Linear-time, interpretable
two-sample test



Recall from part 1: the MMD witness (Gretton et al., 2012)
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Gaussian kernel k£ on x;
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Recall from part 1: the MMD witness (Gretton et al., 2012)

MMD(P, Q) = HWitIleSSHRKHs}
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The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)
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The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)

witness®(v) = (uo(v) — pp(v))?
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The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)

witness®(v) = (uo(v) — pp(v))?

o @®o S — Vv
m Given J test locations V := {Vj}le, (V gives interpretability later)
1 J
UME?(P, Q) = i > [wp(vs) — po(vi).
j=1
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The Unnormalized Mean Embeddings (UME) statistic

J

J
UME?(P, Q) = Z [p(v;) — po(vy)]? ZWltness (vj)-

Proposition (Chwialkowski et al., NeurIPS 2015)
Mawn assumptions:
1 Nuce kernel k (characteristic, real analytic).

2 {Vj}f:l drawn from a distribution that covers the whole domain.

UME?(P,Q) =0 iff P = Q.
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The Unnormalized Mean Embeddings (UME) statistic

J J
UME?(P, Q) = Z [p(v;) — po(vy)]? ZWltness (vj)-

Proposition (Chwialkowski et al., NeurIPS 2015)
Mawn assumptions:
1 Nuce kernel k (characteristic, real analytic).

2 {Vj}f:l drawn from a distribution that covers the whole domain.

UME?(P,Q) =0 iff P = Q.

2

m Key: Evaluating witness® is enough to detect the difference.

m Runtime complexity: O(Jn). J is constant.
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Normalized ME (NME) statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

m Null distribution Pp, of UME is complicated.
¢ Weighted sum of correlated chi-squares. No closed form.
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where C = covariance of the J terms (J x J matrix).
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Normalized ME (NME) statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

m Null distribution Pp, of UME is complicated.

Weighted sum of correlated chi-squares. No closed form.

m Idea: decorrelate the J terms in the sum.

UME?(P, Q) =t 't where t € R’

Normalized ME (NME)
NME?(P,Q)=t"C 't

where C = covariance of the J terms (J x J matrix).

m t, C depend on samples from P, @ and test locations {Vj}jJ:l.

m Runtime complexity: O(J3 + J%n + Jdn). Linear in n.
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Asymptotic distributions of NME

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)
As sample size n — 0,

1 When P = Q, 'n.I\ﬂ_/IE2 follows x% (chi-square).

2 When P # Q, the test power goes to 1.
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Asymptotic distributions of NME

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)
As sample size n — 0,

1 When P = Q, 'n.I\ﬁ-/IE2 follows x% (chi-square).

2 When P # Q, the test power goes to 1.

Proposition (Jitkrittum et al., 2016)

Choosing {Vj}f::L by mazimizing NME? will mazimize (a lower bound
on) the test power.

Optimized locations {Vj}jJ:1 are interpretable.
Indicate where P, @ differ most.
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[llustration: a good location v for NME

m Use J = 1 location.
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[llustration: a good location v for NME

m Use J = 1 location. Let score(v) := NME?.

score: 0.008
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[llustration: a good location v for NME

m Use J = 1 location. Let score(v) := NME?.

score: 1.6
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[llustration: a good location v for NME

m Use J = 1 location. Let score(v) := NME?.

score: 13
() ..s ' ~ ° ("]
.. o ® ..," ‘e
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[llustration: a good location v for NME

m Use J = 1 location. Let score(v) := NME?.

score: 25

...Q .~.
.‘ &.‘" .*.
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[llustration: a good location v for NME

m Use J = 1 location. Let score(v) := NME?.

score: 25

m Best v reveals where P and @ differ most.

m Maximizes the probability of detecting differences between P and Q.
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NME: distinguishing positive /negative emotions

1

. |

- -

P:@

happy
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afrald

1
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=/ e

neutral surprised

q

ot | |

5

i
B

angry disgusted

m 35 females and 35 males
(Lundqvist et al., 1998).

m 48 x 34 = 1632 dimensions.

Pixel features.
m n = 201.

8/25



NME: distinguishing positive /negative emotions

- e @6 =1 No optimization
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NME: distinguishing positive /negative emotions

w' m v

- & . @ 6 P71 No optimization

[ NME (linear time)
P @ m ‘Lﬂ

happy neutral surprised
T 1.0

| & -~ - > ~y

QG‘W“ 5 0.5

Q: \ﬂ @ E 0.0 + vs. -

afraid angry disgusted

m Test power comparable to the state-of-the-art MMD test.
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NME: distinguishing positive /negative emotions

w' m v

- & . @ 6 P71 No optimization

B NME (linear time)
P: @ m ‘Lﬂ B MMD (quadratic time)

happy neutral surprised
T 1.0

| & -~ - > ~y

QG‘W“ 5 0.5

Q: \ﬂ @ E 0.0 + vs. -

afraid angry disgusted

m Test power comparable to the state-of-the-art MMD test.
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NME: distinguishing positive/negative emotions

P: Nk S S

happy neutral surprised

afraid angry disgusted

Learned v *

m Test power comparable to the state-of-the-art MMD test.

m Informative features: differences at the nose, and smile lines.
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NME: distinguishing positive/negative emotions

happy neutral surprised

=l Al

afrald angry dlsgusted

Learned v *

m Test power comparable to the state-of-the-art MMD test.

m Informative features: differences at the nose, and smile lines.
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Extension: model comparison by relative UME

m Both models P, @ can be wrong.
m Goal: pick the better one.
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A model comparison test (Jitkrittum et al., 2018)

m P, @ : two candidate generative models that can be sampled.

m R : true distribution (unknown).
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A model comparison test (Jitkrittum et al, 2018)
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m Observe X, S P,Y, ~" @, and Z, '~ R. Three sets.
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m P, @ : two candidate generative models that can be sampled.

m R : true distribution (unknown).

m Observe X, S P, Y, S @, and Z, S

R. Three sets.

Ho: UME? (P, R) — UME?(Q, R) < 0
Hy: UME? (P, R) — UME?(Q, R) > 0
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A model comparison test (Jitkrittum et al, 2018)

m P, @ : two candidate generative models that can be sampled.

m R : true distribution (unknown).

m Observe X, S P, Y, S @, and Z, S

R. Three sets.

Ho: UME? (P, R) — UME?(Q, R) < 0
Hy: UME? (P, R) — UME?(Q, R) > 0

- —2 —_—2
m Statistic: S, = UME (P, R) — UME,(Q, R).
m Reject Hy if 3, is too large.

Optimize V by maximizing power of
V' shows where () is better than P.
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Where does each GAN do better?

[Goodfellow et al., 2014]
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Where does each GAN do better?

m R = real MNIST images.

m Set V' = 40 (real) images of digit
i=0,...,9.

[Goodfellow et al., 2014]

11/25



Where does each GAN do better?

0.03; &
C
2 0.02 o 6 .
£ o001 H ¢ i L st
© 0.00% % % % %
(O] o
LSGAN 570011 . " s S
Q= [Mao et al., 2017] T _0.02

0123456789
Digit
m R = real MNIST images.

m Set V' = 40 (real) images of digit
i=0,...,9.

[Goodfellow et al., 2014]

P better —— Q better

11/25



Where does each GAN do better?

Q = LSGAN [Mao et al., 2017]

[Goodfellow et al., 2014]

Power Criterion

0.03; &
0.02
0.011 °
0.00 %
—0.01{ ¢
—0.02
01

23456789
Digit

m R = real MNIST images.
m Set V' = 40 (real) images of digit

i=0,...,9.

P better —— Q better

m @ is better at “1” and “5". P is slightly
better at “3”. Interpretable.

(k = Gaussian kernel on top of features from a CNN classifier.)
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Testing Explicit Models with
Kernel Stein Discrepancy



Goodness-of-fit Testing

Two-sample testing (so far)

q (unknown) p (unknown)
Y 2

e o0 o O0Weeee ¢ ¢ o N 0 o0 omo e oo o

Yi,Y2y.-4,¥Vn X1,X92,...,Xp




Goodness-of-fit Testing

Goodness-of-fit testing

q (unknown) p (model)

AV AN

Yi,¥2,--5¥n

Test goal: Do data follow the model p?

m p is an explicit density function known up to the normalizer e.g., a
restricted Boltzmann machine.

m Important: no sample from p.
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Recall the MMD (part 1)

Integral probability metric form of MMD:

MMD(p, g; F) = SuprH}-gl[EQf —Eyf],

where 7 = RKHS defined by a kernel k.
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Recall the MMD (part 1)

Integral probability metric form of MMD:

MMD(p, g; F) = SUPHfogl[qu —Eyf],

where 7 = RKHS defined by a kernel k.

Can we compute MMD with samples and a density p? I

m Problem 1: usually can’'t compute E,f in closed form.

m Problem 2: cannot sample from p. Also statistically inefficient.
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Stein Idea

To get rid of E,f in

sup [E, f-E, fl,
IfllF<1
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Stein Idea

To get rid of E,f in
sup [E,Tpf — E, Tpf],
lIfll=<1

we define the (1-D) Stein operator

1

(f( )p(z))-

Then, E, T, = 0 subject to appropriate boundary conditions.

Proof [Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)].

By (T3] = [ [ 2 (7(@)p(2))] p(z)da

p(z) dz
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1 d

(f(z)p(z)) -

Then, E, T, = 0 subject to appropriate boundary conditions.
Proof [Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)].
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Stein Idea

To get rid of E,f in
sup [E,Tpf — E, Tpf],
lIfll=<1

we define the (1-D) Stein operator

1

(f( )p(z))-

Then, E, T, = 0 subject to appropriate boundary conditions.

Proof [Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)].
1 d
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Stein Idea

To get rid of E,f in
sup [E,Tpf — E, Tpf],
lIfll=<1

we define the (1-D) Stein operator

1

(f( )p(z))-

Then, E, T, = 0 subject to appropriate boundary conditions.

Proof [Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)].
1 d
E, [Tpf] = / L}de (f(z)p(z))| pta)dz

/ (F(@)r(z ))]

[F(2)p(2)] %o
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Kernel Stein Discrepancy (Chwialkowski et al., 2016, Liu et al., 2016)

m Stein operator: T,f = ﬁd% (f(z)p(z)).

Kernel Stein Discrepancy (KSD)

KSD,(q) = sup E,T,f —E,Tpf
Ifllz<1
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m Stein operator: T,f = ﬁd% (f(z)p(z)).
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Kernel Stein Discrepancy (Chwialkowski et al., 2016, Liu et al., 2016)

2 (f(2)p(2)).

Kernel Stein Discrepancy (KSD)

m Stein operator: T),f =

KSD,(q) = sup E,T,f — E.F5f

IFllz<1

= sup E,T,f
IFll7<1

(closed-form sup) = ||g|| 7,

where

0(8) = By [ 75 glx, 0)2(0)]

m Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016)
Liu, Lee, Jordan (ICML 2016)

» full derivation
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Kernel Stein Discrepancy (Chwialkowski et al., 2016, Liu et al., 2016)

m Stein operator: T),f =

y 4z 4 (f(z)p(z)). (normalizer cancels)

Kernel Stein Discrepancy (KSD)

KSD,(q) = sup E,T,f — E.F5f

IFllz<1

= sup E,T,f
IFll7<1

(closed-form sup) = ||g|| 7,

where

0(8) = By [ 75 glx, 0)2(0)]

m Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016)
Liu, Lee, Jordan (ICML 2016)

» full derivation

16/25



Kernel Stein Discrepancy: population expression

Test statistic when = € R¢, given independent y,y' ~ q,
KSD?J(Q) = ||9||2fd = EyqByngho(v,¥'),
where
ho(2,2') = 5,(2) s, (2 )k(z, o)
+5,(z) ' Vyk(z,z')
+s,(z') 'V, k(z, 2)
+tr [V Vyk(z,z')]

m s,(z) € R% = V, log p(z) (score function of p)
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Kernel Stein Discrepancy: population expression
Test statistic when z € R9, given independent vy, y' ~ g,
KSDi(Q) = ||9||2fd = EyngBynghn(y, ¥),
where
hy(2,2') = 5,(2) s, (2')h(z, o)
+5,(z) ' Vyk(z,z')

+s,(z') 'V, k(z, 2)
+tr [V Vyk(z,z')]

m s,(z) € R% = V, log p(z) (score function of p)

Theorem (Chwialkowski et al. (ICML 2016))
Assume appropriate boundary conditions. If kernel 1s Cy-universal
. 2 .
and Q satisfies E;.q HV (log 258) H < 00, then KSD?)(q) =0if p=gq.
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KSD: Empirical statistic and asymptotics

1.4.d.

Given: {y;}7 , '~ g, a differentiable density p.

m Empirical statistic:

n n

i=1j=1
= Runtime complexity: O(d%n?).
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KSD: Empirical statistic and asymptotics

1.4.d.

Given: {y;}7 , '~ g, a differentiable density p.

m Empirical statistic:

n n

— 1
KSD3(q) = — > > ho(vs, 9y)-
i=1j=1
= Runtime complexity: O(d%n?).
[don't reject Ho| [reject Ho (say P=0)]

— P=0

— pP=Q

Asymptotics:
1 When p = g, KSDf,(q) < infinite
weighted sum of chi-squared variables.

2 When p # q, KSDg(q) % a Gaussian.

probability density

H
0.0 0.1 02 03 04 05
nKSD?
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KSD: Empirical statistic and asymptotics

1.4.d.

Given: {y;}7 , '~ g, a differentiable density p.

m Empirical statistic:

n n

— 1
KSD3(a) = -5 0D hulvis vy).
i=1j=1
= Runtime complexity: O(d%n?).
[don't reject Ho| [reject Ho (say P=0)]

— P=0

— P=Q

Asymptotics:
1 When p = g, KSD%(q) < infinite
weighted sum of chi-squared variables.

2 When p # g, KSDZ(q) % a Gaussian.

probability density

H
0.0 0.1 02 03 04 05
nKSD?

Testing:
m Get test threshold via wild bootstrap.
m Permutation test not applicable. Have only one set of samples.

» wild bootstrap detail
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Linear-time, interpretable
Goodness-of-fit Test



The Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al., 2017)

— plx)
Recall Stein witness: — gx)
&(v) = Exwg |5k B(x, V)P(x)]]- — g
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The Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al., 2017)

Recall Stein witness: — plx)
(V) = B | 5 20, V)P ()] — ot
8LV) 1= Exra | 3 ax LB VIPX)]| o
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The Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al., 2017)

Recall Stein witness:
8(v) = Exng [ & [k(x, V)p(x)]] . 7

— plx)
— qlx)
— glx)
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The Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al., 2017)

Recall Stein witness: — plx)
(v) = Fcng [ sy el G0 v)p(x)]] ' o
g X | p(x) dx » V)P .- 2 — o

m FSSD statistic: Evaluate g2 at J test locations V = {vy,...,vs}.
m FSSD is to KSD as UME is to MMD.

. 1 J
(population) FSSD? = i Z lg(v))Il3-
=1
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The Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al, 2017)

Recall Stein witness: — plx)
(V) = Exvg [ 55 2[R, V)P(x))] ’ —
g X | p(x) dx » V)P .- 2 — o

m FSSD statistic: Evaluate g2 at J test locations V = {vy,...,vs}.
m FSSD is to KSD as UME is to MMD.

. 1 J
(population) FSSD? = i Z le(v5)ll3.
=1

Theorem (Jitkrittum et al., NeurIPS 2017)

Assume same conditions as KSD, and a real analytic kernel.
Assume V drawn from a distribution that covers the domain. Then,

FSSD? = 0 if and only if p = q. I
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FSSD: Empirical statistic and asymptotics
= Bstimate FSSD? with samples {y,}7, "%" ¢.

= Runtime complexity: O(d%Jn). Linear in n.
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FSSD: Empirical statistic and asymptotics

= Estimate FSSD? with samples {v;}7* , v,

= Runtime complexity: O(d%Jn). Linear in n.

|don't reject Hg reject Hy (say W¢Q)|

P=Q

— P20

Asymptotics:
1 When p = q, FSSD2 -3 finite weighted

sum of chi-squared variables.

2 When p # q, FSSD? % a Caussian.

probability density

R D

0.0 0.1 0.2 0.3 0.4 0.5
nFSSD?
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FSSD: Empirical statistic and asymptotics

= Estimate FSSD? with samples {v;}7* , v,

= Runtime complexity: O(d%Jn). Linear in n.

|don't reject Ho reject Ho (say ﬁ¢6)|

P=Q

— P2Q

Asymptotics:
1 When p = g, FSSD2 -3 finite weighted

sum of chi-squared variables.

2 When p # q, FSSD? % a Caussian.

probability density

R D

0.0 0.1 0.2 0.3 0.4 0.5
nFSSD?

Testing:
m Weights = eigenvalues of a dJ x dJ covariance matrix.

m Test threshold = empirical (1 — ar)-quantile.
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Find test locations by maximizing power

Proposition (Asymptotic power of FSSD? [Jitkrittum et al., 2017])

Iidoln't reject Ho| [reject Ho (say P=0)]

— P=0

— p=0

For large n, the test power

P(reject Hy | Hy true)

a

probability density

“-““I“““"“

FSSD2 Cq false rejection rate: want < «a
~®(Vn =
O'Hl 4 /nO'Hl power: true rejection rate
where $ = CDF of N(0,1).
0.0 0.1 0.2 0.3 0.4 0.5
nF5sD?
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Find test locations by maximizing power

Proposition (Asymptotic power of FSSD? [Jitkrittum et al., 2017])

Iidoln't reject Ho| [reject Ho (say P=0)]

-]
Il
s}

s}

#

For large n, the test power

P(reject Hy | Hy true)

a

probability density

“-““I“““"“

FSSD2 Cq false rejection rate: want < «a
~®|Vn = ,
0']{1 4/ ’r],O'I.I1 power: true rejection rate
where $ = CDF of N(0,1).
0.0 0.1 0.2 0.3 0.4 0.5
nF5sD?

m For large n, 15 term \/ﬁ%f dominates. Similar to MMD.
1

—

o FSSD?

(maximize test power) argmaxpower & arg max ———
14 14 OH,
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Interpretable Test Locations: Chicago Crime
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Interpretable Test Locations: Chicago Crime

AR o &
$o] @
" :: .!:
Sod YT N Y, m n = 11957 robbery events
1 35S in Chicago in 2016.
ok T * lat/long coordinates =
o 2 ' - sample from gq.
Ry m Model spatial density with
r'—lj e T Gaussian mixtures.
E——=F:[Shal: f5<
Uar BN
R\ T oy
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Interpretable Test Locations: Chicago Crime

S
e
A o
— :
. 0 s
& e
2
(e V3%,
i a
VO S 3
"
o\

Model p = 2-component Gaus-
sian mixture.

23/25



Interpretable Test Locations: Chicago Crime

) / 43 ° Fon
A /= 2. %
A KT Score surface

s s
03 wge o ': ’
ot —
R A B FSSD2
¢ 7 score(v) 1= ——
Crfﬁ
NG V . __.' ) (power criterion)
N Ly .-_. -,:;'.,1 m Dark = high mismatch
ol e, between p and gq.
3 3 l‘f .
- o$ :1"
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Interpretable Test Locations: Chicago Crime

‘X
7.
o > S
Lo o\s V.
e )
Y
s e e
% = optimized v.
o Noo® V. .' -, 3
| bc:' B o
O\ e A > ¥
< .-
’
T
2
|
oy |
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Interpretable Test Locations: Chicago Crime

% = optimized v.
No robbery in Lake Michigan.
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Interpretable Test Locations: Chicago Crime

o Model p = 10-component Gaus-
~ sian mixture.
[ ¥ 2 .:.
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Interpretable Test Locations: Chicago Crime

Capture the right tail better.
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Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.
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Interpretable Test Locations: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are in-

terpretable.

23/25



KSD vs. FSSD

m Recall Stein witness:
&(v) = Fxng [k £k (x)p(x)]]. -

— glx)

’ ; ; — plx)
/ —
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KSD vs. FSSD

m Recall Stein witness:
&(v) = Fxng [k £k (x)p(x)]]. -

— &)

/ o

KSD

— withess ‘

\

KSD? = ||g||&xns (RKHS norm).

Good when the difference between
P, q is spatially diffuse.
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KSD vs. FSSD

m Recall Stein witness:
&(v) = Fxng [k £k (x)p(x)]]. -

— glx)

’ ; ; — plx)
/ ~

KSD FSSD

— witness‘ ‘ — witness ‘

\

*h/ sk
KSD? = ||g|/3xus (RKHS norm). FSSD? = 27 3 [le(vs)I3.

Good when the difference between Good when the difference between
P, q is spatially diffuse. P, q is local.

24/25



Conclusion

m Part 1: Divergence measures

Integral probability metrics
¢-divergences (f-divergences)

m Part 2: Statistical hypothesis testing
Using integral probability metrics (MMD)
Relation of testing and classification
Learned features for powerful tests

m Part 3: Linear-time features and model criticism

Interpretable, linear time features for testing (UME)
Stein’s method for model evaluation (KSD)
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References and further reading

m UME/NME
Chwialkowski et al., NeurIPS 2015. NME with random locations.
Jitkrittum et al., NeurIPS 2016. NME with optimized locations.
Scetbon and Varoquaux, NeurIPS 2019. Extension of UME/NME with
L1 norm.

m Kernel Stein Discrepancy

Chwialkowski et al., ICML 2016 and Liu et al., ICML 2016. KSD testing.
Oates et al., RSS 2016 and Gorham et al., NeurIPS 2015. MCMC
convergence check.

Liu and Wang, NeurIPS 2016. Stein variational gradient descent.

Barp et al., NeurIPS 2019. For model fitting.

m FSSD. Jitkrittum et al., NeurIPS 2017 (best paper).
m Relative tests

Bounliphone et al., ICLR 2016. Relative MMD. For 2 models.
Jitkrittum et al., NeurIPS 2018. Relative UME, FSSD. For 2 models
Lim et al., NeurIPS 2019. Relative KSD, MMD. For > 2 models.
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Questions?

Thank you
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Appendix



Outline

1 Appendix: UME, NME
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Normalized ME (NME) Statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

m Let ¢(x) = - (k(x,v1), .-, k(x,vs))" € R’. Equivalently,
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Normalized ME (NME) Statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

m Let ¢(x) = f (k(x,v1), ..., k(x,v;))" € RY. Equivalently,

UME?(P, Q) = ||Exwptp(x) — Eymo¥(y)|3-

m Covariance matrix C := covxp[¥v(x)] + covy~o[¥v(y)] € R7*/.
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Normalized ME (NME) Statistic (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

m Let ¢(x) = f (k(x,v1), ..., k(x,v;))" € RY. Equivalently,

UME?(P, Q) = ||Exwpt(x) — Eyo¥(y)3-

m Covariance matrix C := covxp[¥v(x)] + covy~o[¥v(y)] € R7*/.

NME?(P, Q) = [Exvp¥v(x) — Eyno¥v(y)] C1 [Exurtpv(x) — Eymo¥v(y)]

m S~ ! decorrelates the J terms. Simpler null distribution.
® — Normalized ME (NME) statistic.
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[Mustration of NME: Two Informative Features

F160
m 2D problem. %‘2"8
1100
P :N([0,0],1) 180
: 1 I 160
Q: N((1,0,7) 169
120
=0
m J = 2 features.
m Fix v; to A. F%gi
m Contour plot of 1176
Vo Xn({vl,vz}). 1168
1160
m {vy1, vz} chosen to reveal the 1152
difference of P and Q. 1144
1136
H128
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Full NME Test Statistic. J =1

m Let V = {v1,...,v,} be the J test locations.
fp(vi) = Bo(vi)
m Let 7, := : € R’.
Ap(vs) —Ro(vy)
m Let (Sy)y := Covu[k(x, Vi), k(x, v;)] + Covy [k(y, Vi), k(y, v;)] € RT*Y.
m Then, the statistic

-1 _

An = nZIL (Sn +7n1) " Zn,
where 7, > 0 is a regularization parameter.
m When J =1,
[ [ap(v) — po(V))? ‘
Yo + var,[k(x, v)] + vary [k(y, v)]

n =

m Computing \,: O(J3 + J2n + Jdn).
m Optimization of V: O(J3 + J2dn).
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.

33/25



[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := p Witness?(v).

variance of v*
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := p Witness?(v).

variance of v*

— Px)
— Qy)

—  witness?(v)
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := p Witness?(v).

variance of v*

—  witness?(v)

I variancex(v)
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := p Witness?(v).

variance of v*

Allya

—  witness?(v)

0 variancey(v)
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X 4 variance of v from Y.
m ME Statistic: 5\n(v) .— g Witness®(v)

variance of v*

—  witness? (v)

[ wvariance of v
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := p Witness?(v).

variance of v*

— A(v)

A\

_ N4
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[Mustration: NME Statistic. J =1

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := p Witness?(v).

variance of v*

— A(v)

A
/ \

m Best location is v* that maximizes 5\n.
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A Lower Bound on the Test Power of NME

Proposition (Jitkrittum et al., 2016)
The power Py, (A, > Ty) > L(\y) =

nn*anffnz n—Ta *Enn2n2
19 (n—Ta)?/n _ 28_[7 e 537;(351—1;; 2 — 28_[(A . )/3g4 B
where
m )\, = nNME?(P, Q). Population quantity.
m Y, 61,...,& > 0 are constants.

34/25



A Lower Bound on the Test Power of NME

Proposition (Jitkrittum et al., 2016)
The power Pg, (A, > To) > L(A,) =

[Yn(An=Ta)(n=1)=¢on]° n—Ta)/3=T3nyn]2yn?
- 2e_£1(>\n_Ta)2/n o Y e 2 B 2e_[(A T )/364 3nyn]®y
where
m )\, = nNME?(P, Q). Population quantity.
m Y, 61,...,& > 0 are constants.

For large n, L(A,) is an increasing function of A,,.

Best parameters = arg max L(A,) = argmax A,. I
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A Lower Bound on the Test Power of NME

Proposition (Jitkrittum et al., 2016)
The power Pg, (A, > To) > L(A,) =

[Yn(An=Ta)(n=1)=¢on]° n—Ta)/3=T3nyn]2yn?
- 2e—£1(>\n—Ta)2/n o Y e 2 B 26_[(A T )/364 3nyn]®y
where
m )\, = nNME?(P, Q). Population quantity.
m Y, 61,...,& > 0 are constants.

For large n, L(A,) is an increasing function of A,,.

Best parameters = arg max L(A,) = argmax A,. I

m Optimize (gradient ascent) on a held-out set (estimated A,). Test on
a separate set.
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Bayesian Inference Vs. Deep Learning Papers

Papers on Bayesian inference

X =1

Papers on deep learning

v{l ], 1~ e

m NIPS papers (1988-2015)
m Sample size n = 216.

m Random 2000 nouns (dimensions). TF-IDF representation.
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Bayesian Inference Vs. Deep Learning Papers
No optimization

1.0

Power —
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Bayesian Inference Vs. Deep Learning Papers

No optimization (hl;reoagggiclie)
N
0.5\ b
S
o
a
0.0
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Bayesian Inference Vs. Deep Learning Papers
State-of-the-art

. Proposed
No optln\nzatlon (linear_time)(quadl\falﬁlc:) time)
g 0.5
=
o
a

o
o
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Bayesian Inference Vs. Deep Learning Papers

State-of-the-art
MMD
dratic time)

Proposed
(linear—time)(
qua

No optimization

Power —
—
Ul

o
o

Learned informative feature (a new document):

infer, Bayes, Monte Carlo, adaptor, motif,
haplotype, ECG, covariance, Boltzmann
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Outline

2 Appendix: Relative UME
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Rel-UME: Difference of Two Witness Functions

Recall the witness function between P and R:

witnessp p(v) = Expk(x,v) — E,rk(z,V)
for some positive definite kernel k(x, v).

Assume only one test location v. Recall

UME2 (P, R) = witness} p(v) = (np(v) — pr(v))?
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Rel-UME: Difference of Two Witness Functions

------ withessp g

------ witnesso,r
—— Power Cri.

39/25



Rel-UME: Difference of Two Witness Functions

— P
— Q
— R
—————— VWtrYEEigR
—————— thrxaasg,R
—— Power Cri.

~-=7 Se-

m Power criterion(v) = f(v) is a function such that maximizing it
corresponds to maximizing the test power.

fv) =

Witness?pﬁ(v) - Witness%g,R(v) _ Uz - Ué
standard deviationp,g r(V) \/4({123 — 2pg +(3)
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Rel-UME: Difference of Two Witness Functions

— P
— Q
— R
—————— VWtrYEEigR
—————— \Aﬂtf?EEEigIR
—— Power Cri.

~-=7 Se-

m Power criterion(v) = f(v) is a function such that maximizing it
corresponds to maximizing the test power.

fv) =

Witness?pﬁ(v) - Witness%,R(v) _ Uz - Ué
standard deviationp,g r(V) \/4({123 — 2pg +(3)

m f(v) >0 = Q is better in the region around v
m f(v) <0 = P is better in the region around v

39/25



Rel-UME: Difference of Two Witness Functions

— P

— R
------ withesspr

------ witnesso,r
—— Power Cri.

m Power criterion(v) = f(v) is a function such that maximizing it
corresponds to maximizing the test power.

fv) =

Witness?pﬁ(v) - Witness%g,R(v) _ Uz - Ué
standard deviationp,g r(V) \/4({123 — 2(pg +(3)

m f(v) >0 = Q is better in the region around v
m f(v) <0 = P is better in the region around v
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Experiment on CIFARI10

— Cri. mmm P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}

m (true) R = {automobile, cat}

airplane  automobile cat
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— Cri. W P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3
network at the pool3 layer.
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Experiment on CIFARI10

— Cri. mmm P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3
network at the pool3 layer.

300
Histogram of power criterion values f(v) eval-

200 uated at v = {airplane, automobile, cat}.

m All non-negative. — Q@ is equally
good or better than P everywhere.

100
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Experiment on CIFARI10

— Cri. W P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3
network at the pool3 layer.

Images v with the lowest values of
f(v) = 0. = P, Q perform equally
well in these regions.
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Experiment on CIFARI10

— Cri. W P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3
network at the pool3 layer.

P i
1

: Images v with the highest values of
i. w ) > 0. = Q@ is better than P in
these regions.
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3 Appendix: Kernel Stein Discrepancy
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Stein operator is linear

Re-write Stein operator as:

T,f](2) = - = (f(z)p(e))

1
p(z) d
1

= (@) p(z ) (fv)+f( ) ( )

= f(@) o log p(a) + = ()

Stein features in F

4 go to KSD
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Stein operator is linear

Re-write Stein operator as:

T,f](2) = - = (f(z)p(e))

1
(@)
— [P L (@) + 7(2) L 2)

~ ()
= f(w)% log p(z) + %f(fv)

Stein features in F

T, f) (z) = (d log p(2) ) £(z) + 2 f(a)
= (f, &(2) >]:
~—~—

Stein features
where E;.,¢(z) = 0.
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The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(z, z'),

5@ = (1 g0@)
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The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(z, z'),

5@ = (1 g0@)

Using kernel derivative trick in ,

T,51(2) = (= 10g5(2)) 1 (@) + 25 (2)

= <f, <;;logp(:c)> o(z) + ;¢($)>
F
= <f,§(:12)>}- :
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Kernel Stein Discrepancy: Derivation

m Can be shown that [T}, f] (z) = (f,£(z)) . where

* &(2) = (4 logp(2)) p(z) + 4 p(2),
* o(z) = feature map associated with &
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m Can be shown that [T}, f] (z) = (f,£(z)) . where
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Closed-form expression for KSD:
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Kernel Stein Discrepancy: Derivation

m Can be shown that [T}, f] (z) = (f,£(z)) . where
* &(2) = (4 logp(2)) p(z) + 4 p(2),
* o(z) = feature map associated with &
Closed-form expression for KSD:

KSD,(q) = sup Ey g [Tpf] (¥)
[Ifll7<1

= sup Eywq (f:g(y»}"
I7ll7<1

SR Bt 5 Byt

m At (b), we have f* = Ey.,£(y) as the argsup.

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
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Kernel Stein Discrepancy: Derivation

m Can be shown that [T}, f] (z) = (f,£(z)) . where
é(z) = (& log p(2)) p(z) + & o(2),
¢(z) = feature map associated with k
Closed-form expression for KSD:

KSD,(q) = sup Ey g [Tpf] (¥)
[Ifll7<1

sup Eywq (f: £(y)>]:
I7ll7<1

sup <f:Ey~q£(y)>]: = ||Ey~q€(y)||]:-
[FE=S! ()

m At (b), we have f* = Ey.,£(y) as the argsup.
Caution: requires a condition for the Riesz theorem to hold,

d 2
E;q <dxlogp(ac)> < 00.

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
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KSD: Empirical statistic and asymptotics

m Given: {y;}7, i q, a differentiable density p.

The empirical statistic:

@(q) = % Z > ho(vi, yj)-
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KSD: Empirical statistic and asymptotics
m Given: {y;}7, S q, a differentiable density p.

The empirical statistic:

1
- —
KSD}(q) = —

n n
ZE: EE: o (Yir Y5)-

Asymptotic distribution when p # g¢:

v (KSD3(q) - KSDE() ) S N (0,0)  of, = 4Var, By [ho(u, ¥
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KSD: Empirical statistic and asymptotics

1.9.d

m Given: {y;}7 , '~ g, a differentiable density p.

The empirical statistic:

1
- —
KSD}(q) = —

n n
ZE: EE: o (Yir Y5)-

Asymptotic distribution when p = g¢:

nKSD2(q) ~ > AZ} where Z; ~N(0,1) iid,,
=1

A(@) = [ hole, () dp(a).

Get test threshold via wild bootstrap.
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Wild bootstrap test for KSD [chwialkowski et al. 1CML 2016)]

Generate samples By, ..., B, by wild bootstrap

1 Fori=1,...,m:
1 Draw iid. Wy,..., W, (-1/+1) where
P(W; =1) = P(W, = —1) = 1/2.
2 Bii= 5 )iy 2y WiWihy (i, 95)
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Wild bootstrap test for KSD [chwialkowski et al. ICML 2016))]

Generate samples By, ..., B, by wild bootstrap

1 Fori=1,...,m:
1 Drawiid. Wy,..., W, (-1/+1) where
P(W,=1)= P(W, = —1) = 1/2.
2 Bii= 5 )iy 2y WiWihy (i, 95)
2 Threshold = (1 — a)-quantile from {Bs, ..., Bn}

3 Reject Hp if KSD?D(q) = # >oie1 2.j=1 hp(¥Yi, y;) is larger than the
threshold.
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Wild bootstrap test for KSD [chwialkowski et al. ICML 2016))]

Generate samples By, ..., By, by wild bootstrap
1 Fori=1,...,m:
1 Drawiid. Wy,..., W, (-1/+1) where
P(W; =1)= P(W; = —1) = 1/2.
2 Bii= 5 )iy 2y WiWihy (i, 95)
2 Threshold = (1 — a)-quantile from {Bs, ..., Bn}
3 Reject Hp if KSD?D(q) = # >oie1 2.j=1 hp(¥Yi, y;) is larger than the
threshold.

Proposition ([Chwialkowski et al. ICML 2016)])

m When p = q, Bi,..., By are samples from the null distribution as
n — 00.
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Wild bootstrap test for KSD [chwialkowski et al. 1CML 2016)]

Generate samples By, ..., B, by wild bootstrap

1 Fori=1,...,m:
1 Draw iid. Wy,..., W, (-1/+1) where
P(W,=1)= P(W, = —1) = 1/2.
2 Bii= 5 )iy 2y WiWihy (i, 95)
2 Threshold = (1 — a)-quantile from {Bs, ..., Bn}
3 Reject Hp if KSD?D(q) = # >oie1 2.j=1 hp(¥Yi, y;) is larger than the
threshold.
Proposition ([Chwialkowski et al. ICML 2016)])

m When p = q, Bi,..., By are samples from the null distribution as
n — 00.

—

m When p # q, By,..., B, converge to 0. KSD%(q) converges to
KSD2(q) > 0.

< return to KSD
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KSD for discrete-valued variables

Discrete domains: X = {1,..., L}” with L € N.
The population KSD (discrete):
KSD?(Q) = Ez,g/nghp(z, ')
where
hy(z,2") = s,(2) " sp(2')k(z, 2") — s,(2) " Ra(, ')
—sp(2") i (2, 2) + tr [kpa(z, )]
ki(z,z') = A k(z, 2'), AF

sp(2) = 515

! is cyclic backwards difference on z,

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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KSD?(Q) = Ez,g/nghp(z, ')
where
hy(z,2") = s,(2) " sp(2')k(z, 2") — s,(2) " Ra(, ')
—sp(2") i (2, 2) + tr [kpa(z, )]
ki(z,z') = A k(z, 2'), AF

sp(z) = Apz()g)

A discrete kernel: k(z,z') = exp (—dg(z, z')), where
du(z, ') = D 10 I(za # ).

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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KSD for discrete-valued variables

Discrete domains: X = {1,..., L}” with L € N.
The population KSD (discrete):

KSD?(Q) = Ez,g/nghp(z, ')
where
hy(z,2') = Sp(x)TSp(“’/)k'(x: z') - sp(a:)Tkz(:z:, z')
—s,(@)T + 41 [kna(z, 2')]
y A

2! is cyclic backwards difference on z,

(@) = 5
A discrete kernel: k(z,z') = exp (—dg(z, z')), where
du(z, ') = D 10 I(za # ).

2 _ . _ .
KSD2(Q) =0 iff P = Q if
B Gram matrix over all the configurations in X is strictly positive definite,
B P>0and Q>0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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Outline

4 Appendix: FSSD
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F'SSD is a Discrepancy Measure

Theorem

Let X be a connected open set in R?. Assume

1 (Nice RKHS) Kernel k: X x X — R 1s Cy-universal, and real
analytic.

2 (Stein witness not too rough) ||gl|% < oo.
3 (Finite Fisher divergence) Ex.q||Vxlog %”2 <00 .
4 (Vanishing boundary) lim)x|-e0 2(x)g(x) = 0.
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4 (Vanishing boundary) lim)x|-e0 2(x)g(x) = 0.
Let V ={vi,...,vj} C R? be drawn i.i.d. from a distribution n which
has a density. Then, for any J > 1,

m Ifp=gq, FSSD? = 0.
m If p # q, n-almost surely, FSSD? > 0.

o2
m Gaussian kernel k(x,Vv) = exp (—";;;b) works.
k
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What Are “Blind Spots” in the Stein Witness?

Recall g(v) : = Ex~q Z,(lﬂ(gc[k"(x)p(x)] .
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Consider p = N(0,1) and ¢ = N'(0,07). Use unit-width Gaussian kernel.
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m If v =0, then FSSD? = g%(v) = 0 regardless of 03.
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m If v =0, then FSSD? = g%(v) = 0 regardless of 03.
m If g #0, and k is real analytic, R = {v | g(v) = 0} (blind spots) has 0
Lebesgue measure.
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v exp (_ 2+v220§) (03 -1) 0.00
g(v) = 3/2 '
(1+ ag)
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m If v =0, then FSSD? = g%(v) = 0 regardless of 03.

m If g #0, and k is real analytic, R = {v | g(v) = 0} (blind spots) has 0
Lebesgue measure.

m So, if v ~ a distribution with a density, then v ¢ R.
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