
Linear-time, interpretable
two-sample test
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Recall from part 1: the MMD witness (Gretton et al., 2012)
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Recall from part 1: the MMD witness (Gretton et al., 2012)

Observe Yn = fy1; : : : ;yng � Q

Observe Xn = fx1; : : : ;xng � P
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Recall from part 1: the MMD witness (Gretton et al., 2012)

Gaussian kernel k on yi

Gaussian kernel k on xi
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Recall from part 1: the MMD witness (Gretton et al., 2012)

v
MMD(P ;Q) = kwitnesskRKHS
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The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)

v

�Q(v) = Ey�Qk(y;v)

�P(v) = Ex�Pk(x;v)
(mean embedding of P)

witness(v) = �Q(v)� �P(v)| {z }
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The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)

v

witness2(v) = (�Q(v)� �P(v))2| {z }
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The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)

v

witness2(v) = (�Q(v)� �P(v))2| {z }

Given J test locations V := fvj gJj=1, (V gives interpretability later)

UME2(P ;Q) =
1
J

JX
j=1

[�P (vj )� �Q(vj )]2:
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The Unnormalized Mean Embeddings (UME) statistic

UME2(P ;Q) =
1
J

JX
j=1

[�P (vj )� �Q(vj )]2 =
1
J

JX
j=1

witness2(vj ):

Proposition (Chwialkowski et al., NeurIPS 2015)
Main assumptions:

1 Nice kernel k (characteristic, real analytic).

2 fvj gJj=1 drawn from a distribution that covers the whole domain.

UME2(P ;Q) = 0 iff P = Q.

Key: Evaluating witness2 is enough to detect the difference.

Runtime complexity: O(Jn). J is constant.
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Normalized ME (NME) statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Null distribution PH0 of UME is complicated.
� Weighted sum of correlated chi-squares. No closed form.

Idea: decorrelate the J terms in the sum.

UME2(P ;Q) = t>t where t 2 RJ

Normalized ME (NME)

NME2(P ;Q) = t>C�1t

where C = covariance of the J terms (J � J matrix).

t;C depend on samples from P ;Q and test locations fvj gJj=1.

Runtime complexity: O(J 3 + J 2n + Jdn). Linear in n .
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Asymptotic distributions of NME

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)
As sample size n !1,

1 When P = Q, n\NME2 follows �
2
J (chi-square).

2 When P 6= Q, the test power goes to 1.

Proposition (Jitkrittum et al., 2016)

Choosing fvj gJj=1 by maximizing \NME2 will maximize (a lower bound
on) the test power. see lower bound

Optimized locations fvj gJj=1 are interpretable.
Indicate where P ;Q differ most.
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Illustration: a good location v for NME

Use J = 1 location.

Let score(v) :=\NME2.

Best v reveals where P and Q differ most.

Maximizes the probability of detecting differences between P and Q .
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Illustration: a good location v for NME

Use J = 1 location. Let score(v) :=\NME2.

score: 0.008

k(x;v) = v

Best v reveals where P and Q differ most.

Maximizes the probability of detecting differences between P and Q .
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Illustration: a good location v for NME

Use J = 1 location. Let score(v) :=\NME2.

score: 1.6

Best v reveals where P and Q differ most.

Maximizes the probability of detecting differences between P and Q .
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Illustration: a good location v for NME

Use J = 1 location. Let score(v) :=\NME2.

score: 13

Best v reveals where P and Q differ most.

Maximizes the probability of detecting differences between P and Q .
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Illustration: a good location v for NME

Use J = 1 location. Let score(v) :=\NME2.

score: 25

Best v reveals where P and Q differ most.

Maximizes the probability of detecting differences between P and Q .
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Illustration: a good location v for NME

Use J = 1 location. Let score(v) :=\NME2.

score: 25

Best v

Best v reveals where P and Q differ most.

Maximizes the probability of detecting differences between P and Q .
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NME: distinguishing positive/negative emotions

P :

happy neutral surprised

Q :

afraid angry disgusted

35 females and 35 males
(Lundqvist et al., 1998).

48� 34 = 1632 dimensions.
Pixel features.

n = 201.

Test power comparable to the state-of-the-art MMD test.

Informative features: differences at the nose, and smile lines.
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No optimization
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Q :

afraid angry disgusted
+ vs. -
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1.0

P
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No optimization

NME  (linear time)

MMD (quadratic time)

Test power comparable to the state-of-the-art MMD test.

Informative features: differences at the nose, and smile lines.
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NME: distinguishing positive/negative emotions

P :

happy neutral surprised

Q :

afraid angry disgusted

Learned v F

Test power comparable to the state-of-the-art MMD test.

Informative features: differences at the nose, and smile lines.
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NME: distinguishing positive/negative emotions

P :

happy neutral surprised

Q :

afraid angry disgusted

Learned v F

Test power comparable to the state-of-the-art MMD test.

Informative features: differences at the nose, and smile lines.
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Extension: model comparison by relative UME

Both models P ;Q can be wrong.

Goal: pick the better one.
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A model comparison test (Jitkrittum et al., 2018)

P ;Q : two candidate generative models that can be sampled.

R : true distribution (unknown).

Observe Xn
i :i :d :� P ; Yn

i :i :d :� Q ; and Zn
i :i :d :� R. Three sets.

H0 : UME2
V (P ;R)� UME2

V (Q ;R) � 0

H1 : UME2
V (P ;R)� UME2

V (Q ;R) > 0

Statistic: Ŝn = [UME
2
V (P ;R)�[UME

2
V (Q ;R).

Reject H0 if Ŝn is too large.

Optimize V by maximizing power of relative UME test.
V shows where Q is better than P .
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Where does each GAN do better?

Q = LSGAN [Mao et al., 2017]

P = GAN
[Goodfellow et al., 2014]

0 1 2 3 4 5 6 7 8 9
Digit

−0.02
−0.01

0.00
0.01
0.02
0.03

Po
we

r C
rit

er
io

n Q
be

tt
er

P
be

tt
er

R = real MNIST images.

Set V = 40 (real) images of digit
i = 0; : : : ; 9.

Q is better at “1” and “5”. P is slightly
better at “3”. Interpretable.
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Q = LSGAN [Mao et al., 2017]
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R = real MNIST images.

Set V = 40 (real) images of digit
i = 0; : : : ; 9.

Q is better at “1” and “5”. P is slightly
better at “3”. Interpretable.

(k = Gaussian kernel on top of features from a CNN classifier.)
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Testing Explicit Models with
Kernel Stein Discrepancy
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Goodness-of-fit Testing

?

(unknown) (unknown)

z }| {
y1; y2; : : : ; yn

Two-sample testing (so far)

Goodness-of-fit testing

z }| {
x1; x2; : : : ; xn

Test goal: Do data follow the model p?

p is an explicit density function known up to the normalizer e.g., a
restricted Boltzmann machine.

Important: no sample from p.
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Recall the MMD (part 1)

Integral probability metric form of MMD:

MMD(p; q ;F) = supkf kF�1[Eq f � Epf ];

where F = RKHS defined by a kernel k .

Can we compute MMD with samples and a density p?

Problem 1: usually can’t compute Epf in closed form.

Problem 2: cannot sample from p. Also statistically inefficient.
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Stein Idea
To get rid of Epf in

sup
kf kF�1

[Eq

Tp

f � Ep

Tp

f ];

we define the (1-D) Stein operator

[Tpf ] (x ) =
1

p(x )
d
dx

(f (x )p(x )) :

Then, EpTpf = 0 subject to appropriate boundary conditions.

Proof [Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)].

Ep [Tpf ]

=
Z � d

dx
(f (x )p(x ))

�
dx

= [f (x )p(x )]1�1 = 0
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Kernel Stein Discrepancy (Chwialkowski et al., 2016, Liu et al., 2016)

Stein operator: Tpf = 1
p(x )

d
dx (f (x )p(x )) :

(normalizer cancels)

Kernel Stein Discrepancy (KSD)

KSDp(q) = sup
kf kF�1

EqTpf � EpTpf

= sup
kf kF�1

EqTpf

(closed-form sup) = kgkF ;

where
g(v) := Ex�q

� 1
p(x)

d
dx

[k(x; v)p(x)]
�
:

Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016)
Liu, Lee, Jordan (ICML 2016)

full derivation
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Kernel Stein Discrepancy: population expression

Test statistic when x 2 Rd , given independent y ; y 0 � q ,

KSD2
p(q) = kgk2Fd = Ey�qEy 0�qhp(y ; y 0);

where

hp(x ; x 0) = sp(x )>sp(x 0)k(x ; x 0)

+ sp(x )>rx 0k(x ; x 0)

+ sp(x 0)>rxk(x ; x 0)

+ tr
�rxrx 0k(x ; x 0)

�
sp(x ) 2 Rd = rx log p(x ) (score function of p)

Theorem (Chwialkowski et al. (ICML 2016))
Assume appropriate boundary conditions. If kernel is C0-universal
and Q satisfies Ex�q




r �
log p(x )

q(x )

�


2
<1, then KSD2

p(q) = 0 iff p = q.
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KSD: Empirical statistic and asymptotics
Given: fyigni=1

i :i :d :� q , a differentiable density p.
Empirical statistic:

\KSD2
p(q) :=

1
n2

nX
i=1

nX
j=1

hp(yi ; yj ):

Runtime complexity: O(d2n2).

Asymptotics:

1 When p = q , \KSD2
p(q)

d! infinite
weighted sum of chi-squared variables.

2 When p 6= q , \KSD2
p(q)

d! a Gaussian.

0.0 0.1 0.2 0.3 0.4 0.5
n KSD2

pr
ob

ab
ili

ty
 d

en
si

ty

c

reject H0 (say )don't reject H0
=

Testing:
Get test threshold via wild bootstrap.
Permutation test not applicable. Have only one set of samples.

wild bootstrap detail
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Linear-time, interpretable
Goodness-of-fit Test
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The Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al., 2017)

Recall Stein witness:
g(v) := Ex�q

h
1

p(x)
d
dx [k(x;v)p(x)]

i
.

- 4 - 2 2 4

0.1

0.2

0.3

0.4

p(x)

q(x)

g(x)

FSSD statistic: Evaluate g2 at J test locations V = fv1; : : : ;vJg.
FSSD is to KSD as UME is to MMD.

(population) FSSD2 =
1
dJ

JX
j=1

kg(vj )k22:

Theorem (Jitkrittum et al., NeurIPS 2017)
Assume same conditions as KSD, and a real analytic kernel.
Assume V drawn from a distribution that covers the domain. Then,

FSSD2 = 0 if and only if p = q.
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FSSD: Empirical statistic and asymptotics

Estimate \FSSD2 with samples fyigni=1
i :i :d :� q .

Runtime complexity: O(d2Jn). Linear in n .

Asymptotics:

1 When p = q , \FSSD2 d! finite weighted
sum of chi-squared variables.

2 When p 6= q , \FSSD2 d! a Gaussian.

0.0 0.1 0.2 0.3 0.4 0.5
n FSSD2

pr
ob

ab
ili

ty
 d

en
si

ty

c

reject H0 (say )don't reject H0
=

Testing:

Weights = eigenvalues of a dJ � dJ covariance matrix.

Test threshold = empirical (1� �)-quantile.
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Find test locations by maximizing power

Proposition (Asymptotic power of FSSD2 [Jitkrittum et al., 2017])

For large n, the test power

P(reject H0 j H1 true)

� �

�p
n
FSSD2

�H1

� c�p
n�H1

�
;

where � = CDF of N (0; 1).
0.0 0.1 0.2 0.3 0.4 0.5

n FSSD2

pr
ob

ab
ili

ty
 d

en
si

ty

c

reject H0 (say )don't reject H0

false rejection rate: want 

power: true rejection rate

=

For large n , 1st term
p
n FSSD2

�H1
dominates. Similar to MMD.

(maximize test power) argmax
V

power � argmax
V

\FSSD2d�H1
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Interpretable Test Locations: Chicago Crime

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

n = 11957 robbery events
in Chicago in 2016.
� lat/long coordinates =

sample from q .

Model spatial density with
Gaussian mixtures.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Model p = 2-component Gaus-
sian mixture.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Score surface

score(v) :=
\FSSD2d�H1

(power criterion)

Dark = high mismatch
between p and q .

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

F = optimized v.

Learned test locations are in-
terpretable.

23/25



Interpretable Test Locations: Chicago Crime

F = optimized v.
No robbery in Lake Michigan.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Model p = 10-component Gaus-
sian mixture.

Learned test locations are in-
terpretable.

23/25



Interpretable Test Locations: Chicago Crime

Capture the right tail better.

Learned test locations are in-
terpretable.
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Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are in-
terpretable.
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KSD vs. FSSD

Recall Stein witness:
g(v) := Ex�q

h
1

p(x)
d
dx [kv(x)p(x)]

i
. - 4 - 2 2 4

- 0.2

0.2

0.4

p(x)

q(x)

g(x)

KSD

v

witness

KSD2 = kgk2RKHS (RKHS norm).

Good when the difference between
p; q is spatially diffuse.

FSSD

v

witness

FSSD2 = 1
dJ
PJ

j=1 kg(vj )k22:
Good when the difference between

p; q is local.
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Conclusion

Part 1: Divergence measures
� Integral probability metrics
� �-divergences (f-divergences)

Part 2: Statistical hypothesis testing
� Using integral probability metrics (MMD)
� Relation of testing and classification
� Learned features for powerful tests

Part 3: Linear-time features and model criticism
� Interpretable, linear time features for testing (UME)
� Stein’s method for model evaluation (KSD)
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References and further reading

UME/NME
� Chwialkowski et al., NeurIPS 2015. NME with random locations.
� Jitkrittum et al., NeurIPS 2016. NME with optimized locations.
� Scetbon and Varoquaux, NeurIPS 2019. Extension of UME/NME with

L1 norm.

Kernel Stein Discrepancy
� Chwialkowski et al., ICML 2016 and Liu et al., ICML 2016. KSD testing.
� Oates et al., RSS 2016 and Gorham et al., NeurIPS 2015. MCMC

convergence check.
� Liu and Wang, NeurIPS 2016. Stein variational gradient descent.
� Barp et al., NeurIPS 2019. For model fitting.

FSSD. Jitkrittum et al., NeurIPS 2017 (best paper).
Relative tests
� Bounliphone et al., ICLR 2016. Relative MMD. For 2 models.
� Jitkrittum et al., NeurIPS 2018. Relative UME, FSSD. For 2 models
� Lim et al., NeurIPS 2019. Relative KSD, MMD. For > 2 models.
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Questions?

Thank you
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Appendix
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Outline

1 Appendix: UME, NME

2 Appendix: Relative UME

3 Appendix: Kernel Stein Discrepancy

4 Appendix: FSSD
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Normalized ME (NME) Statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Let  (x) := 1p
J
(k(x;v1); : : : ; k(x;vJ ))

> 2 RJ . Equivalently,

UME2(P ;Q) = kEx�P (x)� Ey�Q (y)k22:

Covariance matrix C := covx�P [ V (x)] + covy�Q [ V (y)] 2 RJ�J .

NME2(P ;Q) = [Ex�P V (x)� Ey�Q V (y)]>C�1 [Ex�P V (x)� Ey�Q V (y)]

S�1 decorrelates the J terms. Simpler null distribution.

=) Normalized ME (NME) statistic.
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Illustration of NME: Two Informative Features

2D problem.

P : N ([0; 0]; I )

Q : N ([1; 0]; I )

J = 2 features.

Fix v1 to s.

Contour plot of
v2 7! �̂n(fv1;v2g).
fv1;v2g chosen to reveal the
difference of P and Q .

v2 ↦ ^̧
n(v1; v2)

0
20
40
60
80
100
120
140
160

v2 ↦ ^̧
n(v1; v2)

128
136
144
152
160
168
176
184
192
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Full NME Test Statistic. J = 1

Let V = fv1; : : : ;vJg be the J test locations.

Let zn :=

0BB@
�̂P(v1)� �̂Q(v1)

...
�̂P(vJ )� �̂Q(vJ )

1CCA 2 RJ .
Let (Sn)ij := dcovx[k(x;vi ); k(x;vj )] + dcovy[k(y;vi ); k(y;vj )] 2 RJ�J .
Then, the statistic

�̂n := nz>n (Sn + 
nI )
�1 zn ;

where 
n > 0 is a regularization parameter.
When J = 1,

�̂n = n
[�̂P(v)� �̂Q(v)]2


n + varx[k(x;v)] + vary[k(y;v)]
:

Computing �̂n : O(J 3 + J 2n + Jdn).
Optimization of V: O(J 3 + J 2dn):
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Illustration: NME Statistic. J = 1

Variance of v = variance of v from X + variance of v from Y.

ME Statistic: �̂n(v) := n witness2(v)
variance of v .

Best location is v� that maximizes �̂n .
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Variance of v = variance of v from X + variance of v from Y.

ME Statistic: �̂n(v) := n witness2(v)
variance of v .

P(x)

Q(y)

witness2(v)

Best location is v� that maximizes �̂n .
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A Lower Bound on the Test Power of NME

Proposition (Jitkrittum et al., 2016)

The power PH1(�̂n > T�) � L(�n) =

1� 2e��1(�n�T�)2=n � 2e
� [
n (�n�T�)(n�1)��2n]2

�3n(2n�1)2 � 2e�
[(�n�T�)=3�c3n
n ]2
n2

�4

where

�n = nNME2(P ;Q). Population quantity.


n ; �1; : : : ; �4 > 0 are constants.

For large n , L(�n) is an increasing function of �n .

Best parameters = argmaxL(�n) = argmax�n .

Optimize (gradient ascent) on a held-out set (estimated �n). Test on
a separate set.

back to NME
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Bayesian Inference Vs. Deep Learning Papers

Papers on Bayesian inference

X ={ , , ; : : :g � P
Papers on deep learning

Y ={ , , ; : : :g � Q
NIPS papers (1988-2015)

Sample size n = 216.

Random 2000 nouns (dimensions). TF-IDF representation.
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Rel-UME: Difference of Two Witness Functions

Recall the witness function between P and R:

witnessP ;R(v) = Ex�Pk(x; v)� Ez�Rk(z; v)
for some positive definite kernel k(x; v).P

R

v

Assume only one test location v: Recall

UME2
v(P ;R) = witness2P ;R(v) = (�P (v)� �R(v))2
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witnessP,R
witnessQ,R
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Power criterion(v) = f (v) is a function such that maximizing it
corresponds to maximizing the test power.

f (v) =
witness2P ;R(v)� witness2Q ;R(v)
standard deviationP ;Q ;R(v)

=
U 2
P �U 2

Qq
4(�2

P � 2�PQ + �2
Q)

f (v) > 0 =) Q is better in the region around v
f (v) < 0 =) P is better in the region around v
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Experiment on CIFAR10

P = {airplane, cat},
Q = {automobile, cat}

(true) R = {automobile, cat}

We thank all the reviewers for constructive comments. We will revise the paper accordingly. Recall: J = number of1

test locations, P,Q = two candidate models, R = data distribution, n = sample size.2

Rev 1: Summary of Theorems 1, 2. In null hypothesis statistical testing, the test statistic is compared to a threshold3

to decide whether the null hypothesis H0 (i.e., Q is not better than P ) should be rejected. To control false rejection rate4

to be no more than α, it is common to set the threshold to the (1− α)-quantile of the (asymptotic) distribution of the5

statistic when H0 is true, where α is known as the significance level (pre-chosen). Theorem 1, 2 state the asymptotic6

distributions of the two proposed statistics, allowing us to compute the quantiles, and to derive the power criteria. Please7

see lines 132-156. We will add accompanying explanation to Theorems 1, 2, and more structure to Sec 2.8

Rev 1: Rel-UME and Rel-FSSD. Intuitively, Rel-UME determines the better model to be the one that produces9

probability mass (as measured around the test locations) closest to the test sample. Rel-FSSD does not address the10

overall probability mass, but rather the shape of the model density (please see experiment 1 and Fig 1 for further11

explanation). The structural information gained by having access to density functions allows Rel-FSSD to correctly12

determine the better model even when the P and Q are very similar (Fig 4d, perturbation only slightly above 0.3).13

However, when one model is significantly better than the other (Fig 4d, large perturbation), it is possible that directly14

examining the difference in probability masses can better detect the relative goodness of fit. This explains why15

Rel-UME has higher rejection rate (power) than Rel-FSSD J1 in Fig 4d, when perturbation is large. We note that16

in Fig 4c, the runtimes of the proposed tests increase so slowly (linear wrt n) that the curves appear flat. There is no17

saturation. We will improve the figures.18

Revs 1, 3: Advantages/disadvantages. As noted by rev 2, a key advantage of our new linear-time tests is its ability to19

produce informative features (test locations) which indicate where (in a local region) model Q fits better than model20

P . Toy problem 2 (Blobs) gives a scenario where the ability to detect local differences is crucial (see line 255) in21

determining the better model. Toy problem 3 (RBM) is where the differences are non-trivial and in high dimension. We22

show (in Fig 4d) that even in this case, relying on local differences still yields high test power. A plausible scenario23

where the new approach might require large sample sizes is when P and Q differ in ways that their differences cannot be24

seen locally i.e., spatially diffuse differences (e.g., two Gaussians with slightly different variance). We will investigate25

this scenario and include the results in the appendix of the camera-ready version.26

Revs 1, 2: GAN comparison. We agree with revs 1, 2 that Table 1 does not suggest that the proposed Rel-UME is27

better than Rel-MMD, and KID in terms of testing. However, it assures that the new approach performs at least equally28

well. We would like to emphasize that nonparametric linear-time testing is only one of the two key advantages of this29

work. The more important advantage is the discovery of informative features (hence the title of this work), which30

cannot be provided by Rel-MMD, KID, and FID. We note that there is no easy way to control false rejection rate of31

FID, hence the high rejection rate (even though H0 is true) as shown in the first row of Table 1, not to mention its high32

computational cost. We emphasize that the new tests have O(n) runtime.33

Cri. P R Q

airplane automobile cat v

Rev 2: Fig 2 from experiment 3. We plan to theoretically compare34

the test powers of the proposed tests and Rel-MMD in the future35

work with asymptotic relative efficiency. Sub-figures in Fig 2 and36

their captions are correct. There are typos in lines 312-314. Lines37

312-314 should be: Figure 2c shows the top 15 test locations as sorted38

descendingly by the criterion. Fig 2b shows test locations (i.e., cats)39

which have power criterion values close to 0, meaning that these images can be generated equally well by both models40

P,Q. We illustrate with an example analogous to experiment 3 (lines 301-316) but reduced to one dimension (figure on41

the right). The green curve represents the power criterion as a function of the test location v.42

The appearance of some airplane images in Fig 2b is indeed unexpected, since Fig 2b should contain the least informative43

features in comparing P and Q to R (i.e., cats). This is an artifact of using an off-the-shelf feature extractor (pool3 layer44

of the Inception-v3 net) that is not trained specifically for this task, combined with the fact that uninformative features45

with low distinguishing power are intrinsically noisier and harder to define. Our intention was to use the same image46

feature extractor for both experiments 3 and 4. We avoid training the extractor to keep the comparison fair in experiment47

4, since Rel-MMD, KID, and FID have no criterion to tune the feature extractor. Training a bespoke extractor (by48

maximizing the power criterion) will likely result in Fig 2b containing only cat images, and Fig 2c containing a mix of49

automobile and airplane images. We will study this setting in the future work.50

Rev 3: Fig 4 and choosing J . We would like to point out that Fig 4 does not suggest that increasing J increases false51

rejection rate. It does suggest that increasing J can increase the test power, as noted by the reviewer. In general J is52

related to the number of informative regions which provide evidence for the better fit of Q. If there are L such regions,53

then it is sufficient to set J ≤ L, since we only require “just enough” evidence to reject H0, not full evidence. In54

practice, we observe that J = 20 gives a good starting point.55

Gaussian kernel on 2048 features extracted by the Inception-v3
network at the pool3 layer.
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FID, hence the high rejection rate (even though H0 is true) as shown in the first row of Table 1, not to mention its high32

computational cost. We emphasize that the new tests have O(n) runtime.33

Cri. P R Q

airplane automobile cat v

Rev 2: Fig 2 from experiment 3. We plan to theoretically compare34

the test powers of the proposed tests and Rel-MMD in the future35

work with asymptotic relative efficiency. Sub-figures in Fig 2 and36

their captions are correct. There are typos in lines 312-314. Lines37

312-314 should be: Figure 2c shows the top 15 test locations as sorted38

descendingly by the criterion. Fig 2b shows test locations (i.e., cats)39

which have power criterion values close to 0, meaning that these images can be generated equally well by both models40

P,Q. We illustrate with an example analogous to experiment 3 (lines 301-316) but reduced to one dimension (figure on41

the right). The green curve represents the power criterion as a function of the test location v.42

The appearance of some airplane images in Fig 2b is indeed unexpected, since Fig 2b should contain the least informative43

features in comparing P and Q to R (i.e., cats). This is an artifact of using an off-the-shelf feature extractor (pool3 layer44

of the Inception-v3 net) that is not trained specifically for this task, combined with the fact that uninformative features45

with low distinguishing power are intrinsically noisier and harder to define. Our intention was to use the same image46

feature extractor for both experiments 3 and 4. We avoid training the extractor to keep the comparison fair in experiment47

4, since Rel-MMD, KID, and FID have no criterion to tune the feature extractor. Training a bespoke extractor (by48

maximizing the power criterion) will likely result in Fig 2b containing only cat images, and Fig 2c containing a mix of49

automobile and airplane images. We will study this setting in the future work.50

Rev 3: Fig 4 and choosing J . We would like to point out that Fig 4 does not suggest that increasing J increases false51

rejection rate. It does suggest that increasing J can increase the test power, as noted by the reviewer. In general J is52

related to the number of informative regions which provide evidence for the better fit of Q. If there are L such regions,53

then it is sufficient to set J ≤ L, since we only require “just enough” evidence to reject H0, not full evidence. In54

practice, we observe that J = 20 gives a good starting point.55

Gaussian kernel on 2048 features extracted by the Inception-v3
network at the pool3 layer.

Images v with the lowest values of
f (v) � 0. =) P ;Q perform equally
well in these regions.
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Stein operator is linear

Re-write Stein operator as:

[Tpf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

=
1

p(x )

�
p(x )

df
dx

(x ) + f (x )
dp
dx

(x )
�

= f (x )
d
dx

log p(x ) +
d
dx

f (x )

Stein features in F

[Tpf ] (x ) =
�
d
dx

log p(x )
�
f (x ) +

d
dx

f (x )

=:


f ; �(x )| {z }

Stein features

�
F

where Ex�p�(x ) = 0.
go to KSD
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The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x ; x 0),

d
dx

f (x ) =
�
f ;

d
dx
'(x )

�
F

Using kernel derivative trick in (a),

[Tpf ] (x ) =
�
d
dx

log p(x )
�
f (x ) +

d
dx

f (x )

=

*
f ;
�
d
dx

log p(x )
�
'(x ) +

d
dx
'(x )

+
F

=: hf ; �(x )iF :
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Kernel Stein Discrepancy: Derivation

Can be shown that [Tpf ] (x ) = hf ; �(x )iF : where� �(x ) =
� d
dx log p(x )

�
'(x ) + d

dx '(x );� '(x ) = feature map associated with k

Closed-form expression for KSD:
KSDp(q) = sup

kf kF�1
Ey�q [Tpf ] (y)

= sup
kf kF�1

Ey�q hf ; �(y)iF

=
(a)

sup
kf kF�1

hf ;Ey�q�(y)iF =
(b)
kEy�q�(y)kF :

At (b), we have f � = Ey�q�(y) as the arg sup.
Caution: (a) requires a condition for the Riesz theorem to hold,

Ex�q
�
d
dx

log p(x )
�2

<1:

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016) 44/25
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KSD: Empirical statistic and asymptotics

Given: fyigni=1
i :i :d :� q , a differentiable density p.

The empirical statistic:

\KSD2
p(q) :=

1
n2

nX
i=1

nX
j=1

hp(yi ; yj ):
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i :i :d :� q , a differentiable density p.

The empirical statistic:

\KSD2
p(q) :=

1
n2

nX
i=1

nX
j=1

hp(yi ; yj ):

Asymptotic distribution when p 6= q :

p
n
�
\KSD2

p(q)�KSD2
p(q)

�
d! N (0; �2

hp ) �2
hp = 4Vary [Ey 0 [hp(y ; y 0)]]:

45/25



KSD: Empirical statistic and asymptotics

Given: fyigni=1
i :i :d :� q , a differentiable density p.

The empirical statistic:

\KSD2
p(q) :=

1
n2

nX
i=1

nX
j=1

hp(yi ; yj ):

Asymptotic distribution when p = q :

n\KSD2
p(q) �

1X
`=1

�`Z 2
` where Z` � N (0; 1) i:i:d:;

�i i (x 0) =
Z
X
hp(x ; x 0) i (x )dp(x ):

Get test threshold via wild bootstrap.
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Wild bootstrap test for KSD [Chwialkowski et al. ICML 2016)]

Generate samples B1; : : : ;Bm by wild bootstrap

1 For l = 1; : : : ;m :
1 Draw i.i.d. W1; : : : ;Wn (-1/+1) where

P(Wi = 1) = P(W1 = �1) = 1=2:
2 Bl :=

1
n2

Pn
i=1

Pn
j=1 WiWjhp(yi ; yj )

2 Threshold = (1� �)-quantile from fB1; : : : ;Bmg
3 Reject H0 if \KSD2

p(q) =
1
n2
Pn

i=1
Pn

j=1 hp(yi ; yj ) is larger than the
threshold.

Proposition ([Chwialkowski et al. ICML 2016)])
When p = q, B1; : : : ;Bm are samples from the null distribution as
n !1.

When p 6= q, B1; : : : ;Bm converge to 0. \KSD2
p(q) converges to

KSD2
p(q) > 0.

return to KSD
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KSD for discrete-valued variables

Discrete domains: X = f1; : : : ;LgD with L 2 N.
The population KSD (discrete):

KSD2
p(Q) = Ex ;x 0�qhp(x ; x 0)

where

hp(x ; x 0) = sp(x )>sp(x 0)k(x ; x 0)� sp(x )>k2(x ; x 0)

� sp(x 0)>k1(x ; x 0) + tr
�
k12(x ; x 0)

�
k1(x ; x 0) = ��1

x k(x ; x 0), ��1
x is cyclic backwards difference on x ,

sp(x ) =
�p(x )
p(x )

A discrete kernel: k(x ; x 0) = exp (�dH (x ; x 0)), where
dH (x ; x 0) = D�1PD

d=1 I(xd 6= x 0d).

KSD2
p(Q) = 0 iff P = Q if
Gram matrix over all the configurations in X is strictly positive definite,
P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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FSSD is a Discrepancy Measure

Theorem
Let X be a connected open set in Rd . Assume

1 (Nice RKHS) Kernel k : X � X ! R is C0-universal, and real
analytic.

2 (Stein witness not too rough) kgk2
F <1.

3 (Finite Fisher divergence) Ex�qkrx log
p(x)
q(x)k2 <1 .

4 (Vanishing boundary) limkxk!1 p(x)g(x) = 0.

Let V = fv1; : : : ;vJg � Rd be drawn i.i.d. from a distribution � which
has a density. Then, for any J � 1,

If p = q, FSSD2 = 0.

If p 6= q, �-almost surely, FSSD2 > 0.

Gaussian kernel k(x;v) = exp

�
�kx�vk22

2�2
k

�
works.
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What Are “Blind Spots” in the Stein Witness?

Recall g(v) : = Ex�q
�

1
p(x)

d
dx

[kv(x)p(x)]
�
:

Consider p = N (0; 1) and q = N (0; �2
q). Use unit-width Gaussian kernel.

g(v) =
v exp

�
� v2

2+2�2
q

� �
�2
q � 1

�
�
1+ �2

q
�3=2

−5.0 −2.5 0.0 2.5 5.0

−0.25

0.00

0.25
p = N (0, 1)

q = N (0, 4)

g

If v = 0, then FSSD2 = g2(v) = 0 regardless of �2
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