathbb{E}\left[Y^{(a)} \mid V=v\right]$
$=\mathbb{E}\left[\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(X) \otimes \varphi(V)\right\rangle \mid V=v\right]$
$=\ldots$?
How to take conditional expectation?
Density estimation for $p(X \mid V=v)$? Sample from $p(X \mid V=v)$?

Conditional average treatment effect

Well-specified setting:

$$
\begin{aligned}
& \mathbb{E}[Y \mid a, x, v]=: \gamma_{0}(a, x, v) \\
& =\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x) \otimes \varphi(v)\right\rangle .
\end{aligned}
$$

Conditional ATE

$\operatorname{CATE}(a, v)$

$$
\begin{aligned}
& =\mathbb{E}\left[Y^{(a)} \mid V=v\right] \\
& =\mathbb{E}\left[\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(X) \otimes \varphi(V)\right\rangle \mid V=v\right] \\
& =\langle\gamma_{0}, \varphi(a) \otimes \underbrace{\mathbb{E}[\varphi(X) \mid V=v]}_{\mu_{X \mid V=v}} \otimes \varphi(v)\rangle
\end{aligned}
$$

Learn conditional mean embedding: $\mu_{X \mid V=v}:=\mathbb{E}_{X}[\varphi(X) \mid V=v]$

Regressing from feature space to feature space

Our goal: an operator $F_{0}: \mathcal{H}_{\mathcal{V}} \rightarrow \mathcal{H}_{\mathcal{X}}$ such that

$$
F_{0} \varphi(v)=\mu_{X \mid V=v}
$$

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding $15 / 38$
Learning

Regressing from feature space to feature space

Our goal: an operator $F_{0}: \mathcal{H}_{\mathcal{V}} \rightarrow \mathcal{H}_{\mathcal{X}}$ such that

$$
F_{0} \varphi(v)=\mu_{X \mid V=v}
$$

Assume

$$
F_{0} \in \overline{\operatorname{span}\{\varphi(x) \otimes \varphi(v)\}} \Longleftrightarrow F_{0} \in \operatorname{HS}\left(\mathcal{H}_{\nu}, \mathcal{H}_{\chi}\right)
$$

Implied smoothness assumption:

$$
\mathbb{E}[h(X) \mid V=v] \in \mathcal{H}_{v} \quad \forall h \in \mathcal{H}_{\mathcal{X}}
$$

[^0]
Regressing from feature space to feature space

Our goal: an operator $F_{0}: \mathcal{H}_{\mathcal{V}} \rightarrow \mathcal{H}_{\mathcal{X}}$ such that

$$
F_{0} \varphi(v)=\mu_{X \mid V=v}
$$

Assume

$$
F_{0} \in \overline{\operatorname{span}\{\varphi(x) \otimes \varphi(v)\}} \Longleftrightarrow F_{0} \in \operatorname{HS}\left(\mathcal{H}_{\nu}, \mathcal{H}_{\chi}\right)
$$

Implied smoothness assumption:

$$
\mathbb{E}[h(X) \mid V=v] \in \mathcal{H}_{v} \quad \forall h \in \mathcal{H}_{\mathcal{X}}
$$


```
Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding Learning

\section*{Regressing from feature space to feature space}

Our goal: an operator \(F_{0}: \mathcal{H}_{\nu} \rightarrow \mathcal{H}_{\mathcal{X}}\) such that
\[
F_{0} \varphi(v)=\mu_{X \mid V=v}
\]

Assume
\[
F_{0} \in \overline{\operatorname{span}\{\varphi(x) \otimes \varphi(v)\}} \Longleftrightarrow F_{0} \in \operatorname{HS}\left(\mathcal{H}_{\nu}, \mathcal{H}_{\chi}\right)
\]

Implied smoothness assumption:
\[
\mathbb{E}[h(X) \mid V=v] \in \mathcal{H}_{v} \quad \forall h \in \mathcal{H}_{\mathcal{X}}
\]

Kernel ridge regression from \(\varphi(v)\) to infinite features \(\varphi(x)\) :
\[
\widehat{F}=\underset{F \in H S}{\operatorname{argmin}} \sum_{\ell=1}^{n}\left\|\varphi\left(x_{\ell}\right)-F \varphi\left(v_{\ell}\right)\right\|_{\mathcal{H}_{X}}^{2}+\lambda_{2}\|F\|_{H S}^{2}
\]

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding \(15 / 38\)
Learning

\section*{Regressing from feature space to feature space}

Our goal: an operator \(F_{0}: \mathcal{H}_{\mathcal{V}} \rightarrow \mathcal{H}_{\mathcal{X}}\) such that
\[
F_{0} \varphi(v)=\mu_{X \mid V=v}
\]

Assume
\[
F_{0} \in \overline{\operatorname{span}\{\varphi(x) \otimes \varphi(v)\}} \Longleftrightarrow F_{0} \in \operatorname{HS}\left(\mathcal{H}_{\nu}, \mathcal{H}_{\chi}\right)
\]

Implied smoothness assumption:
\[
\mathbb{E}[h(X) \mid V=v] \in \mathcal{H}_{\nu} \quad \forall h \in \mathcal{H}_{\mathcal{X}}
\]

Kernel ridge regression from \(\varphi(v)\) to infinite features \(\varphi(x)\) :
\[
\widehat{F}=\underset{F \in H S}{\operatorname{argmin}} \sum_{\ell=1}^{n}\left\|\varphi\left(x_{\ell}\right)-F \varphi\left(v_{\ell}\right)\right\|_{\mathcal{H}_{X}}^{2}+\lambda_{2}\|F\|_{H S}^{2}
\]

Ridge regression solution:
\[
\begin{aligned}
\mu_{X \mid V=v}:=\mathbb{E}[\varphi(X) \mid V=v] & \approx \widehat{F} \varphi(v)=\sum_{\ell=1}^{n} \varphi\left(x_{\ell}\right) \beta_{\ell}(v) \\
\beta(v) & =\left[K_{V V}+\lambda_{2} I\right]^{-1} k_{V v}
\end{aligned}
\]

\section*{Conditional ATE: example}

US job corps:
- X: confounder/context
(education, marital status, ...)
- A: treatment (training hours)
■ \(Y\) : outcome (percent employed)

■ \(V\) : age


Empirical CATE:
\[
\widehat{\operatorname{CATE}}(a, v)=\langle\hat{\gamma}_{0}, \varphi(a) \otimes \underbrace{\widehat{F} \varphi(v)}_{\widehat{\mathbb{E}}[\varphi(X) \mid V=v]} \otimes \varphi(v)\rangle
\]
(with consistency guarantees: see paper!)

\section*{Conditional ATE: results}


Average percentage employment \(Y^{(a)}\) for class hours \(a\), conditioned on age \(v\). Given around 12-14 weeks of classes:
- 16 y/o: employment increases from \(28 \%\) to at most \(36 \%\).
- 22 y /o: percent employment increases from \(40 \%\) to \(56 \%\).

Singh, Xu, G (2022a)
...dynamic treatment effect...
Dynamic treatment effect: sequence \(A_{1}, A_{2}\) of treatments.

- potential outcomes \(Y^{\left(a_{1}\right)}, Y^{\left(a_{2}\right)}, Y^{\left(a_{1}, a_{2}\right)}\),
- counterfactuals \(\mathbb{E}\left[Y^{\left(a_{1}^{\prime}, a_{2}^{\prime}\right)} \mid A_{1}=a_{1}, A_{2}=a_{2}\right] \ldots\)
(c.f. the Robins G-formula)

Singh, Xu, G. (2022b) Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects

\section*{What if there are hidden confounders?}

\section*{Illustration: ticket prices for air travel}

Ticket price \(A\), seats sold \(Y\).


What is the effect on seats sold \(Y^{(a)}\) of intervening on price \(a\) ?

\section*{Illustration: ticket prices for air travel}

Ticket price \(A\), seats sold \(Y\).


What is the effect on seats sold \(Y^{(a)}\) of intervening on price \(a\) ?


Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible0/38 Approach for Counterfactual Prediction.

\section*{Illustration: ticket prices for air travel}

Unobserved variable \(\varepsilon=\) desire for travel, affects both price (via airline algorithms) and seats sold.


■ Desire for travel:
\[
\begin{aligned}
& \varepsilon \sim \mathcal{N}(\mu, 0.1) \\
& \mu \sim \mathcal{U}\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}
\end{aligned}
\]

\section*{Illustration: ticket prices for air travel}

Unobserved variable \(\varepsilon=\) desire for travel, affects both price (via airline algorithms) and seats sold.


■ Desire for travel:
\[
\begin{aligned}
& \varepsilon \sim \mathcal{N}(\mu, 0.1) \\
& \mu \sim \mathcal{U}\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}
\end{aligned}
\]
- Price:
\[
\begin{aligned}
& A=\varepsilon+Z \\
& Z \sim \mathcal{N}(5,0.04)
\end{aligned}
\]

\section*{Illustration: ticket prices for air travel}

Unobserved variable \(\varepsilon=\) desire for travel, affects both price (via airline algorithms) and seats sold.


■ Desire for travel:
\[
\begin{aligned}
& \varepsilon \sim \mathcal{N}(\mu, 0.1) \\
& \mu \sim \mathcal{U}\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}
\end{aligned}
\]
- Price:
\[
\begin{aligned}
& A=\varepsilon+Z \\
& Z \sim \mathcal{N}(5,0.04)
\end{aligned}
\]
- Seats sold:
\[
Y=10-A+2 \varepsilon
\]

\section*{Illustration: ticket prices for air travel}

Unobserved variable \(\varepsilon=\) desire for travel, affects both price (via airline algorithms) and seats sold.


■ Desire for travel:
\[
\begin{aligned}
& \varepsilon \sim \mathcal{N}(\mu, 0.1) \\
& \mu \sim \mathcal{U}\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}
\end{aligned}
\]
- Price:
\(A=\varepsilon+Z\),
\[
Z \sim \mathcal{N}(5,0.04)
\]
- Seats sold:
\[
Y=10-A+2 \varepsilon
\]

Average treatment effect:
\[
\operatorname{ATE}(a)=\mathbb{E}\left[Y^{(a)}\right]=\int(10-a+2 \varepsilon) d p(\varepsilon)=10-a
\]

\section*{Illustration: ticket prices for air travel}

Unobserved variable \(\varepsilon=\) desire for travel, affects both price (via airline algorithms) and seats sold.


■ Desire for travel:
\[
\begin{aligned}
& \varepsilon \sim \mathcal{N}(\mu, 0.1) \\
& \mu \sim \mathcal{U}\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}
\end{aligned}
\]

■ Price:
\[
\begin{aligned}
& A=\varepsilon+Z \\
& Z \sim \mathcal{N}(5,0.04)
\end{aligned}
\]

■ Seats sold: \(Y=10-A+2 \varepsilon\)
\(Z\) is an instrument (cost of fuel). Condition on Z,
\[
\mathbb{E}[Y \mid Z]=10-\mathbb{E}[A \mid Z]+2 \underbrace{\mathbb{E}[\varepsilon \mid Z]}_{=0}
\]

\section*{Illustration: ticket prices for air travel}

Unobserved variable \(\varepsilon=\) desire for travel, affects both price (via airline algorithms) and seats sold.

- Desire for travel:
\[
\begin{aligned}
& \varepsilon \sim \mathcal{N}(\mu, 0.1) \\
& \mu \sim \mathcal{U}\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}
\end{aligned}
\]
- Price:
\[
\begin{aligned}
& A=\varepsilon+Z \\
& Z \sim \mathcal{N}(5,0.04)
\end{aligned}
\]
- Seats sold:
\[
Y=10-A+2 \varepsilon
\]
\(Z\) is an instrument (cost of fuel). Condition on Z,
\[
\mathbb{E}[Y \mid Z]=10-\mathbb{E}[A \mid Z]+2 \underbrace{\mathbb{E}[\varepsilon \mid Z]}_{=0}
\]

Regressing from \(\mathbb{E}[A \mid Z]\) to \(\mathbb{E}[Y \mid Z]\) recovers ATE!

\section*{Instrumental variable regression}

\section*{The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2021}

© Nobel Prize Outreach. Photo Paul Kennedy David Card

Prize share: \(1 / 2\)

© Nobel Prize Outreach. Photo: Risdon Photography Joshua D. Angrist

Prize share: 1/4

© Nobel Prize Outreach. Photo: Paul Kennedy
Guido W. Imbens
Prize share: \(1 / 4\)

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2021 was divided, one half awarded to David Card "for his empirical contributions to labour economics", the other half jointly to Joshua D. Angrist and Guido W. Imbens "for their methodological contributions to the analysis of causal relationships"

\section*{Instrumental variable regression with NN features}

Definitions:
■ \(\varepsilon\) : unobserved confounder.
- A: treatment

■ \(Y\) : outcome
■ \(Z\) : instrument
Assumptions

\[
\begin{aligned}
& \mathbb{E}[\varepsilon]=0 \quad \mathbb{E}[\varepsilon \mid Z]=0 \\
& Z \not \Perp A \\
& (Y \Perp Z \mid A)_{G_{\bar{A}}} \\
& Y=\gamma^{\top} \phi_{\theta}(A)+\varepsilon
\end{aligned}
\]

\section*{Instrumental variable regression with NN features}

Definitions:
- \(\varepsilon\) : unobserved confounder.
- A: treatment
- \(Y\) : outcome
- Z: instrument

Assumptions
\[
\begin{aligned}
& \mathbb{E}[\varepsilon]=0 \quad \mathbb{E}[\varepsilon \mid Z]=0 \\
& Z \not \Perp A \\
& (Y \Perp Z \mid A)_{G_{\bar{A}}} \\
& Y=\gamma^{\top} \phi_{\theta}(A)+\varepsilon
\end{aligned}
\]


Average treatment effect:
\(\operatorname{ATE}(a)=\int \mathbb{E}(Y \mid \varepsilon, a) d p(\varepsilon)=\gamma^{\top} \phi_{\theta}(a)\)

\section*{Instrumental variable regression with NN features}

Definitions:
■ \(\varepsilon\) : unobserved confounder.
- A: treatment

■ \(Y\) : outcome
■ \(Z\) : instrument
Assumptions

\[
\begin{array}{ll}
\mathbb{E}[\varepsilon]=0 \quad \mathbb{E}[\varepsilon \mid Z]=0 & \text { Average treatment effect: } \\
Z \not \Perp A & \\
(Y \Perp Z \mid A)_{G_{\bar{A}}} & \operatorname{ATE}(a)=\int \mathbb{E}(Y \mid \varepsilon, a) d p(\varepsilon)=\gamma^{\top} \phi_{\theta}(a) \\
Y=\gamma^{\top} \phi_{\theta}(A)+\varepsilon &
\end{array}
\]

IV regression: Condition both sides on \(Z\),
\[
\mathbb{E}[Y \mid Z]=\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]+\underbrace{\mathbb{E}[\varepsilon \mid Z]}_{=0}
\]

\section*{Two-stage least squares for IV regression}

\section*{Kernel features (NeurIPS 2019):}
\begin{tabular}{l|l}
\hline arXiv.org > cs > arXiv: 1906.00232 & \begin{tabular}{l} 
Search... \\
Help IAc
\end{tabular} \\
\hline Computer Science > Marhine Learning & \\
\hline
\end{tabular}

\section*{Computer Science > Machine Learning}
[Submitted on 1 Jun 2019 (vI), last revised 15 Jul 2020 (thls version, ven]

\section*{Kernel Instrumental Variable Regression}

Rahul Singh, Maneesh Sahani, Arthur Gretton


\section*{NN features (ICLR 2021):}

\section*{ar XiV > cs >axiv:2010.07154}

\section*{Computer Science > Machine Learning}
[Submitted on 140 Ot 2020 (v1), last revised 1 Nov 2020 (this version, v3)]
Learning Deep Features in Instrumental Variable Regression
Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton


\section*{Code for NN and kernel IV methods:}
https://github.com/liyuan9988/DeepFeatureIV/

\section*{Two-stage least squares for IV regression}

\section*{Kernel features (NeurIPS 2019):}
\begin{tabular}{lr} 
arXiv.org > cs > arXiv:1906.00232 & Search... \(_{\text {Help IAC }}\) \\
\hline Computer Science > Marhine
\end{tabular}

Computer Science > Machine Learning
[SSubmitted on 1 Jun 2019 (vI), last revised 15 Jut 2020 (thls version, ven]

\section*{Kernel Instrumental Variable Regression}

Rahul Singh, Maneesh Sahani, Arthur Gretton


\section*{NN features (ICLR 2021):}

\section*{ar Xiv > cs > axiv:2010.07154}

Computer Science > Machine Learning
[Submitred on 14 Oct 2020 (v1), last revised 1 Nov 2020 (this version, v3)]
Learning Deep Features in Instrumental Variable Regression
Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton


Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeatureIV/

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with RR loss
\[
\mathbb{E}\left\|\phi_{\theta}(A)-F \phi_{\zeta}(Z)\right\|^{2}+\lambda_{1}\|F\|_{H S}^{2}
\]

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with RR loss
\[
\mathbb{E}\left\|\phi_{\theta}(A)-F \phi_{\zeta}(Z)\right\|^{2}+\lambda_{1}\|F\|_{H S}^{2}
\]

Challenge: how to learn \(\theta\) ?

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with \(R R\) loss
\[
\mathbb{E}\left\|\phi_{\theta}(A)-F \phi_{\zeta}(Z)\right\|^{2}+\lambda_{1}\|F\|_{H S}^{2}
\]

Challenge: how to learn \(\theta\) ?
From Stage 2 regression?

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \phi_{\zeta}(Z)
\]
with \(R R\) loss
\[
\mathbb{E}\left\|\phi_{\theta}(A)-F \phi_{\zeta}(Z)\right\|^{2}+\lambda_{1}\|F\|_{H S}^{2}
\]

Challenge: how to learn \(\theta\) ?
From Stage 2 regression?
...which requires \(\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\) from Stage 1 regression

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

Stage 1 regression: learn \(N N\) features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with \(R R\) loss
\[
\mathbb{E}\left\|\phi_{\theta}(A)-F \phi_{\zeta}(Z)\right\|^{2}+\lambda_{1}\|F\|_{H S}^{2}
\]

Challenge: how to learn \(\theta\) ?
From Stage 2 regression?
...which requires \(\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\) from Stage 1 regression
...which requires \(\phi_{\theta}(A) \ldots\) which requires \(\theta \ldots\)

\section*{IV using neural net features}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

Stage 1 regression: learn \(N N\) features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with \(R R\) loss
\[
\mathbb{E}\left\|\phi_{\theta}(A)-F \phi_{\zeta}(Z)\right\|^{2}+\lambda_{1}\|F\|_{H S}^{2}
\]

Challenge: how to learn \(\theta\) ?
From Stage 2 regression?
...which requires \(\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\) from Stage 1 regression
...which requires \(\phi_{\theta}(A) \ldots\) which requires \(\theta \ldots\)

\section*{Use the linear final layers! (i.e. \(\gamma\) and \(F\) )}

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable

\section*{IV using neural net features}

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with RR loss
\[
\mathbb{E}\left[\left\|\phi_{\theta}(A)-F \boldsymbol{\phi}_{\zeta}(Z)\right\|^{2}\right]+\lambda_{1}\|F\|_{H S}^{2}
\]

\section*{IV using neural net features}

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with \(R R\) loss
\[
\mathbb{E}\left[\left\|\phi_{\theta}(A)-F \boldsymbol{\phi}_{\zeta}(Z)\right\|^{2}\right]+\lambda_{1}\|F\|_{H S}^{2}
\]
\(\hat{F}_{\theta, \zeta}\) in closed form wrt \(\phi_{\theta}, \phi_{\zeta}\) :
\[
\begin{array}{ll}
\hat{F}_{\theta, \zeta}=C_{A Z}\left(C_{Z Z}+\lambda_{1} I\right)^{-1} & C_{A Z}
\end{array}=\mathbb{E}\left[\phi_{\theta}(A) \phi_{\zeta}^{\top}(Z)\right] .
\]

\section*{IV using neural net features}

Stage 1 regression: learn NN features \(\phi_{\zeta}(Z)\) and linear layer \(F\) :
\[
\mathbb{E}\left[\phi_{\theta}(A) \mid Z\right] \approx F \boldsymbol{\phi}_{\zeta}(Z)
\]
with \(R R\) loss
\[
\mathbb{E}\left[\left\|\phi_{\theta}(A)-F \boldsymbol{\phi}_{\zeta}(Z)\right\|^{2}\right]+\lambda_{1}\|F\|_{H S}^{2}
\]
\(\hat{F}_{\theta, \zeta}\) in closed form wrt \(\phi_{\theta}, \phi_{\zeta}\) :
\[
\begin{array}{ll}
\hat{F}_{\theta, \zeta}=C_{A Z}\left(C_{Z Z}+\lambda_{1} I\right)^{-1} & C_{A Z}=\mathbb{E}\left[\phi_{\theta}(A) \phi_{\zeta}^{\top}(Z)\right] \\
& C_{Z Z}=\mathbb{E}\left[\phi_{\zeta}(Z) \phi_{\zeta}^{\top}(Z)\right]
\end{array}
\]

Plug \(\hat{F}_{\theta, \zeta}\) into S1 loss, take gradient steps for \(\zeta(\ldots\) but not \(\theta \ldots\) )

\section*{Stage 2: IV regression}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\mathcal{L}_{2}(\gamma, \theta)=\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\]

\section*{Stage 2: IV regression}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\begin{aligned}
\mathcal{L}_{2}(\gamma, \theta) & =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2} \\
& =\mathbb{E}_{Y Z}[(Y-\gamma^{\top} \underbrace{\hat{F}_{\theta, \zeta} \phi_{\zeta}(Z)}_{\text {Stage } 1})^{2}]+\lambda_{2}\|\gamma\|^{2}
\end{aligned}
\]

\section*{Stage 2: IV regression}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\begin{aligned}
\mathcal{L}_{2}(\gamma, \theta) & =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2} \\
& =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \hat{F}_{\theta, \zeta} \phi_{\zeta}(Z)\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\end{aligned}
\]
\(\hat{\gamma}_{\theta}\) in closed form wrt \(\phi_{\theta}\) :
\[
\begin{aligned}
& \hat{\gamma}_{\theta}:=\widetilde{C}_{Y Z}\left(\widetilde{C}_{Z Z}+\lambda_{2} I\right)^{-1} \widetilde{C}_{Y Z} \\
&=\mathbb{E}\left[Y\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]^{\top}\right] \\
& \widetilde{C}_{Z Z}=\mathbb{E}\left[\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]^{\top}\right]
\end{aligned}
\]

\section*{Stage 2: IV regression}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\begin{aligned}
\mathcal{L}_{2}(\gamma, \theta) & =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2} \\
& =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \hat{F}_{\theta, \zeta} \phi_{\zeta}(Z)\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\end{aligned}
\]
\(\hat{\gamma}_{\theta}\) in closed form wrt \(\phi_{\theta}\) :
\[
\begin{aligned}
& \hat{\gamma}_{\theta}:=\widetilde{C}_{Y Z}\left(\widetilde{C}_{Z Z}+\lambda_{2} I\right)^{-1} \widetilde{C}_{Y Z} \\
&=\mathbb{E}\left[Y\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]^{\top}\right] \\
& \widetilde{C}_{Z Z}=\mathbb{E}\left[\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]^{\top}\right]
\end{aligned}
\]

From linear final layers in Stages 1,2:
Learn \(\phi_{\theta}(A)\) by plugging \(\hat{\gamma}_{\theta}\) into \(S 2\) loss, taking gradient steps for \(\theta\)

\section*{Stage 2: IV regression}

Stage 2 regression (IV): learn NN features \(\phi_{\theta}(A)\) and linear layer \(\gamma\) to obtain \(Y\) with RR loss:
\[
\begin{aligned}
\mathcal{L}_{2}(\gamma, \theta) & =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \mathbb{E}\left[\phi_{\theta}(A) \mid Z\right]\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2} \\
& =\mathbb{E}_{Y Z}\left[\left(Y-\gamma^{\top} \hat{F}_{\theta, \zeta} \phi_{\zeta}(Z)\right)^{2}\right]+\lambda_{2}\|\gamma\|^{2}
\end{aligned}
\]
\(\hat{\gamma}_{\theta}\) in closed form wrt \(\phi_{\theta}\) :
\[
\begin{aligned}
& \hat{\gamma}_{\theta}:=\widetilde{C}_{Y Z}\left(\widetilde{C}_{Z Z}+\lambda_{2} I\right)^{-1} \widetilde{C}_{Y Z} \\
&=\mathbb{E}\left[Y\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]^{\top}\right] \\
& \widetilde{C}_{Z Z}=\mathbb{E}\left[\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]\left[\hat{F}_{\theta, \zeta} \boldsymbol{\phi}_{\zeta}(Z)\right]^{\top}\right]
\end{aligned}
\]

From linear final layers in Stages 1,2:
Learn \(\phi_{\theta}(A)\) by plugging \(\hat{\gamma}_{\theta}\) into \(S 2\) loss, taking gradient steps for \(\theta\)
....but \(\zeta\) changes with \(\theta\)
...so alternate first and second stages until convergence.

\section*{Neural IV in reinforcement learning}

(a) Catch

(b) Mountain Car

(c) Cartpole

(a) Cartpole Swingup

(b) Cheetah Run

(c) Humanoid Run

(d) Walker Walk

Policy evaluation: want Q-value:
\[
Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid S_{0}=s, A_{0}=a\right]
\]
for policy \(\pi(A \mid S=s)\).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite Tassa et al. (2020). dm_control:Software and tasks for continuous control.

\section*{Application of IV: reinforcement learning}

Q value is a minimizer of Bellman loss
\[
\mathcal{L}_{\text {Bellman }}=\mathbb{E}_{S A R}\left[\left(R+\gamma\left[\mathbb{E}\left[Q^{\pi}\left(S^{\prime}, A^{\prime}\right) \mid S, A\right]-Q^{\pi}(S, A)\right)^{2}\right]\right.
\]

Corresponds to "IV-like" problem
\[
\mathcal{L}_{\text {Bellman }}=\mathbb{E}_{Y Z}\left[(Y-\mathbb{E}[f(X) \mid Z])^{2}\right]
\]
with
\[
\begin{aligned}
Y & =R \\
X & =\left(S^{\prime}, A^{\prime}, S, A\right) \\
Z & =(S, A) \\
f_{0}(X) & =Q^{\pi}(s, a)-\gamma Q^{\pi}\left(s^{\prime}, a^{\prime}\right)
\end{aligned}
\]

\section*{RL experiments and data:}
https://github.com/liyuan9988/IVOPEwithACME
Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressiorg@申B8 Deep Offline Policy Evaluation.

\section*{Results on mountain car problem}


Good performance compared with FQE.
Warning: IV assumption can fail when regression underfits. See papers for details.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressior \(\mathrm{F}_{\mathrm{f}} 9 \mathrm{z} 8\) Deep Offline Policy Evaluation.
...but seriously, what if there are hidden confounders?

\section*{The proxy correction}

Unobserved \(\varepsilon\) with (possibly) complex nonlinear effects on \(A, Y\) The definitions are:
\(■ \varepsilon\) : unobserved confounder.
- A: treatment

■ \(Y\) : outcome

If \(\varepsilon\) were observed (which it isn't),

\[
\mathbb{E}\left[Y^{(a)}\right]=\int \mathbb{E}[Y \mid \varepsilon, a] d p(\varepsilon)
\]

\section*{The proxy correction}

Unobserved \(\varepsilon\) with (possibly) complex nonlinear effects on \(A, Y\) The definitions are:
\(■ \varepsilon\) : unobserved confounder.
- A: treatment


Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured confounder.
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.

\section*{The proxy correction}

Unobserved \(\varepsilon\) with (possibly) complex nonlinear effects on \(A, Y\) The definitions are:
\(■ \varepsilon\) : unobserved confounder.
- \(A\) : treatment

■ \(Y\) : outcome
■ Z: treatment proxy
■ \(W\) outcome proxy
Structural assumption:

\[
\begin{aligned}
& W \Perp(Z, A) \mid \varepsilon \\
& Y \Perp Z \mid(A, \varepsilon)
\end{aligned}
\]
\(\Longrightarrow\) Can recover \(E\left(Y^{(a)}\right)\) from observational data!
Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured confounder.
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially

\section*{Unobserved confounders: proxy methods}

\section*{Kernel features (ICML 2021):}
\begin{tabular}{|c|c|}
\hline axXiv.org > cs > axivi. 1105.04544 &  \\
\hline Computer Science > Machine Learning & \\
\hline Proximal Causal Learning Estimation and Moment Re & \\
\hline
\end{tabular}

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet


\title{
NN features (NeurIPS 2021):
}
```

arXiv.org > cs > arXiv:2106.03907 Sermen
Computer Science > Machine Learning
[Submitted on 7 Jun 2021 (vI), last revised 7 Dec 2021 (this version, v2)]
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation

```

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton


\section*{Code for NN and kernel proxy methods:}

\section*{Conclusions}

Neural net and kernel solutions:
■ ...for ATE, CATE, dynamic treatment effects
■ ...even for unobserved covariates/confounders (IV and proxy methods)
■ ... with treatment \(A\), covariates \(X, V\), proxies \((W, Z)\) multivariate, "complicated"
■ Convergence guarantees for kernels and NN

Not in this talk:
- Elasticities

■ Regression to potential outcome distributions over \(Y\) (not just \(\left.E\left(Y^{(a)} \mid \ldots\right)\right)\)

Code available for all methods

\section*{Research support}

Work supported by:

The Gatsby Charitable Foundation


Deepmind
(9) DeepMind

\section*{Questions?}


\section*{Counterfactual: average treatment on treated}

Conditional mean:
\(\mathbb{E}[Y \mid a, x]=\gamma_{0}(a, x)\)
Average treatment on treated:
\[
\begin{aligned}
& \theta^{A T T}\left(a, a^{\prime}\right) \\
& =\mathbb{E}\left[y^{\left(a^{\prime}\right)} \mid A=a\right]
\end{aligned}
\]


Empirical ATT:
\[
\hat{\theta}^{\mathrm{ATT}}\left(a, a^{\prime}\right)
\]

\section*{Counterfactual: average treatment on treated}

Conditional mean:
\(\mathbb{E}[Y \mid a, x]=\gamma_{0}(a, x)=\left\langle\gamma_{0}, \varphi(a) \otimes \varphi(x)\right\rangle\)
Average treatment on treated:
\[
\begin{aligned}
& \theta^{A T T}\left(a, a^{\prime}\right) \\
& =\mathbb{E}\left[y^{\left(a^{\prime}\right)} \mid A=a\right]
\end{aligned}
\]


Empirical ATT:
\[
\hat{\theta}^{\mathrm{ATT}}\left(a, a^{\prime}\right)
\]

\section*{Counterfactual: average treatment on treated}

Conditional mean:
\(\mathbb{E}[Y \mid a, x]=\gamma_{0}(a, x)\)
Average treatment on treated:
\[
\begin{aligned}
& \theta^{A T T}\left(a, a^{\prime}\right) \\
& =\mathbb{E}\left[y^{\left(a^{\prime}\right)} \mid A=a\right] \\
& =\mathbb{E}_{P}\left[\left\langle\gamma_{0}, \varphi\left(a^{\prime}\right) \otimes \varphi(X)\right\rangle \mid A=a\right] \\
& =\langle\gamma_{0}, \varphi\left(a^{\prime}\right) \otimes \underbrace{\mathbb{E}_{P}[\varphi(X) \mid A=a]}_{\mu_{X \mid A=a}}\rangle
\end{aligned}
\]


Empirical ATT:
\[
\hat{\theta}^{\mathrm{ATT}}\left(a, a^{\prime}\right)
\]

\section*{Counterfactual: average treatment on treated}

Conditional mean:
\(\mathbb{E}[Y \mid a, x]=\gamma_{0}(a, x)\)
Average treatment on treated:
\[
\begin{aligned}
& \theta^{A T T}\left(a, a^{\prime}\right) \\
& =\mathbb{E}\left[y^{\left(a^{\prime}\right)} \mid A=a\right] \\
& =\mathbb{E}_{P}\left[\left\langle\gamma_{0}, \varphi\left(a^{\prime}\right) \otimes \varphi(X)\right\rangle \mid A=a\right] \\
& =\langle\gamma_{0}, \varphi\left(a^{\prime}\right) \otimes \underbrace{\mathbb{E}_{P}[\varphi(X) \mid A=a]}_{\mu_{X \mid A=a}}\rangle
\end{aligned}
\]


Empirical ATT:
\[
\begin{aligned}
& \hat{\theta}^{\operatorname{ATT}}\left(a, a^{\prime}\right) \\
& =Y^{\top}\left(K_{A A} \odot K_{X X}+n \lambda I\right)^{-1}(K_{A a^{\prime}} \odot \underbrace{K_{X X}\left(K_{A A}+n \lambda_{1} I\right)^{-1} K_{A a}}_{\text {from } \hat{\mu}_{X \mid A=a}})
\end{aligned}
\]```


[^0]:    Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with applications to dynamical systems.
    Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as regressors.
    Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
    Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
    Learning

