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The problem

CIFAR-10 test set (Krizhevsky 2009)

X � P
CIFAR-10.1 (Recht+ ICML 2019)

Y � Q

Are the distributions P and Q the same?
Remember that MMD(P ;Q) = 0 iff P = Q
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Estimating the MMD

MMD(P ;Q)2 = k�P � �Qk2

= h�P ; �P i � 2h�P ; �Qi+ h�Q ; �Qi
= E

�h'(X ); '(X 0)i � 2h'(X ); '(Y )i+ h'(Y ); '(Y 0)i�
= E

�
k(X ;X 0)� 2k(X ;Y ) + k(Y ;Y 0)

�
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Estimating the MMD
Dogs (= P) and fish (= Q) example
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )

MMD(P ;Q)2 = E
h
k(dogi ;dogj ) + k(fishi ;fishj )� 2k(dogi ;fishj )

i

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(dogi ;dogj )

+
1

n(n � 1)

X
i 6=j

k(fishi ;fishj )

� 2
n2

X
i ;j

k(dogi ;fishj )
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Using a divergence estimator

CIFAR-10 test set (Krizhevsky 2009)

X � P
CIFAR-10.1 (Recht+ ICML 2019)

Y � Q

Say we get \MMD
2
= 0:09116

...great. Is the true MMD zero? Equivalently: is P = Q?
We need to know “how random” \MMD

2
is: : :
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Behavior of\MMD
2
when P 6= Q

P , Q Laplace with different variances in y
Draw n = 200 i.i.d samples from P and Q
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Behavior of\MMD
2
when P 6= Q

P , Q Laplace with different variances in y
Draw n = 200 new i.i.d samples from P and Q
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Behavior of\MMD
2
when P 6= Q

P , Q Laplace with different variances in y
Draw n = 200 i.i.d samples from P and Q , 150 times
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Behavior of\MMD
2
when P 6= Q

P , Q Laplace with different variances in y
Draw n = 200 i.i.d samples from P and Q , 3000 times
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Asymptotics of\MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

p
n
\MMD

2 �MMD(P ;Q)

�H1

D�! N (0; 1);

where �2H1
=n is asymptotic variance (depends on P , Q , k).
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Behavior of\MMD
2
when P = Q

What about when P and Q are the same?
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Behavior of\MMD
2
when P = Q

Case of P = Q = N (0; 1)
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Asymptotics of\MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1X
l=1

�l

h
z 2
l � 2

i
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where

�i i (x 0) =

Z
X

~k(x ; x 0)| {z }
centered

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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Statistical testing

A summary of the asymptotics:
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n MMD2(X, Y)
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Statistical testing

Test construction: (Gretton+, JMLR 2012)
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How do we get the test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj )

+
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get the test threshold c�?

Permuted dog and fish samples (merdogs):

13/27



How do we get the test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

X
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�

2
n2

X
i ;j

k(~xi ;~yj )

This simulates P = Q

Repeat, set c� to quantile

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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k(ỹi, ỹj)
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Choosing a kernel for the test
Simple choice: exponentiated quadratic

k(x ; y) = exp

�
� 1
2�2

kx � yk2
�

Characteristic for any �: for any P and Q , power ! 1 as n !1

But choice of � is very important for finite n . . .
. . . and some problems (e.g. images) might have no good choice for �
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Choosing a kernel for the test

Often helpful to use a relevant representation � : X ! Rd , eg:

k(x ; y) = ktop(�(x );�(y))

� Take � as predictions of a pretrained classifier on a related domain
Related to Adversarial Accuracy (Yang+ ICLR 2017) and Inception
Score (Salimans+ NeurIPS 2016)

.

We’ll come back to this!
� Take � as late hidden layer from pretrained related classifier

KID (Bińkowski, Sutherland+ ICLR 2018), Xu+ (arXiv:1806.07755)
Closely related to FID (Heusel+ NeurIPS 2017) but
much nicer statistical properties,
more correlated with human judgement (Zhou, Gordon+ NeurIPS 2019)
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Choosing a kernel for the test

Bau et al. (ICCV 2019) compare counts of pixel categories
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What about tests for other distances?

Sometimes, nice closed forms for threshold (like a t test)

Asymptotic behavior of KALE, Wasserstein, . . .mostly unknown

But permutation tests usually work!
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Choosing the best test
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The best test for the job

A test’s power depends on P and Q (and n)
Many MMDs have power ! 1 as n !1 for any (fixed) problem
� But, for many P and Q , will have terrible power with reasonable n !

Can maybe pick a good kernel manually for a given problem
Can’t get one that has good finite-sample power for all problems
� No one test can have all that power
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Choosing test power
Best test (of level �) is the one with highest test power

0 1 2 3 4 5 6 7 8
n MMD2(X, Y)

pr
ob
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ty
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en
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ty

c

reject H0 (say )don't reject H0

false rejection rate: want 

power: true rejection rate

=
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Optimizing MMD for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

= Pr1

0
@pn
\MMD

2 �MMD2

�H1

>
ĉ�p
n�H1

�
p

nMMD2

�H1

1
A

! �

 p
n

MMD2

�H1

� c�p
n�H1

!

ĉ� is an estimate of the test threshold c�
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Optimizing MMD for test power

The power of our test (Pr1 denotes probability under P 6= Q):
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ĉ� is an estimate of the test threshold c�

� is the CDF of the standard normal distribution
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Optimizing MMD for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

= Pr1

0
@pn
\MMD

2 �MMD2

�H1

>
ĉ�p
n�H1

�
p

nMMD2

�H1

1
A

! �

 p
n

MMD2

�H1

� c�p
n�H1

!

For large n , second term is negligible!
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Optimizing MMD for test power
The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

= Pr1

0
@pn
\MMD

2 �MMD2

�H1

>
ĉ�p
n�H1

�
p

nMMD2

�H1

1
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! �

 p
n

MMD2

�H1

� c�p
n�H1

!

To maximize test power, choose k to maximize (Sutherland+ ICLR 2017)

MMD2(P ;Q)

�H1(P ;Q)

� Estimator is differentiable in kernel parameters!
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Data splitting

X � P Y � Q

Choose a kernel k

maximizing \MMD
2

�̂H1

Use chosen k for MMD test
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Learning a kernel helps a lot
Even just learning a bandwidth. . . (Sutherland+ ICLR 2017)

" = 6
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. . . but you can learn a lot more: k�(x ; y) = ktop(��(x );��(y))
� Learning a deep kernel for CIFAR-10 vs CIFAR-10.1 rejects the null
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Learning a kernel helps a lot
Even just learning a bandwidth. . . (Sutherland+ ICLR 2017)

. . . but you can learn a lot more: k�(x ; y) = ktop(��(x );��(y))
� Learning a deep kernel for CIFAR-10 vs CIFAR-10.1 rejects the null

CIFAR-10 test set (Krizhevsky 2009)

X � P
CIFAR-10.1 (Recht+ ICML 2019)

Y � Q
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Alternative approach: Classifier two-sample tests
Train a classifier f : X ! f1;�1g on P from Q
Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)

X � P Y � Q

Train a classifer f

Evaluate accuracy of f

Almost exactly equivalent:

kf (x ; y) =
1
4
1(f (x ) > 0) 1(f (y) > 0)

gives

MMD(P ;Q) =

����accuracy�1
2

����
� Intermediate option: k(x ; y) = f (x ) f (y)

Also trains for cross-entropy, instead of power directly(ish)

Empricially: deep kernel > linear > 0-1

, \MMD
2

�̂H1
> cross-entropy
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2

����
� �H1 decreases with acc: maximizing MMD2

�H1
exactly maximizes power
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Also trains for cross-entropy, instead of power directly(ish)
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Interpreting the learned kernel

MNIST samples Samples from a GAN

25/27



Interpreting the learned kernel

MNIST samples Samples from a GAN

25/27



Interpreting the learned kernel

MNIST samples Samples from a GAN

ARD map

Power for optimized ARD
kernel: 1.00 at � = 0:01

Power for optimized RBF
kernel: 0.57 at � = 0:01
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Interpreting points with largest witness function values

(Sutherland+ ICLR 2017)
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Interpreting points with largest witness function values

(Kim+ NeurIPS 2016)
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Main references and further reading
MMD asymptotics and test construction:
� Gretton, Borgwardt, Rasch, Schölkopf, Smola. A kernel two-sample test (2012)

Kernels for tests on images:
� Bińkowski, Sutherland, Arbel, Gretton. Demystifying MMD GANs (2018)
� Bau, Zhu, Wulff, Peebles, Strobelt, Zhou, Torralba. Seeing What a GAN Cannot

Generate (2019)

Another approach: random 1d projection is almost surely consistent
� Heller, Heller. Multivariate tests of association based on univariate tests (2016)

Optimizing test kernels / classifiers:
� Sutherland, Tung, Strathmann, De, Ramdas, Smola, Gretton. Generative Models

and Model Criticism via Optimized Maximum Mean Discrepancy (2017)
Also our not-quite-on-arXiv-yet followup. . .
(with Feng Liu, Wenkai Xu, Jie Lu, Guangquang Zhang)

� Lopez-Paz, Oquab. Revisiting Classifier Two-Sample Tests (2017)

Interpreting via witness functions:
� Lloyd, Ghahramani. Statistical Model Criticism using Kernel Two Sample Tests

(2015)
� Kim, Khanna, Koyejo. Examples are not Enough, Learn to Criticize! Criticism for

Interpretability (2016)
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