Generalized Energy-Based Models

Arthur Gretton

Gatsby Computational Neuroscience Unit,
Deepmind

Columbia Statistics, 2023
Training generative models

- Have: One collection of samples X from unknown distribution P.
- Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q, MMD GAN

Role of divergence $D(P, Q)$?
Visual notation: GAN setting
Visual notation: GAN setting
Outline

Divergences \(D(P, Q) \)

- \(\phi \)-divergences (\(f \)-divergences) and a variational lower bound (KL)

Generalized energy-based models

- “Like a GAN” but incorporate critic into sample generation
- Perform better than using generator alone

Arbel, Zhou, G., Generalized Energy Based Models (ICLR 2021)
Divergences

Integral prob. metrics

\[D_\mathcal{H}(P, Q) = \sup_{g \in \mathcal{H}} |E_{X \sim P} g(X) - E_{Y \sim Q} g(Y)| \]

\(\Phi \)-divergences

\[D_\phi(P, Q) = \int_X q(x) \phi \left(\frac{p(x)}{q(x)} \right) dx \]
The ϕ-divergences

$$D_H(P, Q) = \sup_{g \in \mathcal{H}} |\mathbb{E}_{X \sim P} g(X) - \mathbb{E}_{Y \sim Q} g(Y)|$$

$$D_\phi(P, Q) = \int_X q(x) \phi \left(\frac{p(x)}{q(x)} \right) \, dx$$
The ϕ-divergences

Define the ϕ-divergence (f-divergence):

$$D_\phi(P, Q) = \int \phi \left(\frac{p(z)}{q(z)} \right) q(z) \, dz$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(u) = u \log(u)$ gives KL divergence,

$$D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz$$

$$= \int \left(\frac{p(z)}{q(z)} \right) \log \left(\frac{p(z)}{q(z)} \right) q(z) \, dz$$
The ϕ-divergences

Define the ϕ-divergence (f-divergence):

$$D_{\phi}(P, Q) = \int \phi \left(\frac{p(z)}{q(z)} \right) q(z) \, dz$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

■ **Example:** $\phi(u) = u \log(u)$ gives KL divergence,

$$D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz$$

$$= \int \left(\frac{p(z)}{q(z)} \right) \log \left(\frac{p(z)}{q(z)} \right) q(z) \, dz$$
Are ϕ-divergences good critics?

Simple example: disjoint support.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[D_{KL}(P, Q) = \infty \quad D_{JS}(P, Q) = \log 2 \]
Are ϕ-divergences good critics?

Simple example: disjoint support.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

$$D_{KL}(P, Q) = \infty \quad D_{JS}(P, Q) = \log 2$$
\(\phi \)-divergences in practice

Notation: the conjugate (Fenchel) dual

\[
\phi^*(\nu) = \sup_{u \in \mathbb{R}} \{ \nu u - \phi(u) \}.
\]

\(\phi^*(\nu) \) is negative intercept of tangent to \(\phi \) with slope \(\nu \)
ϕ-divergences in practice

Notation: the conjugate (Fenchel) dual

\[\phi^*(v) = \sup_{u \in \mathbb{R}} \{uv - \phi(u)\}. \]

For a convex l.s.c. \(\phi \) we have

\[\phi^{**}(x) = \phi(x) = \sup_{v \in \mathbb{R}} \{xv - \phi^*(v)\}. \]
\(\phi \)-divergences in practice

Notation: the conjugate (Fenchel) dual

\[
\phi^*(v) = \sup_{u \in \mathbb{R}} \{ uv - \phi(u) \}.
\]

- For a convex l.s.c. \(\phi \) we have

\[
\phi^{**}(x) = \phi(x) = \sup_{v \in \mathbb{R}} \{ xv - \phi^*(v) \}
\]

- **KL divergence:**

\[
\phi(x) = x \log(x) \quad \phi^*(v) = \exp(v - 1)
\]
A variational lower bound

A lower-bound ϕ-divergence approximation:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
A variational lower bound

A lower-bound ϕ-divergence approximation:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz$$

$$= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right)$$

$\phi^*(\nu)$ is dual of $\phi(x)$.

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz$$

$$= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right)$$

$$\geq \sup_{f \in \mathcal{H}} E_P f(X) - E_Q \phi^* (f(Y))$$

(restrict the function class)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
A variational lower bound

A lower-bound ϕ-divergence approximation:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) dz$$

$$= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right)$$

$$\geq \sup_{f \in \mathcal{H}} E_P f(X) - E_Q \phi^* (f(Y))$$

(restrict the function class)

Bound tight when:

$$f^\circ(z) = \partial \phi \left(\frac{p(z)}{q(z)} \right)$$

if ratio defined.

Case of the KL

$$D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) dz$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Case of the KL

\[D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz \]

\[\geq \sup_{f \in \mathcal{H}} -\mathbb{E}_P f(X) + 1 - \mathbb{E}_Q \exp \left(-f(Y) \right) \left[\phi^*(-f(Y)+1) \right] \]

Case of the KL

\[D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz \]

\[\geq \sup_{f \in \mathcal{H}} -E_P f(X) + 1 - E_Q \exp(-f(Y)) \]

Bound tight when:

\[f^\circ(z) = -\log \frac{p(z)}{q(z)} \]

if ratio defined.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Case of the KL

\[D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz \]

\[\geq \sup_{f \in \mathcal{H}} - \mathbb{E}_P f(X) + 1 - \mathbb{E}_Q \exp(-f(Y)) \]

\[\approx \sup_{f \in \mathcal{H}} \left[- \frac{1}{n} \sum_{j=1}^{n} f(x_i) - \frac{1}{n} \sum_{i=1}^{n} \exp(-f(y_i)) \right] + 1 \]

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Case of the KL

\[D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz \]

\[\geq \sup_{f \in \mathcal{H}} -E_P f(X) + 1 - E_Q \exp(-f(Y)) \]

\[\approx \sup_{f \in \mathcal{H}} \left[-\frac{1}{n} \sum_{j=1}^{n} f(x_i) - \frac{1}{n} \sum_{i=1}^{n} \exp(-f(y_i)) \right] + 1 \]

This is a

KL

Approximate

Lower-bound

Estimator.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Case of the KL

\[D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz \]

\[\geq \sup_{f \in \mathcal{H}} -\mathbb{E}_P f(X) + 1 - \mathbb{E}_Q \exp(-f(Y)) \]

\[\approx \sup_{f \in \mathcal{H}} \left[-\frac{1}{n} \sum_{j=1}^{n} f(x_i) - \frac{1}{n} \sum_{i=1}^{n} \exp(-f(y_i)) \right] + 1 \]

This is a

K
A
L
E

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Case of the KL

$$D_{KL}(P, Q) = \int \log \left(\frac{p(z)}{q(z)} \right) p(z) \, dz$$

$$\geq \sup_{f \in \mathcal{H}} -\mathbb{E}_P f(X) + 1 - \mathbb{E}_Q \exp(-f(Y))$$

$$\approx \sup_{f \in \mathcal{H}} \left[-\frac{1}{n} \sum_{j=1}^{n} f(x_i) - \frac{1}{n} \sum_{i=1}^{n} \exp(-f(y_i)) \right] + 1$$

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Empirical properties of KALE

\[KALE(\mathcal{P}, \mathcal{Q}; \mathcal{H}) = \sup_{f \in \mathcal{H}} -E_P f(X) - E_Q \exp(-f(Y)) + 1 \]

\[f = \langle w, \phi(x) \rangle_{\mathcal{H}} \quad \mathcal{H} \text{ an RKHS} \]

\[||w||_{\mathcal{H}}^2 \text{ penalized:} \]

Empirical properties of KALE

\[KALE(P, Q; \mathcal{H}) = \sup_{f \in \mathcal{H}} -E_P f(X) - E_Q \exp(-f(Y)) + 1 \]

\[f = \langle w, \phi(x) \rangle_{\mathcal{H}} \quad \mathcal{H} \text{ an RKHS} \]

\[\|w\|_{\mathcal{H}}^2 \quad \text{penalized: KALE smoothie} \]

Empirical properties of KALE

\[
KALE(P, Q; \mathcal{H}) = \sup_{f \in \mathcal{H}} E_P f(X) - E_Q \exp(-f(Y)) + 1
\]

\[
f = \langle w, \phi(x) \rangle_{\mathcal{H}} \quad \mathcal{H} \text{ an RKHS}
\]

\[
\|w\|_{\mathcal{H}}^2 \quad \text{penalized: KALE smoothie}
\]

\[
KALE(Q, P; \mathcal{H}) = 0.18
\]

Empirical properties of KALE

\[
KALE(P, Q; \mathcal{H}) = \sup_{f \in \mathcal{H}} -E_P f(X) - E_Q \exp(-f(Y)) + 1
\]

\[
f = \langle w, \phi(x) \rangle_{\mathcal{H}} \quad \mathcal{H} \text{ an RKHS}
\]

\[
\|w\|_{\mathcal{H}}^2 \quad \text{penalized: KALE smoothie}
\]

\[
KALE(Q, P; \mathcal{H}) = 0.12
\]

The KALE smoothie and “mode collapse”

- Two Gaussians with same means, different variance

Example thanks to M. Arbel and M. Rosca
Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X}:

- Compact domain \mathcal{X},
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\| \cdot \|_{\infty}$.
- If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $cf \in \mathcal{H}$ for $0 \leq c \leq C_{\text{max}}$.

Theorem: $KALE(P, Q; \mathcal{H}) \geq 0$ and $KALE(P, Q; \mathcal{H}) = 0$ iff $P = Q$.

Zhang, Liu, Zhou, Xu, and He. “On the Discrimination-Generalization Tradeoff in GANs” (ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)
Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X}:

- Compact domain \mathcal{X},
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $|| \cdot ||_{\infty}$.
- If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $cf \in \mathcal{H}$ for $0 \leq c \leq C_{\text{max}}$.

Theorem: \(KALE(P, Q; \mathcal{H}) \geq 0 \) and \(KALE(P, Q; \mathcal{H}) = 0 \) iff $P = Q$.

\mathcal{H} dense in $C(\mathcal{X})$ for $\mathcal{X} \subset \mathbb{R}^d$ when:

\[
\mathcal{H} = \text{span}\{\sigma(w \top x + b) : [w, b] \in \Theta\}
\]

\[
\sigma(u) = \max\{u, 0\}^\alpha, \quad \alpha \in \mathbb{N}, \text{ and } \{\lambda \theta : \lambda \geq 0, \theta \in \Theta\} = \mathbb{R}^{d+1}.
\]

Zhang, Liu, Zhou, Xu, and He. “On the Discrimination-Generalization Tradeoff in GANs” (ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)
Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $KALE(P, Q^n; \mathcal{H}) \to 0$ iff $Q^n \to P$ under the weak topology.
Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $KALE(P, Q^n; \mathcal{H}) \rightarrow 0$ iff $Q^n \rightarrow P$ under the weak topology.

Partial proof idea:

$$KALE(P, Q; \mathcal{H}) = - \int f \, dP - \int \exp(-f) \, dQ + 1$$

$$= \int f(x) \, dQ(x) - f(x') \, dP(x')$$

$$- \int (\exp(-f) + f - 1) \, dQ \geq 0$$

$$\leq \int f(x) \, dQ(x) - f(x') \, dP(x') \leq LW_1(P, Q)$$

Liu, Bousquet, Chaudhuri. “Approximation and Convergence Properties of Generative Adversarial Learning” (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1)
Generalized Energy-Based Models
Visual notation: GAN setting
Reminder: the generator

Radford, Metz, Chintala, ICLR 2016
Generalized Energy-Based Models - the idea

Target distribution P

Arbel, Zhou, G. (ICLR 2021)
Generalized Energy-Based Models - the idea

GAN (generator)

\[X \sim Q_\theta \quad \iff \quad X = B_\theta(Z), \quad Z \sim \eta, \]

correct support but wrong mass
Generalized Energy-Based Models - the idea

Log energy function and Q_θ

Key:
- **Orange**: increase mass
- **Blue**: reduce mass

Arbel, Zhou, G. (ICLR 2021)
Generalized Energy-Based Models - the idea

Target distribution P and GAN (generator) Q_θ, wrong support and wrong mass

Arbel, Zhou, G. (ICLR 2021)
Generalized Energy-Based Models - the idea

Log energy function, P, and Q_θ

Key:
- **Orange**: increase mass
- **Blue**: reduce mass

Arbel, Zhou, G. (ICLR 2021)
Generalized energy-based models

Define a model $Q_{B\theta,E}$ as follows:

- Sample from generator with parameters θ
 \[X \sim Q_\theta \quad \iff \quad X = B_\theta(Z), \quad Z \sim \eta \]

- Reweight the samples according to importance weights:
 \[f_{Q,E}(x) = \frac{\exp(-E(x))}{Z_{Q,E}}, \quad Z_{Q,E} = \int \exp(-E(x)) \, dQ_\theta(x), \]
 where $E \in \mathcal{E}$, the energy function class.
 $f_{Q,E}(x)$ is Radon-Nikodym derivative of $Q_{B\theta,E}$ wrt Q_θ.

- When Q_θ has density wrt Lebesgue on \mathcal{X}, standard energy-based model (special case)

- Sample from model via HMC on posterior of Z.

Arbel, Zhou, G. (ICLR 2021)
How do we learn the energy E?
How do we learn the energy E?

Fit the model using **Generalized Log-Likelihood**:

$$
\mathcal{L}_{P,Q}(E) := \int \log(f_{Q,E}) dP = - \int E dP - \log Z_{Q,E}
$$

- When $KL(P, Q_\theta)$ well defined, above is **Donsker-Varadhan** lower bound on KL
 - tight when $E(z) = -\log(p(z)/q(z))$.
- However, **Generalized Log-Likelihood** still defined when P and Q_θ mutually singular (as long as E smooth)!
KALE and the energy function

Fit the model using Generalized Log-Likelihood:

\[L_{P,Q}(E) := \int \log(f_{Q,E}) \, dP = - \int E \, dP - \log \int \exp(-E) \, dQ_{\theta} \]
KALE and the energy function

Fit the model using Generalized Log-Likelihood:

\[\mathcal{L}_{P,Q}(E) := \int \log(f_{Q,E}) \, dP = - \int E \, dP - \log \int \exp(-E) \, dQ_{\theta} \]

One last trick... (convexity of exponential)

\[- \log \int \exp(-E) \, dQ_{\theta} \geq -c - e^{-c} \int \exp(-E) \, dQ_{\theta} + 1\]

tight whenever \(c = \log \int \exp(-E) \, dQ_{\theta} \).
KALE and the energy function

Fit the model using Generalized Log-Likelihood:

\[
\mathcal{L}_{P, Q}(E) := \int \log(f_{Q, E}) dP = -\int E dP - \log \int \exp(-E) dQ_{\theta}
\]

One last trick... (convexity of exponential)

\[
-\log \int \exp(-E) dQ_{\theta} \geq -c - e^{-c} \int \exp(-E) dQ_{\theta} + 1
\]
tight whenever \(c = \log \int \exp(-E) dQ_{\theta} \).

Generalized Log-Likelihood has the lower bound:

\[
\mathcal{L}_{P, Q}(E) \geq -\int (E + c) dP - \int \exp(-E - c) dQ_{\theta} + 1
\]

\[
:= \mathcal{F}(P, Q_{\theta}; E + \mathbb{R})
\]
KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,Q}(E) := \int \log(f_{Q,E}) \, dP = - \int E \, dP - \log \int \exp(-E) \, dQ_{\theta}$$

One last trick...(convexity of exponential)

$$- \log \int \exp(-E) \, dQ_{\theta} \geq -c - e^{-c} \int \exp(-E) \, dQ_{\theta} + 1$$

tight whenever $c = \log \int \exp(-E) \, dQ_{\theta}$.

Generalized Log-Likelihood has the lower bound:

$$\mathcal{L}_{P,Q}(E) \geq - \int (E + c) \, dP - \int \exp(-E - c) \, dQ_{\theta} + 1$$

$$:= \mathcal{F}(P, Q_{\theta}; \mathcal{E} + \mathbb{R})$$

This is the KALE! with function class $\mathcal{E} + \mathbb{R}$.
KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$\mathcal{L}_{P,Q}(E) := \int \log(f_{Q,E}) \, dP = - \int E \, dP - \log \int \exp(-E) \, dQ$$

One last trick... (convexity of exponential)

$$- \log \int \exp(-E) \, dQ \geq -c - e^{-c} \int \exp(-E) \, dQ + 1$$

tight whenever \(c = \log \int \exp(-E) \, dQ \).

Generalized Log-Likelihood has the lower bound:

$$\mathcal{L}_{P,Q}(E) \geq - \int (E + c) \, dP - \int \exp(-E - c) \, dQ + 1$$

$$:= \mathcal{F}(P, Q_\theta; E + \mathbb{R})$$

Jointly maximizing yields the maximum likelihood energy \(E^* \) and corresponding \(c^* = \log \int \exp(-E) \, dQ \).
Training the base measure (generator)

Recall the generator:

\[X = B_\theta(Z), \quad Z \sim \eta \]

Define: \(\mathcal{K}(\theta) := \mathcal{F}(P, Q_\theta; \mathcal{E} + \mathbb{R}) \)
Training the base measure (generator)

Recall the generator:

\[X = B_\theta(Z), \quad Z \sim \eta \]

Define: \(\kappa(\theta) := \mathcal{F}(P, Q_\theta; E + \mathbb{R}) \)

Theorem: \(\kappa \) is lipschitz and differentiable for almost all \(\theta \in \Theta \) with:

\[
\nabla \kappa(\theta) = Z_{Q,E}^{-1} \int \nabla_x E^*(B_\theta(z)) \nabla_\theta B_\theta(z) \exp(-E^*(B_\theta(z))) \eta(z) \, dz.
\]

where \(E^* \) achieves supremum in \(\mathcal{F}(P, Q; E + \mathbb{R}) \).
Training the base measure (generator)

Recall the generator:

$$X = B_\theta(Z), \quad Z \sim \eta$$

Define: $\mathcal{K}(\theta) := \mathcal{F}(P, Q_\theta; \mathcal{E} + \mathbb{R})$

Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with:

$$\nabla \mathcal{K}(\theta) = Z_Q^{-1, E^*} \int \nabla_x E^*(B_\theta(z)) \nabla_\theta B_\theta(z) \exp(-E^*(B_\theta(z))) \eta(z) dz.$$

where E^* achieves supremum in $\mathcal{F}(P, Q; \mathcal{E} + \mathbb{R})$.

Assumptions:

- Functions in \mathcal{E} parametrized by $\psi \in \Psi$, where Ψ compact,
 - jointly continuous w.r.t. (ψ, x), L-lipschitz and L-smooth w.r.t. x.
- $(\theta, z) \mapsto B_\theta(z)$ jointly continuous wrt (θ, z), $z \mapsto B_\theta(z)$ uniformly Lipschitz w.r.t. z, lipschitz and smooth wrt θ (see paper: constants depend on z)
Sampling from the model

Consider end-to-end model $Q_{B_\theta,E}$, where recall that $X = B_\theta(Z)$, $Z \sim \eta$,

$$f_{B,E}(x) := \frac{\exp(-E(x))}{Z_{Q,E}}$$
Sampling from the model

Consider end-to-end model $Q_{\theta,E}$, where recall that $X = B_{\theta}(Z), \ Z \sim \eta$,

$$f_{B,E}(x) := \frac{\exp(-E(x))}{Z_{Q,E}}$$

For a test function g,

$$\int g(x) dQ_{B,E}(x) = \int g(B(z)) f_{B,E}(B(z)) \eta(z) dz$$

Posterior latent distribution therefore

$$\nu_{B,E}(z) = \eta(z) f_{B,E}(B(z))$$
Sampling from the model

Consider end-to-end model $Q_{B\theta,E}$, where recall that $X = B_\theta(Z), \quad Z \sim \eta,$

$$f_{B,E}(x) := \frac{\exp(-E(x))}{Z_{Q,E}}$$

For a test function g,

$$\int g(x) dQ_{B,E}(x) = \int g(B(z)) f_{B,E}(B(z)) \eta(z) dz$$

Posterior latent distribution therefore

$$\nu_{B,E}(z) = \eta(z) f_{B,E}(B(z))$$

Sample $z \sim \nu_{B,E}$ via Langevin diffusion-derived algorithms (MALA, ULA, HMC,...) to exploit gradient information.

Generate new samples in \mathcal{X} via

$$X \sim Q_{B,E} \iff Z \sim \nu_{B,E}, \quad X = B_\theta(Z).$$
Experiments
Examples: sampling at modes

Tempered GEBM Cifar10 samples at different stages of sampling using a Kinetic Langevin Algorithm (KLA). Early samples → late samples. Model run at *low temperature* ($\beta = 100$) for better quality samples.
Sampling at modes: results

The relative FID score: \(\frac{\text{FID}(Q_{B_\theta}, E)}{\text{FID}(B_\theta)} \)

For a given generator \(B_\theta \) and energy \(E \), samples always better (FID score) than generator alone.
Examples: moving between modes

Tempered GEBM Cifar10 samples at different stages of sampling using KLA. Early samples → late samples. Model run at *lower friction* (but still low temperature, $\beta = 100$) for mode exploration.
Summary

- Generalized energy based model:
 - End-to-end model incorporating generator and critic
 - Always better samples than generator alone.

ICLR 2021

https://github.com/MichaelArbel/GeneralizedEBM
Summary

- **Generalized energy based model:**
 - End-to-end model incorporating generator and critic
 - Always better samples than generator alone.

- **ICLR 2021**

https://github.com/MichaelArbel/GeneralizedEBM
Research support

Work supported by:

The Gatsby Charitable Foundation

Deepmind
Questions?
Abstract

We construct a Wasserstein gradient flow of the maximum mean discrepancy (MMD) and study its convergence properties. The MMD is an integral probability metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a metric on probability measures for a sufficiently rich RKHS. We obtain conditions for convergence of the gradient flow towards a global optimum, that can be related to particle transport when optimizing neural networks. We also propose a way to regularize this MMD flow, based on an injection of noise in the gradient. This algorithmic fix comes with theoretical and empirical evidence. The practical implementation of the flow is straightforward, since both the MMD and its gradient have simple closed-form expressions, which can be easily estimated with samples.

1 Introduction

We address the problem of defining a gradient flow on the space of probability distributions endowed with the Wasserstein metric, which transports probability mass from a starting distribution μ to a target distribution ν. Our flow is defined on the maximum mean discrepancy (MMD) $\mathbb{E}_{x \sim \mu} f(x) - \mathbb{E}_{x \sim \nu} f(x)$, an integral probability metric which uses the unit ball in a characteristic RKHS as its witness function class. Specifically, we choose the function in the witness class that has the largest difference in expectation under μ and ν: this difference constitutes the MMD. The idea of descending a gradient flow over the space of distributions can be traced back to the seminal work of [27], who revealed that the Fokker-Planck equation is a gradient flow of the Kullback-Leibler divergence. Its time-discretization leads to the celebrated Langevin Monte Carlo algorithm, which comes with strong convergence guarantees (see [16, 17]), but requires the knowledge of an analytical form of the target μ. A more recent gradient flow approach, Stein Variational Gradient Descent (SVGD) [36], also leverages this analytical μ.

The study of particle flows defined on the MMD relates to two important topics in modern machine learning. The first is in training Implicit Generative Models, notably generative adversarial networks [20]. Integral probability metrics have been used extensively as critic functions in this setting: these include the Wasserstein distance [3, 19, 24] and maximum mean discrepancy [2, 4, 6, 18, 32, 34]. In [39, Section 3.3], a connection between IGMs and particle transport is proposed, where it is shown that gradient flow on the witness function of an integral probability metric takes a similar form to the generator update in a GAN. The critic IPM in this case is the Kernel Sobolev Discrepancy (KSD), which has an additional gradient norm constraint on the witness function compared with the MMD. It is intended as an approximation to the negative Sobolev distance from the optimal transport literature [42, 43, 56]. There remain certain differences between gradient flow and GAN training, however. First, and most obviously, gradient flow can be approximated by representing ν as a set of particles,
Sanity check: reduction to EBM case

Base measure B_θ is real NVP with closed-form density.