Two-Sample Testing
The problem

CIFAR-10 test set (Krizhevsky 2009)

\[X \sim P \]

CIFAR-10.1 (Recht+ ICML 2019)

\[Y \sim Q \]
The problem

CIFAR-10 test set (Krizhevsky 2009) CIFAR-10.1 (Recht+ ICML 2019)

\[X \sim P \]

\[Y \sim Q \]

Are the distributions \(P \) and \(Q \) the same?
The problem

CIFAR-10 test set (Krizhevsky 2009) CIFAR-10.1 (Recht+ ICML 2019)

\[X \sim P \quad Y \sim Q \]

- Are the distributions \(P \) and \(Q \) the same?
- Remember that \(\text{MMD}(P, Q) = 0 \) iff \(P = Q \)
Estimating the MMD

\[
\text{MMD}(P, Q)^2 = \|\mu_P - \mu_Q\|^2
\]
Estimating the MMD

\[
\text{MMD}(P, Q)^2 = \|\mu_P - \mu_Q\|^2 \\
= \langle \mu_P, \mu_P \rangle - 2\langle \mu_P, \mu_Q \rangle + \langle \mu_Q, \mu_Q \rangle
\]
Estimating the MMD

\[\text{MMD}(P, Q)^2 = \|\mu_P - \mu_Q\|^2 \]
\[= \langle \mu_P, \mu_P \rangle - 2 \langle \mu_P, \mu_Q \rangle + \langle \mu_Q, \mu_Q \rangle \]
\[= \mathbb{E} \left[\langle \phi(X), \phi(X') \rangle - 2 \langle \phi(X), \phi(Y) \rangle + \langle \phi(Y), \phi(Y') \rangle \right] \]
Estimating the MMD

\[MMD(P, Q)^2 = \|\mu_P - \mu_Q\|^2 \]

\[= \langle \mu_P, \mu_P \rangle - 2\langle \mu_P, \mu_Q \rangle + \langle \mu_Q, \mu_Q \rangle \]

\[= \mathbb{E} \left[\langle \varphi(X), \varphi(X') \rangle - 2\langle \varphi(X), \varphi(Y) \rangle + \langle \varphi(Y), \varphi(Y') \rangle\right] \]

\[= \mathbb{E} \left[k(X, X') - 2k(X, Y) + k(Y, Y')\right] \]
Estimating the MMD

- Dogs ($= P$) and fish ($= Q$) example
- Each entry is one of $k(\text{dog}_i, \text{dog}_j)$, $k(\text{dog}_i, \text{fish}_j)$, or $k(\text{fish}_i, \text{fish}_j)$
Estimating the MMD

- Dogs (= \(P \)) and fish (= \(Q \)) example
- Each entry is one of \(k(\text{dog}_i, \text{dog}_j) \), \(k(\text{dog}_i, \text{fish}_j) \), or \(k(\text{fish}_i, \text{fish}_j) \)
- \(MMD(P, Q)^2 = \mathbb{E} \left[k(\text{dog}_i, \text{dog}_j) + k(\text{fish}_i, \text{fish}_j) - 2k(\text{dog}_i, \text{fish}_j) \right] \)
Estimating the MMD

- Dogs ($= P$) and fish ($= Q$) example
- Each entry is one of $k(\text{dog}_i, \text{dog}_j)$, $k(\text{dog}_i, \text{fish}_j)$, or $k(\text{fish}_i, \text{fish}_j)$
- $MMD(P, Q)^2 = \mathbb{E} \left[k(\text{dog}_i, \text{dog}_j) + k(\text{fish}_i, \text{fish}_j) - 2k(\text{dog}_i, \text{fish}_j) \right]$
Using a divergence estimator

CIFAR-10 test set (Krizhevsky 2009)

\[X \sim P \]

Say we get \(\hat{MMD}^2 = 0.09116 \)

CIFAR-10.1 (Recht+ ICML 2019)

\[Y \sim Q \]
Using a divergence estimator

CIFAR-10 test set (Krizhevsky 2009)

\[X \sim P \]

\[Y \sim Q \]

- Say we get \(\widehat{MMD}^2 = 0.09116 \)

CIFAR-10.1 (Recht+ ICML 2019)
Using a divergence estimator

CIFAR-10 test set (Krizhevsky 2009)

\[X \sim P \]

CIFAR-10.1 (Recht+ ICML 2019)

\[Y \sim Q \]

- Say we get \[\hat{MMD}^2 = 0.09116 \]
- ...great. Is the true MMD zero? Equivalently: is \(P = Q \)?
Using a divergence estimator

CIFAR-10 test set (Krizhevsky 2009)

\[X \sim P \]

CIFAR-10.1 (Recht+ ICML 2019)

\[Y \sim Q \]

- Say we get \(\widehat{MMD}^2 = 0.09116 \)
- ...great. Is the true MMD zero? Equivalently: is \(P = Q \)?
- We need to know “how random” \(\widehat{MMD}^2 \) is...
Behavior of \hat{MMD}^2 when $P \neq Q$

- P, Q Laplace with different variances in y
- Draw $n = 200$ i.i.d samples from P and Q
Behavior of $\hat{\text{MMD}}^2$ when $P \neq Q$

- P, Q Laplace with different variances in y
- Draw $n = 200$ i.i.d samples from P and Q

Number of MMDs: 1

\[
\sqrt{n} \times \hat{\text{MMD}}^2 = 1.2
\]
Behavior of \widehat{MMD}^2 when $P \neq Q$

- P, Q Laplace with different variances in y
- Draw $n = 200$ new i.i.d. samples from P and Q

Number of MMDs: 2

$\sqrt{n} \times \widehat{MMD}^2 = 1.5$
Behavior of MMD^2 when $P \neq Q$

- P, Q Laplace with different variances in y
- Draw $n = 200$ i.i.d samples from P and Q, 150 times

Number of MMDs: 150

![Histogram of $\sqrt{n} \times \text{MMD}^2$](image)
Behavior of $\sqrt{n} \times \hat{MMD}^2$ when $P \neq Q$

- P, Q Laplace with different variances in y
- Draw $n = 200$ i.i.d samples from P and Q, 300 times

Number of MMDs: 300
Behavior of \hat{MMD}^2 when $P \neq Q$

- P, Q Laplace with different variances in y
- Draw $n = 200$ i.i.d samples from P and Q, 3000 times

Number of MMDs: 3000
Asymptotics of $\widehat{\text{MMD}}^2$ when $P \neq Q$

When $P \neq Q$, statistic is asymptotically normal,

$$\sqrt{n} \frac{\widehat{\text{MMD}}^2 - \text{MMD}(P, Q)}{\sigma_{H_1}} \xrightarrow{D} \mathcal{N}(0, 1),$$

where $\sigma_{H_1}^2/n$ is asymptotic variance (depends on P, Q, k).
Behavior of \overrightarrow{MMD}^2 when $P = Q$

What about when P and Q are the same?
Behavior of \hat{MMD}^2 when $P = Q$

- Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 10
Behavior of \widehat{MMD}^2 when $P = Q$

- Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 20
Behavior of \overrightarrow{MMD}^2 when $P = Q$

- Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 50
Behavior of \hat{MMD}^2 when $P = Q$

- Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 100

![Graph showing the distribution of $n \times \hat{MMD}^2$]
Behavior of \widehat{MMD}^2 when $P = Q$

- Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 1000
Asymptotics of \hat{MMD}^2 when $P = Q$

Where $P = Q$, statistic has asymptotic distribution

$$n\hat{MMD}^2 \sim \sum_{l=1}^{\infty} \lambda_l \left[z_l^2 - 2 \right]$$

where

$$\lambda_l \psi_i(x') = \int_{\mathcal{X}} \tilde{k}(x, x') \psi_i(x) dP(x)$$

centered

$$z_l \sim \mathcal{N}(0, 2) \quad \text{i.i.d.}$$
Statistical testing

A summary of the asymptotics:
Test construction: (Gretton+., JMLR 2012)

![Graph illustrating statistical testing](image-url)
Statistical testing

Test construction: (Gretton+, JMLR 2012)

- don't reject H_0
- reject H_0 (say $P \neq Q$)

Probability density

- $P = Q$
- $P \neq Q$

False rejection rate: want $\leq \alpha$
Statistical testing

Test construction: (Gretton+ , JMLR 2012)

- don't reject H_0
- reject H_0 (say $P \neq Q$)

- false rejection rate: want $\leq \alpha$
- power: true rejection rate

$n \overset{\text{MMD}^2}{\rightarrow} (X, Y)$

- probability density
- C_α
How do we get the test threshold c_α?

Original empirical MMD for dogs and fish:

$$\mathbf{X} = \begin{bmatrix} \text{dog} & \text{dog} & \text{dog} & \ldots \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \text{fish} & \text{fish} & \text{fish} & \ldots \end{bmatrix}$$

$$\widehat{\text{MMD}}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(x_i, x_j)$$

$$+ \frac{1}{n(n-1)} \sum_{i \neq j} k(y_i, y_j)$$

$$- \frac{2}{n^2} \sum_{i,j} k(x_i, y_j)$$
How do we get the test threshold c_α?

Permuted **dog** and **fish** samples (**merdogs**):

\[
\tilde{X} = [\text{fish} \quad \text{dog} \quad \text{...}] \\
\tilde{Y} = [\text{dog} \quad \text{fish} \quad \text{...}]
\]
How do we get the test threshold c_α?

Permuted dog and fish samples (merdogs):

$\tilde{X} = [\text{dog, fish, ...}]$

$\tilde{Y} = [\text{dog, fish, ...}]$

$\overline{\text{MMD}}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{x}_i, \tilde{x}_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{y}_i, \tilde{y}_j) - \frac{2}{n^2} \sum_{i,j} k(\tilde{x}_i, \tilde{y}_j)$
How do we get the test threshold c_α?

Permuted dog and fish samples (merdogs):

$$\tilde{X} = \begin{bmatrix}
\text{fish} & \text{dog} & \text{fish} & \ldots \\
\end{bmatrix}$$

$$\tilde{Y} = \begin{bmatrix}
\text{dog} & \text{fish} & \text{dog} & \ldots \\
\end{bmatrix}$$

$$\widehat{\text{MMD}}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{x}_i, \tilde{x}_j)$$

$$+ \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{y}_i, \tilde{y}_j)$$

$$- \frac{2}{n^2} \sum_{i,j} k(\tilde{x}_i, \tilde{y}_j)$$
How do we get the test threshold c_α?

Permuted dog and fish samples (merdogs):

\[
\hat{X} = \begin{bmatrix}
\text{fish} & \text{dog} & \text{fish} & \ldots \\
\end{bmatrix}
\]

\[
\hat{Y} = \begin{bmatrix}
\text{dog} & \text{fish} & \text{dog} & \ldots \\
\end{bmatrix}
\]

\[
\widehat{MMD}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{x}_i, \tilde{x}_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{y}_i, \tilde{y}_j) - \frac{2}{n^2} \sum_{i,j} k(\tilde{x}_i, \tilde{y}_j)
\]

- This simulates $P = Q$
How do we get the test threshold c_α?

Permuted dog and fish samples (merdogs):

\[
\tilde{X} = \begin{bmatrix}
\text{fish} & \text{dog} & \text{fish} & \ldots
\end{bmatrix}
\]

\[
\tilde{Y} = \begin{bmatrix}
\text{dog} & \text{fish} & \text{dog} & \ldots
\end{bmatrix}
\]

\[
\overline{\text{MMD}}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{x}_i, \tilde{x}_j)
\]

\[
+ \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{y}_i, \tilde{y}_j)
\]

\[
- \frac{2}{n^2} \sum_{i,j} k(\tilde{x}_i, \tilde{y}_j)
\]

- This simulates $P = Q$
- Repeat, set c_α to quantile
Choosing a kernel for the test

- Simple choice: exponentiated quadratic

\[k(x, y) = \exp \left(-\frac{1}{2\sigma^2} ||x - y||^2 \right) \]

- *Characteristic* for any \(\sigma \): for any \(P \) and \(Q \), power \(\to 1 \) as \(n \to \infty \)
Choosing a kernel for the test

- Simple choice: exponentiated quadratic

\[k(x, y) = \exp \left(-\frac{1}{2\sigma^2}\|x - y\|^2 \right) \]

- *Characteristic* for any \(\sigma \): for any \(P \) and \(Q \), power \(\to 1 \) as \(n \to \infty \)
- But choice of \(\sigma \) is very important for finite \(n \)…
Choosing a kernel for the test

- Simple choice: exponentiated quadratic

\[k(x, y) = \exp \left(-\frac{1}{2\sigma^2} \|x - y\|^2 \right) \]

- *Characteristic* for any \(\sigma \): for any \(P \) and \(Q \), power \(\to 1 \) as \(n \to \infty \)
- But choice of \(\sigma \) is very important for finite \(n \)...

![Graph showing the kernel function](image)
Choosing a kernel for the test

- Simple choice: exponentiated quadratic

\[k(x, y) = \exp \left(-\frac{1}{2\sigma^2} \|x - y\|^2 \right) \]

- **Characteristic** for any \(\sigma \): for any \(P \) and \(Q \), power \(\rightarrow 1 \) as \(n \rightarrow \infty \)
- But choice of \(\sigma \) is very important for finite \(n \)…
Choosing a kernel for the test

- Simple choice: exponentiated quadratic

\[k(x, y) = \exp\left(-\frac{1}{2\sigma^2} \|x - y\|^2 \right) \]

- *Characteristic* for any \(\sigma \): for any \(P \) and \(Q \), power \(\to 1 \) as \(n \to \infty \)
- But choice of \(\sigma \) is very important for finite \(n \)...
Choosing a kernel for the test

- Simple choice: exponentiated quadratic
 \[k(x, y) = \exp \left(-\frac{1}{2\sigma^2} ||x - y||^2 \right) \]

- **Characteristic** for any \(\sigma \): for any \(P \) and \(Q \), power \(\to 1 \) as \(n \to \infty \)
- But choice of \(\sigma \) is very important for finite \(n \)...
- ...and some problems (e.g. images) might have no good choice for \(\sigma \)
Choosing a kernel for the test

- Often helpful to use a relevant representation $\Phi : \mathcal{X} \rightarrow \mathbb{R}^d$, eg:

$$k(x, y) = k_{\text{top}}(\Phi(x), \Phi(y))$$
Choosing a kernel for the test

- Often helpful to use a relevant representation $\Phi : \mathcal{X} \to \mathbb{R}^d$, eg:

$$k(x, y) = k_{\text{top}}(\Phi(x), \Phi(y))$$

- Take Φ as predictions of a pretrained classifier on a related domain
Choosing a kernel for the test

- Often helpful to use a relevant representation $\Phi : \mathcal{X} \rightarrow \mathbb{R}^d$, eg:

 $$k(x, y) = k_{\text{top}}(\Phi(x), \Phi(y))$$

- Take Φ as predictions of a pretrained classifier on a related domain
 - Related to Adversarial Accuracy (Yang+ ICLR 2017) and Inception Score (Salimans+ NeurIPS 2016).
Choosing a kernel for the test

- Often helpful to use a relevant representation \(\Phi : \mathcal{X} \rightarrow \mathbb{R}^d \), eg:

\[
k(x, y) = k_{\text{top}}(\Phi(x), \Phi(y))
\]

- Take \(\Phi \) as predictions of a pretrained classifier on a related domain
 - Related to Adversarial Accuracy (Yang+ ICLR 2017) and Inception Score (Salimans+ NeurIPS 2016). \textit{We’ll come back to this!}
Choosing a kernel for the test

- Often helpful to use a relevant representation $\Phi : \mathcal{X} \rightarrow \mathbb{R}^d$, eg:

$$k(x, y) = k_{\text{top}}(\Phi(x), \Phi(y))$$

- Take Φ as predictions of a pretrained classifier on a related domain
 - Related to Adversarial Accuracy (Yang+ ICLR 2017) and Inception Score (Salimans+ NeurIPS 2016). *We’ll come back to this!*
- Take Φ as late hidden layer from pretrained related classifier
 - KID (Bińkowski, Sutherland+ ICLR 2018), Xu+ (arXiv:1806.07755)
Choosing a kernel for the test

- Often helpful to use a relevant representation $\Phi : \mathcal{X} \rightarrow \mathbb{R}^d$, eg:

$$k(x, y) = k_{\text{top}}(\Phi(x), \Phi(y))$$

- Take Φ as predictions of a pretrained classifier on a related domain
 - Related to Adversarial Accuracy (Yang+ ICLR 2017) and Inception Score (Salimans+ NeurIPS 2016). We’ll come back to this!
- Take Φ as late hidden layer from pretrained related classifier
 - KID (Bińkowski, Sutherland+ ICLR 2018), Xu+ (arXiv:1806.07755)
 - Closely related to FID (Heusel+ NeurIPS 2017) but much nicer statistical properties, more correlated with human judgement (Zhou, Gordon+ NeurIPS 2019)
Choosing a kernel for the test

- Bau et al. (ICCV 2019) compare counts of pixel categories

![Graph](image.png)

(a) generated vs training object segmentation statistics
What about tests for other distances?

- Sometimes, nice closed forms for threshold (like a \(t \) test)
- Asymptotic behavior of KALE, Wasserstein, \ldots mostly unknown
- But permutation tests usually work!
Choosing the best test
A test’s power depends on P and Q (and n)

Many MMDs have power $\to 1$ as $n \to \infty$ for any (fixed) problem
 - But, for many P and Q, will have terrible power with reasonable n!
The best test for the job

- A test’s power depends on P and Q (and n)
- Many MMDs have power $\to 1$ as $n \to \infty$ for any (fixed) problem
 - But, for many P and Q, will have terrible power with reasonable n!
- Can maybe pick a good kernel manually for a given problem
- Can’t get one that has good finite-sample power for all problems
 - No one test can have all that power
Choosing test power

- Best test (of level α) is the one with highest test power

\[n \tilde{\text{MMD}}^2(X, Y) \]

Probability density

- don't reject H_0
- reject H_0 (say $P \neq Q$)

false rejection rate: want \(\leq \alpha \)

power: true rejection rate

\[C_\alpha \]
Optimizing MMD for test power

The power of our test (Pr_1 denotes probability under $P \neq Q$):

$$Pr_1(nMMD^2 > \hat{c}_\alpha)$$

- \hat{c}_α is an estimate of the test threshold c_α
Optimizing MMD for test power

The power of our test (\Pr_1 denotes probability under $P \neq Q$):

$$\Pr_1\left(n \hat{MMD}^2 > \hat{c}_\alpha\right) = \Pr_1\left(\sqrt{n} \frac{\hat{MMD}^2 - MMD^2}{\sigma_{H_1}} > \frac{\hat{c}_\alpha}{\sqrt{n\sigma_{H_1}}} - \sqrt{nMMD^2}\frac{\sigma_{H_1}}{\sigma_{H_1}}\right)$$

- \hat{c}_α is an estimate of the test threshold c_α
Optimizing MMD for test power

The power of our test (Pr_1 denotes probability under $P \neq Q$):

$$Pr_1\left(n\hat{MMD}^2 > \hat{c}_\alpha\right) = Pr_1\left(\sqrt{n}\frac{\hat{MMD}^2 - MMD^2}{\sigma_{H_1}} > \frac{\hat{c}_\alpha}{\sqrt{n}\sigma_{H_1}} - \frac{\sqrt{n}MMD^2}{\sigma_{H_1}}\right)$$

$$\rightarrow \Phi\left(\sqrt{n}\frac{MMD^2}{\sigma_{H_1}} - \frac{c_\alpha}{\sqrt{n}\sigma_{H_1}}\right)$$

- \hat{c}_α is an estimate of the test threshold c_α
- Φ is the CDF of the standard normal distribution
Optimizing MMD for test power

The power of our test (\Pr_1 denotes probability under $P \neq Q$):

$$
\Pr_1 \left(n \hat{\text{MMD}}^2 > \hat{c}_\alpha \right) = \Pr_1 \left(\sqrt{n} \frac{\hat{\text{MMD}}^2 - \text{MMD}^2}{\sigma_{H_1}} > \frac{\hat{c}_\alpha}{\sqrt{n} \sigma_{H_1}} - \frac{\sqrt{n} \text{MMD}^2}{\sigma_{H_1}} \right)
$$

\[\to \Phi \left(\sqrt{n} \frac{\text{MMD}^2}{\sigma_{H_1}} - \frac{c_\alpha}{\sqrt{n} \sigma_{H_1}} \right) \]

- For large n, second term is negligible!
Optimizing MMD for test power

The power of our test (\Pr_1 denotes probability under $P \neq Q$):

$$\Pr_1 \left(n \hat{MMD}^2 > \hat{c}_\alpha \right)$$

$$= \Pr_1 \left(\sqrt{n} \frac{\hat{MMD}^2 - MMD^2}{\sigma_{H_1}} > \frac{\hat{c}_\alpha}{\sqrt{n} \sigma_{H_1}} - \frac{\sqrt{n} MMD^2}{\sigma_{H_1}} \right)$$

$$\to \Phi \left(\sqrt{n} \frac{MMD^2}{\sigma_{H_1}} - \frac{c_\alpha}{\sqrt{n} \sigma_{H_1}} \right)$$

■ To maximize test power, choose k to maximize (Sutherland+ ICLR 2017)

$$\frac{MMD^2(P, Q)}{\sigma_{H_1}(P, Q)}$$

• Estimator is differentiable in kernel parameters!
Data splitting

Choose a kernel k maximizing $\frac{\text{MMD}^2}{\hat{\sigma}_{H_1}}$

Use chosen k for MMD test
Learning a kernel helps a lot

- Even just learning a bandwidth... (Sutherland+ ICLR 2017)
Learning a kernel helps a lot

- Even just learning a bandwidth... (Sutherland+ ICLR 2017)
- ...but you can learn a lot more: $k_\theta(x, y) = k_{\text{top}}(\Phi_\theta(x), \Phi_\theta(y))$
Learning a kernel helps a lot

- Even just learning a bandwidth... (Sutherland+ ICLR 2017)
- ...but you can learn a lot more: $k_\theta(x, y) = k_{\text{top}}(\Phi_\theta(x), \Phi_\theta(y))$
 - Learning a deep kernel for CIFAR-10 vs CIFAR-10.1 rejects the null

CIFAR-10 test set (Krizhevsky 2009)

\[X \sim P \]

CIFAR-10.1 (Recht+ ICML 2019)

\[Y \sim Q \]
Alternative approach: Classifier two-sample tests

- Train a classifier $f : \mathcal{X} \rightarrow \{1, -1\}$ on P from Q
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)

Train a classifier f

Evaluate accuracy of f

$X \sim P$

$Y \sim Q$
Alternative approach: Classifier two-sample tests

- Train a classifier \(f : \mathcal{X} \rightarrow \{1, -1\} \) on \(P \) from \(Q \)
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
- Almost exactly equivalent:

\[
 k_f(x, y) = \frac{1}{4} \mathbb{1}(f(x) > 0) \mathbb{1}(f(y) > 0)
\]

gives

\[
 MMD(P, Q) = \left| \text{accuracy} - \frac{1}{2} \right|
\]
Alternative approach: Classifier two-sample tests

- Train a classifier \(f : \mathcal{X} \to \{1, -1\} \) on \(P \) from \(Q \)
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
- Almost exactly equivalent:

\[
 k_f(x, y) = \frac{1}{4} \mathbb{1}(f(x) > 0) \mathbb{1}(f(y) > 0)
\]

gives

\[
 \text{MMD}(P, Q) = \left| \text{accuracy} - \frac{1}{2} \right|
\]

- \(\sigma_{H_1} \) decreases with acc: maximizing \(\frac{\text{MMD}^2}{\sigma_{H_1}} \) exactly maximizes power
Alternative approach: Classifier two-sample tests

- Train a classifier $f : \mathcal{X} \rightarrow \{1, -1\}$ on P from Q
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
- Almost exactly equivalent:

$$k_f(x, y) = \frac{1}{4} \mathbb{1}(f(x) > 0) \mathbb{1}(f(y) > 0)$$

which gives

$$MMD(P, Q) = \left| \text{accuracy} - \frac{1}{2} \right|$$

- 0-1 kernel inflates variance, decreases test power
Alternative approach: Classifier two-sample tests

- Train a classifier $f : \mathcal{X} \rightarrow \{1, -1\}$ on P from Q
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
- Almost exactly equivalent:

$$k_f(x, y) = \frac{1}{4} \mathbb{1}(f(x) > 0) \mathbb{1}(f(y) > 0)$$

gives

$$MMD(P, Q) = \left| \text{accuracy} - \frac{1}{2} \right|$$

- 0-1 kernel inflates variance, decreases test power
 - Intermediate option: $k(x, y) = f(x) f(y)$
Alternative approach: Classifier two-sample tests

- Train a classifier \(f : \mathcal{X} \to \{1, -1\} \) on \(P \) from \(Q \)
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
- Almost exactly equivalent:

\[
k_f(x, y) = \frac{1}{4} \mathbb{1}(f(x) > 0) \mathbb{1}(f(y) > 0)
\]

gives

\[
MMD(P, Q) = \left| \text{accuracy} - \frac{1}{2} \right|
\]

- 0-1 kernel inflates variance, decreases test power
 - Intermediate option: \(k(x, y) = f(x) f(y) \)

- Empricially: deep kernel > linear > 0-1
Alternative approach: Classifier two-sample tests

- Train a classifier $f : \mathcal{X} \rightarrow \{1, -1\}$ on P from Q
- Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
- Almost exactly equivalent:

$$k_f(x, y) = \frac{1}{4} \mathbb{1}(f(x) > 0) \mathbb{1}(f(y) > 0)$$

gives

$$MMD(P, Q) = \left| \text{accuracy} - \frac{1}{2} \right|$$

- 0-1 kernel inflates variance, decreases test power
 - Intermediate option: $k(x, y) = f(x) f(y)$
- Also trains for cross-entropy, instead of power directly(ish)
- Empirically: deep kernel $> \text{linear} > 0$-1, $\frac{\widehat{MMD}^2}{\hat{\sigma}_{H_1}} > \text{cross-entropy}$
Interpreting the learned kernel

MNIST samples

Samples from a GAN
Interpreting the learned kernel

\[k(\mathbf{4}, \mathbf{2}) = \prod_{i=1}^{D} \exp \left(-\frac{(\mathbf{4}[i] - \mathbf{2}[i])^2}{\sigma_i^2} \right) \]
Interpreting the learned kernel

MNIST samples

Samples from a GAN

- Power for optimized ARD kernel: 1.00 at $\alpha = 0.01$
- Power for optimized RBF kernel: 0.57 at $\alpha = 0.01$
Interpreting points with largest witness function values

(Sutherland+ ICLR 2017)
Interpreting points with largest witness function values

Prototypes

Criticisms

(Kim+ NeurIPS 2016)
Main references and further reading

- **MMD asymptotics and test construction:**

- **Kernels for tests on images:**
 - Bińkowski, Sutherland, Arbel, Gretton. Demystifying MMD GANs (2018)

- **Another approach: random 1d projection is almost surely consistent**
 - Heller, Heller. Multivariate tests of association based on univariate tests (2016)

- **Optimizing test kernels / classifiers:**
 - Sutherland, Tung, Strathmann, De, Ramdas, Smola, Gretton. Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy (2017)
 - Also our not-quite-on-arXiv-yet followup... (with Feng Liu, Wenkai Xu, Jie Lu, Guangquang Zhang)

- **Interpreting via witness functions:**
 - Kim, Khanna, Koyejo. Examples are not Enough, Learn to Criticize! Criticism for Interpretability (2016)