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The problem

CIFAR—lO test set (Krizhevsky 2000)  CIFAR-10.1 (Recht+ ICML 2019)
X ~P Y ~Q

m Are the distributions P and @ the same?
® Remember that MMD(P,Q)=0if P = Q
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Estimating the MMD

MMD(P, Q)? = ||pp — pol?
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Estimating the MMD

MMD(P, Q)? = ||pp — pol?

= {up, pp) — 2(up, LQ) + (L) 1Q)
=E [(p(X), p(X")) = 2(p(X), o(Y)) + (0( V), p(Y"))]
= B [k(X, X') - 2k(X, Y) + k(Y, Y")]
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Estimating the MMD

m Dogs (= P) and fish (= @) example
m Each entry is one of k(dog,,dog;), k(dog,, fish;), or k(fish;, fish;)
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Estimating the MMD

m Dogs (= P) and fish (= @) example

m Each entry is one of k(dog,,dog;), k(dog,, fish;), or k(fish;, fish;)
= MMD(P, Q)? = E [k(dog;, dog;) + k(fish,, fish;) — 2k(dog;, fish,)|
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Using a divergence estimator
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Using a divergence estimator
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CIFAR-10 test set (Krizhevsky 2009)  CIFAR-10.1 (Recht+ ICML 2019)
X ~P Y~ Q

——2
m Say we get MMD = 0.09116
m ...great. Is the true MMD zero? Equivalently: is P = Q7

——2
m We need to know “how random” MMD is... 527



—— 2
Behavior of MMD when P # Q)

m P, @ Laplace with different variances in y
m Draw n = 200 i.i.d samples from P and @
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m P, @ Laplace with different variances in y
m Draw n = 200 i.i.d samples from P and Q
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—— 2
Behavior of MMD when P # @

m P, @ Laplace with different variances in y
m Draw n = 200 new i.i.d samples from P and Q

Number of MMDs: 2

‘ — 2
Jnx MMD =15
351 J " ‘ ‘
Q A
<: 25 e . 1
= 70 a0
X 4r .".: t e . 1
Li ’ 2o }~§:§
e s X
® 1.5 e B o,
o) RO o i
o PRI
& 2b TeleadWW. " .
GO v,
al :: .
0.5r ol
0 ‘ - - ‘ 8l
0 0.5 1 1.5 2 25
Eyaa -10 L . .
vnx MMD 2 0 2

6/27



—— 2
Behavior of MMD when P # @

m P, @ Laplace with different variances in y
m Draw n = 200 i.i.d samples from P and @, 150 times

Number of MMDs: 150

Prob. of \/n x MMD
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Behavior of MMD when P # @

m P, @ Laplace with different variances in y
m Draw n = 200 i.i.d samples from P and @, 300 times

Number of MMDs: 300

Prob. of \/n x MMD
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Behavior of MMD when P # @

m P, @ Laplace with different variances in y
m Draw n = 200 i.i.d samples from P and @, 3000 times

Number of MMDs: 3000

Prob. of \/n x MMD
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Vn x MMD
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— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
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om

where a%,l /n is asymptotic variance (depends on P, Q, k).
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—— 2
Behavior of MMD when P = Q)

What about when P and @ are the same?
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—— 2
Behavior of MMD when P = (@)
m Case of P = Q = N(0,1)

Number of MMDs: 10
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—— 2
Behavior of MMD when P = (@)
m Case of P = Q = N(0,1)
Number of MMDs: 20

Prob. of n x MM D

9/27



—— 2
Behavior of MMD when P = (@)
m Case of P = Q = N(0,1)
Number of MMDs: 50
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Behavior of MMD when P = (@)
m Case of P = Q = N(0,1)
Number of MMDs: 100
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—— 2
Behavior of MMD when P = (@)
m Case of P = Q = N(0,1)
Number of MMDs: 1000
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Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
06l ‘ ;XZ sun‘l 7 Xii(z)) = LM%(z)dP(m)
™ : -Empirical PDF centered

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
N

n x MMD’

10/27



Statistical testing

probability density

A summary of the asymptotics:
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Statistical testing

Test construction: (Gretton+, IMLR 2012)
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Statistical testing

Test construction: (Gretton+, IMLR 2012)
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How do we get the test threshold c,?
Original empirical MMD for dogs and fish:

X =[P ™ B ... ]

Y = [2, M ... |

MMD’ =D ; k(z;, z))
1
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How do we get the test threshold c,?

Permuted dog and fish samples (merdogs):
X: [Mg) ',-')‘« ]
Y = [’MQ?LH ]
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How do we get the test threshold c,?
Permuted dog and fish samples (merdogs):

X = [ mat ]

Y = [Poes W ]
1
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How do we get the test threshold c,?
Permuted dog and fish samples (merdogs):

X = [ it ]

Y = [%«Q,H ]

MMD” = Zk
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m This simulates P = Q lll ll Lk

m Repeat, set ¢, to quantile




Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic for any ¢: for any P and @, power — 1 as n — o0
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic for any ¢: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
m ...and some problems (e.g. images) might have no good choice for ¢
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Choosing a kernel for the test

m Often helpful to use a relevant representation & : X — R¢, eg:

k(z,y) = kiop(®(z), 2(y))
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Choosing a kernel for the test

m Often helpful to use a relevant representation & : X — R¢, eg:

k(z,y) = kiop(®(z), 2(y))

® Take ¢ as predictions of a pretrained classifier on a related domain

m Related to Adversarial Accuracy (Yang+ ICLR 2017) and Inception
Score (Salimans+ NeurIPS 2016). We'll come back to this!
® Take ® as late hidden layer from pretrained related classifier
m KID (Binkowski, Sutherland+ ICLR 2018), Xu+ (arXiv:1806.07755)
m Closely related to FID (Heusel+ NeurIPS 2017) but
much nicer statistical properties,
more correlated with human judgement (Zhou, Gordon+ NeurIPS 2019)
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Choosing a kernel for the test

m Bau et al. (1ccv 2019) compare counts of pixel categories

Progressive GAN on LSUN Churches
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What about tests for other distances?

m Sometimes, nice closed forms for threshold (like a ¢ test)

m Asymptotic behavior of KALE, Wasserstein, ... mostly unknown

m But permutation tests usually work!
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Choosing the best test



The best test for the job

m A test’s power depends on P and @ (and n)
m Many MMDs have power — 1 as n — oo for any (fixed) problem
But, for many P and @, will have terrible power with reasonable n!
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The best test for the job

m A test’s power depends on P and @ (and n)

m Many MMDs have power — 1 as n — oo for any (fixed) problem
But, for many P and @, will have terrible power with reasonable n!

m Can maybe pick a good kernel manually for a given problem

m Can’t get one that has good finite-sample power for all problems
No one test can have all that power
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Choosing test power

m Best test (of level a) is the one with highest test power
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Optimizing MMD for test power

The power of our test (Pr; denotes probability under P # Q):

Pr, (nm2 > &a>

B C, is an estimate of the test threshold c,
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Optimizing MMD for test power

The power of our test (Pr; denotes probability under P # Q):

Pr, (nm2 > &a>

2
MMD — MMD? o MMD?
=Pr; (ﬁ > e vn )

oH, \/EUHl O

B C, is an estimate of the test threshold c,
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Optimizing MMD for test power

The power of our test (Pr; denotes probability under P # Q):

Pr, (nmz > ?:a)

/\2_ 2 ~ 2
. (\/EMMD MMD® _ﬁMMD)

O'H1 \/EUHl O'Hl

MMD? o
- & <\/ﬁ ¢ >

OH, B \/EO'H1

m C, is an estimate of the test threshold c,

m & is the CDF of the standard normal distribution
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Optimizing MMD for test power

The power of our test (Pr; denotes probability under P # Q):

Pr, (n]T/fJ\TD2 > &a)

— 2
MMD™ — MMD? c MMD?
= PI‘]_ (\/E > Ca - \/ﬁ >

OH \/EO'Hl Om

MMD? o
— & (ﬁ ¢ >

OH, B \/EO'Hl

m For large n, second term is negligible!

21/27



Optimizing MMD for test power
The power of our test (Pr; denotes probability under P # Q):

Pr; (nm2 > &a)

—_— 2
MMD - MMD? c MMD?
= Prl (\/ﬁ > Ca - \/ﬁ )

OH \/EO'HI Om

MMD? o
— & <\/ﬁ ¢ >

om,  J/nom

m To maximize test power, choose k£ to maximize (Sutherland+ ICLR 2017)
MMD?(P, Q)
UH1(P ) Q)
Estimator is differentiable in kernel parameters!

21/27



Data splitting

Choose a kernel k

—_—2
MMD

Gm

maximizing

Use chosen k& for MMD test
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Learning a kernel helps a lot

m Even just learning a bandwidth. .. (Sutherland+ ICLR 2017)
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Learning a kernel helps a lot
m Even just learning a bandwidth. .. (Sutherland+ ICLR 2017)

» Po(v))
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Learning a kernel helps a lot

m Even just learning a bandwidth. .. (Sutherland+ ICLR 2017)

.but you can learn a lot more: ks(z,y) = kiop(®o(z), Pa(y))
¢ Learning a deep kernel for CIFAR 10 vs CIFAR-10.1 rejects the null

CIFAR 10 test set (Krizhevsky 2009) CIFAR—lO.l (Recht+ ICML 2019)
X ~P Y~ Q
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Alternative approach: Classifier two-sample tests

m Train a classifier f : X — {1, -1} on P from Q
m Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)

X ~P Y~Q

Train a classifer f

Evaluate accuracy of f
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m Train a classifier f : X — {1,—1} on P from Q
m Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)

m Almost exactly equivalent:

B(z,9) = 3 1(7() > 0) 1(7(y) > 0)

gives
MMD(P, Q) =

1
accuracy — 3 ‘

MMD?
OH,

o, decreases with acc: maximizing exactly maximizes power
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Alternative approach: Classifier two-sample tests

m Train a classifier f : X — {1,—1} on P from Q
m Test statistic: accuracy on test set (Lopez-Paz and Oquab, ICLR 2017)
m Almost exactly equivalent:

B(z,9) = § 1(7(2) > 0) 1(7(y) > 0)

gives
MMD(P, Q) =

1
accuracy —o ‘

m 0-1 kernel inflates variance, decreases test power
Intermediate option: k(z,y) = f(z) f(y)

m Also trains for cross-entropy, instead of power directly(ish)
—2
m Empricially: deep kernel > linear > 0-1, M%D > cross-entropy
1
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Interpreting the learned kernel
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Interpreting the learned kernel

1345|105

31017|s|4]9
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22507 SENOY8 8/

MNIST samples Samples from a GAN

m Power for optimized ARD
kernel: 1.00 at &« = 0.01

m Power for optimized RBF

kernel: 0.57 at o = 0.01
ARD map 25/27




Interpreting points with largest witness function values

103

0T dataset images
0 GAN samples

more like GAN more like dataset —»
MMD? = 0. 0001

(Sutherland+ ICLR 2017)
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Interpreting points with largest witness function values

Prototypes

¥

(Kim+ NeurIPS 2016)
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Main references and further reading

B MMD asymptotics and test construction:
® Gretton, Borgwardt, Rasch, Scholkopf, Smola. A kernel two-sample test (2012)

m Kernels for tests on images:
® Binkowski, Sutherland, Arbel, Gretton. Demystifying MMD GANs (2018)
® Bau, Zhu, Wulff, Peebles, Strobelt, Zhou, Torralba. Seeing What a GAN Cannot
Generate (2019)

Another approach: random 1d projection is almost surely consistent
® Heller, Heller. Multivariate tests of association based on univariate tests (2016)

Optimizing test kernels / classifiers:
® Sutherland, Tung, Strathmann, De, Ramdas, Smola, Gretton. Generative Models
and Model Criticism via Optimized Maximum Mean Discrepancy (2017)

B Also our not-quite-on-arXiv-yet followup. ..
(with Feng Liu, Wenkai Xu, Jie Lu, Guangquang Zhang)
® TLopez-Paz, Oquab. Revisiting Classifier Two-Sample Tests (2017)

Interpreting via witness functions:
® Lloyd, Ghahramani. Statistical Model Criticism using Kernel Two Sample Tests
(2015)
® Kim, Khanna, Koyejo. Examples are not Enough, Learn to Criticize! Criticism for
Interpretability (2016)
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