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Abstract

Embeddings of probability measures into reproducing kernel Hilbert spaces have
been proposed as a straightforward and practical means of representing and com-
paring probabilities. In particular, the distance between embeddings (the maxi-
mum mean discrepancy, or MMD) has several key advantages over many classical
metrics on distributions, namely easy computability, fast convergence and low bias
of finite sample estimates. An important requirement of the embedding RKHS is
that it be characteristic: in this case, the MMD between two distributions is zero
if and only if the distributions coincide. Three new results on the MMD are intro-
duced in the present study. First, it is established that MMD corresponds to the
optimal risk of a kernel classifier, thus forming a natural link between the distance
between distributions and their ease of classification. An important consequence
is that a kernel must be characteristic to guarantee classifiability between distri-
butions in the RKHS. Second, the class of characteristic kernels is broadened to
incorporate all strictly positive definite kernels: these include non-translation in-
variant kernels and kernels on non-compact domains. Third, a generalization of
the MMD is proposed for families of kernels, as the supremum over MMDs on
a class of kernels (for instance the Gaussian kernels with different bandwidths).
This extension is necessary to obtain a single distance measure if a large selection
or class of characteristic kernels is potentially appropriate. This generalization is
reasonable, given that it corresponds to the problem of learning the kernel by min-
imizing the risk of the corresponding kernel classifier. The generalized MMD is
shown to have consistent finite sample estimates, and its performance is demon-
strated on a homogeneity testing example.

1 Introduction
Kernel methods are broadly established as a useful way of constructing nonlinear algorithms
from linear ones, by embedding points into higher dimensional reproducing kernel Hilbert spaces
(RKHSs) [12]. A generalization of this idea is to embed probability distributions into RKHSs, giv-
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ing us a linear method for dealing with higher order statistics [8, 15, 17]. More specifically, suppose
we are given the set P of all Borel probability measures defined on the topological space M , and
the RKHS (H, k) of functions on M with k as its reproducing kernel (r.k.). For P ∈ P , denote by
Pk :=

∫
M

k(., x) dP(x). If k is measurable and bounded, then we may define the embedding of P
in H as Pk ∈ H. The RKHS distance between two such mappings associated with P,Q ∈ P is
called the maximum mean discrepancy (MMD) [8, 17], and is written

γk(P,Q) = ‖Pk −Qk‖H. (1)

We say that k is characteristic [6, 17] if the mapping P 7→ Pk is injective, in which case (1) is
zero if and only if P = Q, i.e., γk is a metric on P . An immediate application of the MMD is to
problems of comparing distributions based on finite samples: examples include tests of homogeneity
[8], independence [9], and conditional independence [6]. In this application domain, the question of
whether k is characteristic is key: without this property, the algorithms can fail through inability to
distinguish between particular distributions.
Characteristic kernels are important in binary classification: The problem of distinguishing dis-
tributions is strongly related to binary classification: indeed, one would expect easily distinguishable
distributions to be easily classifiable.1 The link between these two problems is especially direct in
the case of the MMD: in Section 2, we show that γk is the negative of the optimal risk (correspond-
ing to a linear loss function) associated with the Parzen window classifier [12, 14] (also called kernel
classification rule [4, Chapter 10]), where the Parzen window turns out to be k. We also show that
γk is an upper bound on the margin of a hard-margin support vector machine (SVM). The impor-
tance of using characteristic RKHSs is further underlined by this link: if the property does not hold,
then there exist distributions that are unclassifiable in the RKHS H. We further strengthen this by
showing that characteristic kernels are necessary (and sufficient under certain conditions) to achieve
Bayes risk in the kernel-based classification algorithms.
Characterization of characteristic kernels: Given the centrality of the characteristic property to
both RKHS classification and RKHS distribution testing, we should take particular care in estab-
lishing which kernels satisfy this requirement. Early results in this direction include [8], where k is
shown to be characteristic on compact M if it is universal in the sense of Steinwart [18, Definition
4]; and [6, 7], which address the case of non-compact M , and show that k is characteristic if and
only if H +R is dense in the Banach space of p-power (p ≥ 1) integrable functions. The conditions
in both these studies can be difficult to check and interpret, however, and the restriction of the first
to compact M is limiting. In the case of translation invariant kernels, [17] proved the kernel to
be characteristic if and only if the support of the Fourier transform of k is the entire Rd, which is
a much easier condition to verify. Similar sufficient conditions are obtained by [7] for translation
invariant kernels on groups and semi-groups. In Section 3, we expand the class of characteristic
kernels to include kernels that may or may not be translation invariant, with the introduction of a
novel criterion: strictly positive definite kernels (see Definition 3) on M are characteristic.
Choice of characteristic kernels: In expanding the families of allowable characteristic kernels, we
have so far neglected the question of which characteristic kernel to choose. A practitioner asking by
how much two samples differ does not want to receive a blizzard of answers for every conceivable
kernel and bandwidth setting, but a single measure that satisfies some “reasonable” notion of dis-
tance across the family of kernels considered. Thus, in Section 4, we propose a generalization of the
MMD, yielding a new distance measure between P and Q defined as

γ(P,Q) = sup{γk(P,Q) : k ∈ K} = sup{‖Pk −Qk‖H : k ∈ K}, (2)

which is the maximal RKHS distance between P andQ over a family, K of positive definite kernels.
For example, K can be the family of Gaussian kernels on Rd indexed by the bandwidth parameter.
This distance measure is very natural in the light of our results on binary classification (in Section 2):
most directly, this corresponds to the problem of learning the kernel by minimizing the risk of the
associated Parzen-based classifier. As a less direct justification, we also increase the upper bound on
the margin allowed for a hard margin SVM between the samples. To apply the generalized MMD
in practice, we must ensure its empirical estimator is consistent. In our main result of Section 4,
we provide an empirical estimate of γ(P,Q) based on finite samples, and show that many popular
kernels like the Gaussian, Laplacian, and the entire Matérn class on Rd yield consistent estimates

1There is a subtlety here, since unlike the problem of testing for differences in distributions, classification
suffers from slow learning rates. See [4, Chapter 7] for details.
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of γ(P,Q). The proof is based on bounding the Rademacher chaos complexity of K, which can be
understood as the U-process equivalent of Rademacher complexity [3].
Finally, in Section 5, we provide a simple experimental demonstration that the generalized MMD
can be applied in practice to the problem of homogeneity testing. Specifically, we show that when
two distributions differ on particular length scales, the kernel selected by the generalized MMD
is appropriate to this difference, and the resulting hypothesis test outperforms the heuristic kernel
choice employed in earlier studies [8]. The proofs of the results in Sections 2-4 are provided in the
appendix.

2 Characteristic Kernels and Binary Classification
One of the most important applications of the maximum mean discrepancy is in nonparametric hy-
pothesis testing [8, 9, 6], where the characteristic property of k is required to distinguish between
probability measures. In the following, we show how MMD naturally appears in binary classifica-
tion, with reference to the Parzen window classifier and hard-margin SVM. This motivates the need
for characteristic k to guarantee that classes arising from different distributions can be classified by
kernel-based algorithms.
To this end, let us consider the binary classification problem with X being a M -valued random
variable, Y being a {−1, +1}-valued random variable and the product space, M ×{−1,+1}, being
endowed with an induced Borel probability measure µ. A discriminant function, f is a real valued
measurable function on M , whose sign is used to make a classification decision. Given a loss
function L : {−1, +1} ×R→ R, the goal is to choose an f that minimizes the risk associated with
L, with the optimal L-risk being defined as

RL
F?

= inf
f∈F?

∫

M

L(y, f(x)) dµ(x, y) = inf
f∈F?

{
ε

∫

M

L1(f) dP+ (1− ε)
∫

M

L−1(f) dQ
}

, (3)

where F? is the set of all measurable functions on M , L1(α) := L(1, α), L−1(α) := L(−1, α),
P(X) := µ(X|Y = +1), Q(X) := µ(X|Y = −1), ε := µ(M,Y = +1). Here, P and Q represent
the class-conditional distributions and ε is the prior distribution of class +1. Now, we present the
result that relates γk to the optimal risk associated with the Parzen window classifier.

Theorem 1 (γk and Parzen classification). Let L1(α) = −α
ε and L−1(α) = α

1−ε . Then, γk(P,Q) =
−RL

Fk
, where Fk = {f : ‖f‖H ≤ 1} and H is an RKHS with a measurable and bounded k.

Suppose {(Xi, Yi)}N
i=1, Xi ∈ M , Yi ∈ {−1, +1}, ∀ i is a training sample drawn i.i.d. from µ and

m = |{i : Yi = 1}|. If f̃ ∈ Fk is an empirical minimizer of (3) (where F? is replaced by Fk in (3)),
then

sign(f̃(x)) =
{

1, 1
m

∑
Yi=1 k(x,Xi) > 1

N−m

∑
Yi=−1 k(x,Xi)

−1, 1
m

∑
Yi=1 k(x,Xi) ≤ 1

N−m

∑
Yi=−1 k(x,Xi)

, (4)

which is the Parzen window classifier.

Theorem 1 shows that γk is the negative of the optimal L-risk (where L is the linear loss as defined
in Theorem 1) associated with the Parzen window classifier. Therefore, if k is not characteristic,
which means γk(P,Q) = 0 for some P 6= Q, then RL

Fk
= 0, i.e., the risk is maximum (note that

since 0 ≤ γk(P,Q) = −RL
Fk

, the maximum risk is zero). In other words, if k is characteristic, then
the maximum risk is obtained only when P = Q. This motivates the importance of characteristic
kernels in binary classification. In the following, we provide another result which provides a similar
motivation for the importance of characteristic kernels in binary classification, wherein we relate γk

to the margin of a hard-margin SVM.

Theorem 2 (γk and hard-margin SVM). Suppose {(Xi, Yi)}N
i=1, Xi ∈ M , Yi ∈ {−1, +1}, ∀ i is

a training sample drawn i.i.d. from µ. Assuming the training sample is separable, let fsvm be the
solution to the program, inf{‖f‖H : Yif(Xi) ≥ 1, ∀ i}, where H is an RKHS with measurable and
bounded k. If k is characteristic, then

1
‖fsvm‖H

≤ γk(Pm,Qn)
2

, (5)

where Pm := 1
m

∑
Yi=1 δXi , Qn := 1

n

∑
Yi=−1 δXi , m = |{i : Yi = 1}| and n = N − m. δx

represents the Dirac measure at x.
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Theorem 2 provides a bound on the margin of hard-margin SVM in terms of MMD. (5) shows that
a smaller MMD between Pm and Qn enforces a smaller margin (i.e., a less smooth classifier, fsvm,
where smoothness is measured as ‖fsvm‖H). We can observe that the bound in (5) may be loose if
the number of support vectors is small. Suppose k is not characteristic, then γk(Pm,Qn) can be zero
for Pm 6= Qn and therefore the margin is zero, which means even unlike distributions can become
inseparable in this feature representation.
Another justification of using characteristic kernels in kernel-based classification algorithms can be
provided by studying the conditions on H for which the Bayes risk is realized for all µ. Steinwart
and Christmann [19, Corollary 5.37] have showed that under certain conditions on L, the Bayes risk
is achieved for all µ if and only if H is dense in Lp(M, η) for all η, where η = εP + (1 − ε)Q.
Here, Lp(M, η) represents the Banach space of p-power integrable functions, where p ∈ [1,∞) is
dependent on the loss function, L. Denseness of H in Lp(M, η) implies H + R is dense Lp(M, η),
which therefore yields that k is characteristic [6, 7]. On the other hand, if constant functions are
included in H, then it is easy to show that the characteristic property of k is also sufficient to
achieve the Bayes risk. As an example, it can be shown that characteristic kernels are necessary (and
sufficient if constant functions are in H) for SVMs to achieve the Bayes risk [19, Example 5.40].
Therefore, the characteristic property of k is fundamental in kernel-based classification algorithms.
Having showed how characteristic kernels play a role in kernel-based classification, in the following
section, we provide a novel characterization for them.

3 Novel Characterization for Characteristic Kernels
A positive definite (pd) kernel, k is said to be characteristic to P if and only if γk(P,Q) = 0 ⇔ P =
Q, ∀P,Q ∈ P . The following result provides a novel characterization for characteristic kernels,
which shows that strictly pd kernels are characteristic to P . An advantage with this characterization
is that it holds for any arbitrary topological space M unlike the earlier characterizations where a
group structure on M is assumed [17, 7]. First, we define strictly pd kernels as follows.

Definition 3 (Strictly positive definite kernels). Let M be a topological space. A measurable and
bounded kernel, k is said to be strictly positive definite if and only if

∫
M

∫
M

k(x, y) dµ(x) dµ(y) > 0
for all finite non-zero signed Borel measures, µ defined on M .

Note that the above definition is not equivalent to the usual definition of strictly pd kernels that in-
volves finite sums [19, Definition 4.15]. The above definition is a generalization of integrally strictly
positive definite functions [20, Section 6]:

∫ ∫
k(x, y)f(x)f(y) dx dy > 0 for all f ∈ L2(Rd),

which is the strictly positive definiteness of the integral operator given by the kernel. Definition 3 is
stronger than the finite sum definition as [19, Theorem 4.62] shows a kernel that is strictly pd in the
finite sum sense but not in the integral sense.

Theorem 4 (Strictly pd kernels are characteristic). If k is strictly positive definite on M , then k is
characteristic to P .

The proof idea is to derive necessary and sufficient conditions for a kernel not to be characteristic.
We show that choosing k to be strictly pd violates these conditions and k is therefore characteristic to
P . Examples of strictly pd kernels onRd include exp(−σ‖x−y‖22), σ > 0, exp(−σ‖x−y‖1), σ >

0, (c2 + ‖x − y‖22)−β , β > 0, c > 0, B2l+1-splines etc. Note that k̃(x, y) = f(x)k(x, y)f(y) is a
strictly pd kernel if k is strictly pd, where f : M → R is a bounded continuous function. Therefore,
translation-variant strictly pd kernels can be obtained by choosing k to be a translation invariant
strictly pd kernel. A simple example of a translation-variant kernel that is a strictly pd kernel on
compact sets of Rd is k̃(x, y) = exp(σxT y), σ > 0, where we have chosen f(.) = exp(σ‖.‖22/2)
and k(x, y) = exp(−σ‖x − y‖22/2), σ > 0. Therefore, k̃ is characteristic on compact sets of Rd,
which is the same result that follows from the universality of k̃ [18, Section 3, Example 1].
The following result in [13], which is based on the usual definition of strictly pd kernels, can be
obtained as a corollary to Theorem 4.

Corollary 5 ([13]). Let X = {xi}m
i=1 ⊂ M , Y = {yj}n

j=1 ⊂ M and assume that xi 6= xj , yi 6=
yj , ∀ i, j. Suppose k is strictly positive definite. Then

∑m
i=1 αik(., xi) =

∑n
j=1 βjk(., yj) for some

αi, βj ∈ R\{0} ⇒ X = Y .

Suppose we choose αi = 1
m , ∀ i and βj = 1

n , ∀ j in Corollary 5. Then
∑m

i=1 αik(., xi)
and

∑n
j=1 βjk(., yj) represent the mean functions in H. Note that the Parzen classifier in (4)
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is a mean classifier (that separates the mean functions) in H, i.e., sign(〈k(., x), w〉H), where
w = 1

m

∑m
i=1 k(., xi) − 1

n

∑n
i=1 k(., yi). Suppose k is strictly pd (more generally, suppose k is

characteristic). Then, by Corollary 5, the normal vector, w to the hyperplane in H passing through
the origin is zero, i.e., the mean functions coincide (and are therefore not classifiable) if and only if
X = Y .

4 Generalizing the MMD for Classes of Characteristic Kernels
The discussion so far has been related to the characteristic property of k that makes γk a metric on
P . We have seen that this characteristic property is of prime importance both in distribution testing,
and to ensure classifiability of dissimilar distributions in the RKHS. We have not yet addressed how
to choose among a selection/family of characteristic kernels, given a particular pair of distributions
we wish to discriminate between. We introduce one approach to this problem in the present section.

Let M = Rd and kσ(x, y) = exp(−σ‖x − y‖22), σ ∈ R+, where σ represents the bandwidth
parameter. {kσ : σ ∈ R+} is the family of Gaussian kernels and {γkσ : σ ∈ R+} is the family
of MMDs indexed by the kernel parameter, σ. Note that kσ is characteristic for any σ ∈ R++ and
therefore γkσ is a metric on P for any σ ∈ R++. However, in practice, one would prefer a single
number that defines the distance between P and Q. The question therefore to be addressed is how
to choose appropriate σ. The choice of σ has important implications on the statistical aspect of γkσ .
Note that as σ → 0, kσ → 1 and as σ → ∞, kσ → 0 a.e., which means γkσ (P,Q) → 0 as σ → 0
or σ → ∞ for all P,Q ∈ P (this behavior is also exhibited by kσ(x, y) = exp(−σ‖x − y‖1) and
kσ(x, y) = σ2/(σ2 + ‖x − y‖22), which are also characteristic). This means choosing sufficiently
small or sufficiently large σ (depending on P andQ) makes γkσ (P,Q) arbitrarily small. Therefore, σ
has to be chosen appropriately in applications to effectively distinguish between P andQ. Presently,
the applications involving MMD set σ heuristically [8, 9].

To generalize the MMD to families of kernels, we propose the following modification to γk, which
yields a pseudometric on P ,

γ(P,Q) = sup{γk(P,Q) : k ∈ K} = sup{‖Pk −Qk‖H : k ∈ K}. (6)
Note that γ is the maximal RKHS distance between P and Q over a family, K of positive definite
kernels. It is easy to check that if any k ∈ K is characteristic, then γ is a metric on P . Examples for
K include: Kg := {e−σ‖x−y‖22 , x, y ∈ Rd : σ ∈ R+}; Kl := {e−σ‖x−y‖1 , x, y ∈ Rd : σ ∈ R+};
Kψ := {e−σψ(x,y), x, y ∈ M : σ ∈ R+}, where ψ : M ×M → R is a negative definite kernel;
Krbf := {∫∞

0
e−λ‖x−y‖22 dµσ(λ), x, y ∈ Rd, µσ ∈ M + : σ ∈ Σ ⊂ Rd}, where M + is the set of

all finite nonnegative Borel measures, µσ on R+ that are not concentrated at zero, etc.

The proposal of γ(P,Q) in (6) can be motivated by the connection that we have established in
Section 2 between γk and the Parzen window classifier. Since the Parzen window classifier depends
on the kernel, k, one can propose to learn the kernel like in support vector machines [10], wherein
the kernel is chosen such that RL

Fk
in Theorem 1 is minimized over k ∈ K, i.e., infk∈K RL

Fk
=

− supk∈K γk(P,Q) = −γ(P,Q). A similar motivation for γ can be provided based on (5) as
learning the kernel in a hard-margin SVM by maximizing its margin.

At this point, we briefly discuss the issue of normalized vs. unnormalized kernel families, K in
(6). We say a translation-invariant kernel, k on Rd is normalized if

∫
M

ψ(y) dy = c (some positive
constant independent of the kernel parameter), where k(x, y) = ψ(x− y). K is a normalized kernel
family if every kernel in K is normalized. If K is not normalized, we say it is unnormalized. For
example, it is easy to see that Kg and Kl are unnormalized kernel families. Let us consider the
normalized Gaussian family, Kn

g = {(σ/π)d/2e−σ‖x−y‖22 , x, y ∈ Rd : σ ∈ [σ0,∞)}. It can be
shown that for any kσ, kτ ∈ Kn

g , 0 < σ < τ < ∞, we have γkσ (P,Q) ≥ γkτ (P,Q), which
means, γ(P,Q) = γσ0(P,Q). Therefore, the generalized MMD reduces to a single kernel MMD. A
similar result also holds for the normalized inverse-quadratic kernel family, {

√
2σ2/π(σ2 + ‖x −

y‖22)−1, x, y ∈ R : σ ∈ [σ0,∞)}. These examples show that the generalized MMD definition
is usually not very useful if K is a normalized kernel family. In addition, σ0 should be chosen
beforehand, which is equivalent to heuristically setting the kernel parameter in γk. Note that σ0

cannot be zero because in the limiting case of σ → 0, the kernels approach a Dirac distribution,
which means the limiting kernel is not bounded and therefore the definition of MMD in (1) does
not hold. So, in this work, we consider unnormalized kernel families to render the definition of
generalized MMD in (6) useful.
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To use γ in statistical applications where P and Q are known only through i.i.d. samples {Xi}m
i=1

and {Yi}n
i=1 respectively, we require its estimator γ(Pm,Qn) to be consistent, where Pm and Qn

represent the empirical measures based on {Xi}m
i=1 and {Yj}n

j=1. For k measurable and bounded,
[8, 15] have shown that γk(Pm,Qn) is a

√
mn/(m + n)-consistent estimator of γk(P,Q). The

statistical consistency of γ(Pm,Qn) is established in the following theorem, which uses tools from
U-process theory [3, Chapters 3,5]. We begin with the following definition.
Definition 6 (Rademacher chaos). Let G be a class of functions on M × M and {ρi}n

i=1 be
independent Rademacher random variables, i.e., Pr(ρi = 1) = Pr(ρi = −1) = 1

2 . The
homogeneous Rademacher chaos process of order two with respect to {ρi}n

i=1 is defined as
{n−1

∑n
i<j ρiρjg(xi, xj) : g ∈ G} for some {xi}n

i=1 ⊂ M . The Rademacher chaos complex-
ity over G is defined as

Un(G; {xi}n
i=1) := Eρ sup

g∈G

∣∣∣ 1
n

n∑

i<j

ρiρjg(xi, xj)
∣∣∣. (7)

We now provide the main result of the present section.
Theorem 7 (Consistency of γ(Pm,Qn)). Let every k ∈ K be measurable and bounded with ν :=
supk∈K,x∈M k(x, x) < ∞. Then, with probability at least 1 − δ, |γ(Pm,Qn) − γ(P,Q)| ≤ A,
where

A =

√
16Um(K; {Xi})

m
+

16Un(K; {Yi})
n

+
(
√

8ν +
√

36ν log 4
δ )
√

m + n
√

mn
. (8)

From (8), it is clear that if Um(K; {Xi}) = OP(1) and Un(K; {Yi}) = OQ(1), then γ(Pm,Qn) a.s.→
γ(P,Q). The following result provides a bound on Um(K; {Xi}) in terms of the entropy integral.
Lemma 8 (Entropy bound). For any K as in Theorem 7 with 0 ∈ K, there exists a universal constant
C such that

Um(K; {Xi}m
i=1) ≤ C

∫ ν

0

logN (K, D, ε) dε, (9)

where D(k1, k2) = 1
m

[∑m
i<j(k1(Xi, Xj)− k2(Xi, Xj))2

] 1
2

. N (K, D, ε) represents the ε-
covering number of K with respect to the metric D.
Assuming K to be a VC-subgraph class, the following result, as a corollary to Lemma 8 provides
an estimate of Um(K; {Xi}m

i=1). Before presenting the result, we first provide the definition of a
VC-subgraph class.
Definition 9 (VC-subgraph class). The subgraph of a function g : M × R is the subset of M × R
given by {(x, t) : t < g(x)}. A collection G of measurable functions on a sample space is called a
VC-subgraph class, if the collection of all subgraphs of the functions in G forms a VC-class of sets
(in M × R).
The VC-index (also called the VC-dimension) of a VC-subgraph class, G is the same as the pseudo-
dimension of G. See [1, Definition 11.1] for details.
Corollary 10 (Um(K; {Xi}) for VC-subgraph, K). Suppose K is a VC-subgraph class with V (K)
being the VC-index. Assume K satisfies the conditions in Theorem 7 and 0 ∈ K. Then

Um(K; {Xi}) ≤ Cν log(C1V (K)(16e9)V (K)), (10)

for some universal constants C and C1.
Using (10) in (8), we have |γ(Pm,Qn) − γ(P,Q)| = OP,Q(

√
(m + n)/mn) and by the Borel-

Cantelli lemma, |γ(Pm,Qn) − γ(P,Q)| a.s.→ 0. Now, the question reduces to which of the ker-
nel classes, K have V (K) < ∞. [22, Lemma 12] showed that V (Kg) = 1 (also see [23]) and
Um(Krbf ) ≤ C2Um(Kg), where C2 < ∞. It can be shown that V (Kψ) = 1 and V (Kl) = 1.
All these classes satisfy the conditions of Theorem 7 and Corollary 10 and therefore provide consis-
tent estimates of γ(P,Q) for any P,Q ∈ P . Examples of kernels on Rd that are covered by these
classes include the Gaussian, Laplacian, inverse multiquadratics, Matérn class etc. Other choices
for K that are popular in machine learning are the linear combination of kernels, Klin := {kλ =∑l

i=1 λiki | kλ is pd,
∑l

i=1 λi = 1} and Kcon := {kλ =
∑l

i=1 λiki |λi ≥ 0,
∑l

i=1 λi = 1}. [16,
Lemma 7] have shown that V (Kcon) ≤ V (Klin) ≤ l. Therefore, instead of using a class based on a
fixed, parameterized kernel, one can also use a finite linear combination of kernels to compute γ.
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So far, we have presented the metric property and statistical consistency (of the empirical estimator)
of γ. Now, the question is how do we compute γ(Pm,Qn) in practice. To show this, in the following,
we present two examples.
Example 11. Suppose K = Kg. Then, γ(Pm,Qn) can be written as

γ2(Pm,Qn) = sup
σ∈R+




m∑

i,j=1

e−σ‖Xi−Xj‖2

m2
+

n∑

i,j=1

e−σ‖Yi−Yj‖2

n2
− 2

m,n∑

i,j=1

e−σ‖Xi−Yj‖2

mn


 . (11)

The optimum σ∗ can be obtained by solving (11) and γ(Pm,Qn) = ‖Pmkσ∗ −Qnkσ∗‖Hσ? .
Example 12. Suppose K = Kcon. Then, γ(Pm,Qn) becomes

γ2(Pm,Qn) = sup
k∈Kcon

‖Pmk −Qnk‖2H = sup
k∈Kcon

∫ ∫
k d(Pm −Qn)⊗ (Pm −Qn)

= sup{λT a : λT 1 = 1, λ º 0}, (12)

where we have replaced k by
∑l

i=1 λiki. Here λ = (λ1, . . . , λl) and (a)i = ‖Pmki −Qnki‖2Hi
=

1
m2

∑m
a,b=1 ki(Xa, Xb) + 1

n2

∑n
a,b=1 ki(Ya, Yb) − 2

mn

∑m,n
a,b=1 ki(Xa, Yb). It is easy to see that

γ2(Pm,Qn) = max1≤i≤l(a)i.

Similar examples can be provided for other K, where γ(Pm,Qn) can be computed by solving a
semidefinite program (K = Klin) or by the constrained gradient descent ( K = Kl,Krbf ).

Finally, while the approach in (6) to generalizing γk is our focus in this paper, an alternative Bayesian
strategy would be to define a non-negative finite measure λ over K, and to average γk over that
measure, i.e., β(P,Q) :=

∫
K

γk(P,Q) dλ(k). This also yields a pseudometric on P . That said,
β(P,Q) ≤ λ(K)γ(P,Q), ∀P,Q, which means if P and Q can be distinguished by β, they can be
distinguished by γ, but not vice-versa. In this sense, γ is stronger than β. One further complication
with the Bayesian approach is in defining a sensible λ over K. Note that γk0 (single kernel MMD
based on k0) can be obtained by defining λ(k) = δ(k − k0) in β(P,Q).

5 Experiments
In this section, we present a benchmark experiment that illustrates the generalized MMD proposed in
Section 4 is preferred above the single kernel MMD where the kernel parameter is set heuristically.
The experimental setup is as follows.

Let p = N(0, σ2
p), a normal distribution inRwith zero mean and variance, σ2

p. Let q be the perturbed
version of p, given as q(x) = p(x)(1+ sin νx). Here p and q are the densities associated with P and
Q respectively. It is easy to see that q differs from p at increasing frequencies with increasing ν. Let
k(x, y) = exp(−(x− y)2/σ). Now, the goal is that given random samples drawn i.i.d. from P and
Q (with ν fixed), we would like to test H0 : P = Q vs. H1 : P 6= Q. The idea is that as ν increases,
it will be harder to distinguish between P and Q for a fixed sample size. Therefore, using this setup
we can verify whether the adaptive bandwidth selection achieved by γ (as the test statistic) helps
to distinguish between P and Q at higher ν compared to γk with a heuristic σ. To this end, using
γ(Pm,Qn) and γk(Pm,Qn) (with various σ) as test statistics Tmn, we design a test that returns H0

if Tmn ≤ cmn, and H1 otherwise. The problem therefore reduces to finding cmn. cmn is determined
as the (1 − α) quantile of the asymptotic distribution of Tmn under H0, which therefore fixes the
type-I error (the probability of rejecting H0 when it is true) to α. The consistency of this test under
γk (for any fixed σ) is proved in [8]. A similar result can be shown for γ under some conditions on
K. We skip the details here.

In our experiments, we set m = n = 1000, σ2
p = 10 and draw two sets of independent random

samples fromQ. The distribution of Tmn is estimated by bootstrapping on these samples (250 boot-
strap iterations are performed) and the associated 95th quantile (we choose α = 0.05) is computed.
Since the performance of the test is judged by its type-II error (the probability of accepting H0

when H1 is true), we draw a random sample, one each from P and Q and test whether P = Q.
This process is repeated 300 times, and estimates of type-I and type-II errors are obtained for both
γ and γk. 14 different values for σ are considered on a logarithmic scale of base 2 with exponents
(−3,−2,−1, 0, 1, 3

2 , 2, 5
2 , 3, 7

2 , 4, 5, 6) along with the median distance between samples as one more
choice. 5 different choices for ν are considered: ( 1

2 , 3
4 , 1, 5

4 , 3
2 ).
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Figure 1: (a) Type-I and Type-II errors (in %) for γ for varying ν. (b,c) Type-I and type-II error (in
%) for γk (with different σ) for varying ν. The dotted line in (c) corresponds to the median heuristic,
which shows that its associated type-II error is very large at large ν. (d) Box plot of log σ grouped
by ν, where σ is selected by γ. (e) Box plot of the median distance between points (which is also a
choice for σ), grouped by ν. Refer to Section 5 for details.

Figure 1(a) shows the estimated type-I and type-II errors using γ as the test statistic for varying
ν. Note that the type-I error is close to its design value of 5%, while the type-II error is zero for
all ν, which means γ distinguishes between P and Q for all perturbations. Figures 1(b,c) show the
estimates of type-I and type-II errors using γk as the test statistic for different σ and ν. Figure 1(d)
shows the box plot for log σ, grouped by ν, where σ is the bandwidth selected by γ. Figure 1(e)
shows the box plot of the median distance between points (which is also a choice for σ), grouped by
ν. From Figures 1(c) and (e), it is easy to see that the median heuristic exhibits high type-II error for
ν = 3

2 , while γ exhibits zero type-II error (from Figure 1(a)). Figure 1(c) also shows that heuristic
choices of σ can result in high type-II errors. It is intuitive to note that as ν increases, (which means
the characteristic function of Q differs from that of P at higher frequencies), a smaller σ is needed
to detect these changes. The advantage of using γ is that it selects σ in a distribution-dependent
fashion and its behavior in the box plot shown in Figure 1(d) matches with the previously mentioned
intuition about the behavior of σ with respect to ν. These results demonstrate the validity of using γ
as a distance measure in applications.

6 Conclusions
In this work, we have shown how MMD appears in binary classification, and thus that characteristic
kernels are important in kernel-based classification algorithms. We have broadened the class of
characteristic RKHSs to include those induced by strictly positive definite kernels (with particular
application to kernels on non-compact domains, and/or kernels that are not translation invariant). We
have further provided a convergent generalization of MMD over families of kernel functions, which
becomes necessary even in considering relatively simple families of kernels (such as the Gaussian
kernels parameterized by their bandwidth). The usefulness of the generalized MMD is illustrated
experimentally with a two-sample testing problem.
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A Proofs

We provide proofs for the results in Sections 2-4.

A.1 Proof of Theorem 1

To prove Theorem 1, we need the following result from [17].
Theorem 13 ([17]). Let Fk := {f : ‖f‖H ≤ 1}, where (H, k) is an RKHS defined on a measurable
space M with k measurable and bounded. Then,

γk(P,Q) = sup
f∈Fk

|Pf −Qf | = ‖Pk −Qk‖H, (13)

where ‖ · ‖H represents the RKHS norm.

Proof of Theorem 1: From (3), we have

ε

∫

M

L1(f) dP+ (1− ε)
∫

M

L−1(f) dQ =
∫

M

f dQ−
∫

M

f dP = Qf − Pf.

Therefore,

RL
Fk

= inf
f∈Fk

(Qf − Pf) = − sup
f∈Fk

(Pf −Qf) = − sup
f∈Fk

|Pf −Qf | = −γk(P,Q),

which follows from Theorem 13. Given {(Xi, Yi)}N
i=1 drawn i.i.d. from µ, the empirical equivalent

of (3) is given by

inf

{
− 1

m

∑

Yi=1

f(Xi) +
1

N −m

∑

Yi=−1

f(Xi) : f ∈ Fk

}
.

Solving this for f gives

f =
1
m

∑
Yi=1 k(., Xi)− 1

N−m

∑
Yi=−1 k(., Xi)

‖ 1
m

∑
Yi=1 k(., Xi)− 1

N−m

∑
Yi=−1 k(., Xi)‖H

,

and the result in (4) follows.

A.2 Proof of Theorem 2

Before we prove Theorem 2, we present a lemma which we will use to prove Theorem 2.
Lemma 14. Let θ : V → R and ψ : V → R be convex functions on a real vector space V . Suppose

a = sup{θ(x) : ψ(x) ≤ b}, (14)

where θ is not constant on {x : ψ(x) ≤ b} and a < ∞. Then

b = inf{ψ(x) : θ(x) ≥ a}. (15)

We need the following result from [11, Theorem 32.1] to prove Lemma 14.
Theorem 15 ([11]). Let f be a convex function, and let C be a convex set contained in the domain
of f . If f attains its supremum relative to C at some point of relative interior of C, then f is actually
constant throughout C.

Proof of Lemma 14: Note that A := {x : ψ(x) ≤ b} is a convex subset of V . Since θ is not constant
on A, by Theorem 15, θ attains its supremum on the boundary of A. Therefore, any solution, x∗ to
(14) satisfies θ(x∗) = a and ψ(x∗) = b. Let G := {x : θ(x) > a}. For any x ∈ G, ψ(x) > b. If
this were not the case, then x∗ is not a solution to (14). Let H := {x : θ(x) = a}. Clearly, x∗ ∈ H
and so there exists an x ∈ H for which ψ(x) = b. Suppose inf{ψ(x) : x ∈ H} = c < b, which
means for some x∗ ∈ H , x∗ ∈ A. From (14), this implies θ attains its supremum relative to A at
some point of relative interior of A. By Theorem 15, this implies θ is constant on A leading to a
contradiction. Therefore, inf{ψ(x) : x ∈ H} = b and the result in (15) follows.
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Proof of Theorem 2: By Theorem 13, γk(P,Q) = sup{Pf −Qf : ‖f‖H ≤ 1}. Note that Pf −Qf
and ‖f‖H are convex functionals on H. For P 6= Q, Pf − Qf is not constant on Fk, since k is
characteristic. Therefore, by Lemma 14, we have

1 = inf{‖f‖H : Pf −Qf ≥ γk(P,Q), f ∈ H}.
Since this holds for all P 6= Q, it holds for Pm and Qn. Therefore, we have

2
γk(Pm,Qn)

= inf {‖f‖H : Pmf −Qnf ≥ 2, f ∈ H} .

Consider

{f ∈ H : Pmf −Qnf ≥ 2} =

{
f ∈ H :

1
m

∑

Yi=1

f(Xi)− 1
n

∑

Yi=−1

f(Xi) ≥ 2

}

⊃ {f ∈ H : Yif(Xi) ≥ 1, ∀ i} ,

which means 2
γk(Pm,Qn) ≤ ‖fsvm‖H.

A.3 Proof of Theorem 4

To prove Theorem 4, we need the following lemma that provides necessary and sufficient conditions
for a kernel not to be characteristic.

Lemma 16. Let k be measurable and bounded on M . Then ∃P 6= Q, P,Q ∈ P such that
γk(P,Q) = 0 if and only if there exists a finite non-zero signed Borel measure µ that satisfies:

(i)
∫

M

∫
M

k(x, y) dµ(x) dµ(y) = 0,

(ii) µ(M) = 0.

Proof. (⇒ ) Suppose there exists a finite non-zero signed Borel measure, µ that satisfies (i) and (ii)
in Lemma 16. By the Jordan decomposition theorem [5, Theorem 5.6.1], there exist unique positive
measures µ+ and µ− such that µ = µ+ − µ− and µ+ ⊥ µ− (µ+ and µ− are singular). By (ii), we
have µ+(M) = µ−(M) =: α. Define P = α−1µ+ and Q = α−1µ−. Clearly, P 6= Q, P,Q ∈ P .
Then,

γ2
k(P,Q) = ‖Pk −Qk‖2H = α−2 ‖µk‖2H = α−2〈µk, µk〉H. (16)

From the proof of Theorem 13 (see Theorem 3 in [17]), we have 〈µk, µk〉H =∫ ∫
k(x, y) dµ(x) dµ(y) and therefore, by (i), γk(P,Q) = 0. So, we have constructed P 6= Q

such that γk(P,Q) = 0.
(⇐ ) Suppose ∃P 6= Q, P,Q ∈ P such that γk(P,Q) = 0. Let µ = P − Q. Clearly µ is a finite
non-zero signed Borel measure that satisfies µ(M) = 0. Note that γ2

k(P,Q) = ‖Pk − Qk‖2H =
‖µk‖2H =

∫ ∫
k(x, y) dµ(x) dµ(y), and therefore (i) follows.

Proof of Theorem 4: Since k is strictly pd on M , we have
∫ ∫

k(x, y) dη(x)dη(y) > 0 for any
finite non-zero signed Borel measure η. This means there does not exist a finite non-zero signed
Borel measure that satisfies (i) in Lemma 16. Therefore, by Lemma 16, there does not exist P 6=
Q, P,Q ∈ P such that γk(P,Q) = 0, which implies k is characteristic to P .

A.4 Proof of Corollary 5

Consider
∑m

i=1 αik(., xi) =
∫

k(., x) dµX(x) = µXk, where µX =
∑m

i=1 αiδxi . Here δxi repre-
sents the Dirac measure at xi ∈ M . So, we have µXk = µY k, which is equivalent to

∫

M

∫

M

k(x, y) d(µX − µY )(x) d(µX − µY )(y) = 0. (17)

Since k is strictly pd, by Lemma 16, we have µXk = µY k ⇒ µX = µY ⇒ X = Y .
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A.5 Proof of Theorem 7

Consider

|γ(Pm,Qn)− γ(P,Q)| = | sup
k∈K

‖Pmk −Qnk‖H − sup
k∈K

‖Pk −Qk‖H|

≤ sup
k∈K

|‖Pmk −Qnk‖H − ‖Pk −Qk‖H|

≤ sup
k∈K

‖Pmk −Qnk − Pk +Qk‖H

≤ sup
k∈K

[‖Pmk − Pk‖H + ‖Qnk −Qk‖H]

≤ sup
k∈K

‖Pmk − Pk‖H + sup
k∈K

‖Qnk −Qk‖H. (18)

We now bound the terms supk∈K ‖Pmk−Pk‖H and supk∈K ‖Qnk−Qk‖H. Since supk∈K ‖Pmk−
Pk‖H satisfies the bounded difference property, using McDiarmid’s inequality gives that with prob-
ability at least 1− δ

4 over the choice of {Xi}, we have

sup
k∈K

‖Pmk − Pk‖H ≤ E sup
k∈K

‖Pmk − Pk‖H +

√
2ν

m
log

4
δ
. (19)

By invoking symmetrization for E supk∈K ‖Pmk − Pk‖H, we have

E sup
k∈K

‖Pmk − Pk‖H ≤ 2EEρ sup
k∈K

∥∥∥∥∥
1
m

m∑

i=1

ρik(., Xi)

∥∥∥∥∥
H

, (20)

where {ρi}m
i=1 represent i.i.d. Rademacher random variables and Eρ represents the expectation

w.r.t. {ρi} conditioned on {Xi}. Since Eρ supk∈K ‖ 1
m

∑m
i=1 ρik(., Xi)‖H satisfies the bounded

difference property, by McDiarmid’s inequality, with probability at least 1 − δ
4 over the choice of

the random samples of size m, we have

EEρ sup
k∈K

∥∥∥∥∥
1
m

m∑

i=1

ρik(., Xi)

∥∥∥∥∥
H

≤ Eρ sup
k∈K

∥∥∥∥∥
1
m

m∑

i=1

ρik(., Xi)

∥∥∥∥∥
H

+

√
2ν

m
log

4
δ
. (21)

By writing

∥∥∥∥∥
1
m

m∑

i=1

ρik(., Xi)

∥∥∥∥∥
H

=
1
m

√√√√√
∣∣∣∣∣∣

m∑

i,j=1

ρiρjk(Xi, Xj)

∣∣∣∣∣∣

≤
√

2
m

√√√√√
∣∣∣∣∣∣

m∑

i<j

ρiρjk(Xi, Xj)

∣∣∣∣∣∣
+
√

ν√
m

, (22)

we have with probability at least 1− δ
4 , the following holds:

EEρ sup
k∈K

∥∥∥ 1
m

m∑

i=1

ρik(., Xi)
∥∥∥

H
≤

√
2Um(K; {Xi})

m
+
√

ν√
m

+

√
2ν

m
log

4
δ
. (23)

Tying (19)-(23), we have that w.p. at least 1− δ
2 over the choice of {Xi}, the following holds:

sup
k∈K

‖Pmk − Pk‖H ≤
√

8Um(K; {Xi})
m

+
2
√

ν√
m

+

√
18ν

m
log

4
δ
. (24)

Performing similar analysis for supk∈K ‖Qnk − Qk‖H, we have that w.p. at least 1 − δ
2 over the

choice of {Yi},

sup
k∈K

‖Qnk −Qk‖H ≤
√

8Un(K; {Yi})
n

+
2
√

ν√
n

+

√
18ν

n
log

4
δ
. (25)

Using (24) and (25) with
√

a +
√

b ≤
√

2(a + b) provides the result.
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A.6 Proof of Lemma 8

From [2, Proposition 2.2, Proposition 2.6] (also see [3, Corollary 5.1.8]), we have that there exists a
universal constant C < ∞ such that Um(K; {Xi}) ≤ C

∫ ν

0
logN (K, D, ε) dε, where

D2(k1, k2) = Eρ


 1

m

n∑

i<j

ρiρjh(Xi, Xj)




2

=
1

m2
Eρ




m∑

i<j,r<s

ρiρjρrρsh(Xi, Xj)h(Xr, Xs)




=
1

m2

m∑

i<j

h2(Xi, Xj),

where h(Xi, Xj) = k1(Xi, Xj)− k2(Xi, Xj).

A.7 Proof of Corollary 10

The result follows by bounding the uniform covering number of the VC-subgraph class, K. By [21,
Theorem 2.6], we have

N (K, D, ε) ≤ C1V (K)(16ν2ε−2e)V (K), (26)
where V (K) is the VC-index of K. Therefore,

Um(K; {Xi}) ≤ C

∫ ν

0

logN (K, D, ε) dε

≤ 4V (K)C
∫ ν

0

log(
√

ν√
ε
) dε + νV (K)C log(16e) + Cν log(C1V (K)). (27)

Note that
∫ ν

0
log(

√
ν√
ε
) dε ≤ 2ν. Using this in (27) and rearranging the terms provides the result.
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