A Kernel Test of Goodness of Fit

Kacper Chwialkowski, Heiko Strathmann, Arthur Gretton
June 21, 2016

Gatsby Unit and CS Department, UCL
Motivating example: testing output of approximate MCMC

Approximate MCMC: tradeoff between bias and computation
(e.g. *Austerity in MCMC Land* [2])

\[
\begin{align*}
\theta_1 &\sim \mathcal{N}(0, 10); \\
\theta_2 &\sim \mathcal{N}(0, 1) \\
X_i &\sim \frac{1}{2} \mathcal{N}(\theta_1, 4) + \frac{1}{2} \mathcal{N}(\theta_1 + \theta_2, 4).
\end{align*}
\]

How to check if MCMC samples match target distribution?
Maximum mean discrepancy: metric between p and q

$$MMD(p, q, F) = \sup_{\|f\|_F < 1} \left[\mathbb{E}_q f - \mathbb{E}_p f \right]$$

- F is an Reproducing Kernel Hilbert Space.
- f^* is the function that attains the supremum.

Can we compute MMD when q are MCMC samples, p is model?
Maximum mean discrepancy: metric between p and q

$$MMD(p, q, F) = \sup_{\|f\|_F < 1} \left[\mathbb{E}_q f - \mathbb{E}_p f \right]$$

- F is an Reproducing Kernel Hilbert Space.
- f^* is the function that attains the supremum.

Can we compute MMD when q are MCMC samples, p is model?

Problem: don’t have $\mathbb{E}_p f$ in closed form
Main idea (by Stein)

To get rid of $E_p f$ in

$$\text{sup} \left[E_q f - E_p f \right]_{\| f \|_F < 1}$$

we will use the cornerstone of modern ML
Main idea (by Stein)

To get rid of $\mathbb{E}_p f$ in

$$\sup_{\|f\|_F<1} [\mathbb{E}_q f - \mathbb{E}_p f]$$

we will use the cornerstone of modern ML

Integration by parts
Main idea (by Stein)

To get rid of $\mathbb{E}_p f$ in

$$\sup \left[\mathbb{E}_q f - \mathbb{E}_p f \right] \quad \text{with} \quad \|f\|_F < 1$$

we will use the cornerstone of modern ML

Integration by parts

Define the **Stein operator**

$$T_p f = f' + \log' p \cdot f$$

Then

$$\mathbb{E}_p T_p f = 0$$
Stein operator

\[T_p f = f' + \log' p \cdot f \]

Maximum Stein Discrepancy (MSD)

\[
MSD(p, q, F) = \sup_{\|g\|_F < 1} \mathbb{E}_q T_p g - \mathbb{E}_p T_p g
\]
Maximum Stein Discrepancy

Stein operator

$$T_p f = f' + \log' p \cdot f$$

Maximum Stein Discrepancy (MSD)

$$MSD(p, q, F) = \sup_{\|g\|_{\mathcal{F}}<1} \mathbb{E}_q T_p g - \mathbb{E}_p T_p g$$
Maximum Stein Discrepancy

Stein operator

\[T_p f = f' + \log' p \cdot f \]

Maximum Stein Discrepancy (MSD)

\[MSD(p, q, F) = \sup_{\|g\|_{\mathcal{F}} < 1} \mathbb{E}_q T_p g - \mathbb{E}_p T_p g = \sup_{\|g\|_{\mathcal{F}} < 1} \mathbb{E}_q T_p g \]
Maximum Stein Discrepancy

Stein operator

\[T_p f = f' + \log' p \cdot f \]

Maximum Stein Discrepancy (MSD)

\[MSD(p, q, F) = \sup_{\|g\|_F < 1} \mathbb{E}_q T_p g - \mathbb{E}_p T_p g = \sup_{\|g\|_F < 1} \mathbb{E}_q T_p g \]
Maximum Stein Discrepancy

Stein operator

\[T_p f = f' + \log' p \cdot f \]

Maximum Stein Discrepancy (MSD)

\[MSD(p, q, F) = \sup_{\|g\|_F < 1} E_q T_p g - E_p T_p g = \sup_{\|g\|_F < 1} E_q T_p g \]

![Graph showing the functions p(x), q(x), and g*(x)]
Maximum Stein Discrepancy

Stein operator

\[T_p f = f' + \log' p \cdot f \]

Maximum Stein Discrepancy (MSD)

\[MSD(p, q, F) = \sup_{\|g\|_F < 1} \mathbb{E}_q T_p g - \mathbb{E}_p T_p g = \sup_{\|g\|_F < 1} \mathbb{E}_q T_p g \]
Maximum Stein Discrepancy

Stein operator

\[T_p f = f' + \log' p \cdot f \]

Maximum Stein Discrepancy (MSD)

\[
MSD(p, q, F) = \sup_{\|g\|_{\mathcal{F}} < 1} \mathbb{E}_q T_p g - \mathbb{E}_p T_p g = \sup_{\|g\|_{\mathcal{F}} < 1} \mathbb{E}_q T_p g
\]

Graph showing the comparison of \(p(x) \), \(q(x) \), and \(g^*(x) \).
Maximum Stein Discrepancy has simple closed-form expression

Closed-form expression for MSD: given $Z, Z' \sim q$, then

$$\text{MSD}(p, q, G) = \mathbb{E}_q h_p(Z, Z')$$

where

$$h_p(x, y) := \partial_x \log p(x) \partial_x \log p(y) k(x, y)$$
$$+ \partial_y \log p(y) \partial_x k(x, y)$$
$$+ \partial_x \log p(x) \partial_y k(x, y)$$
$$+ \partial_x \partial_y k(x, y).$$

and k is RKHS kernel for F

Only depends on kernel and $\partial_x \log p(x)$. Do not need to normalize p, or sample from it.
Maximum Stein Discrepancy zero $\iff p = q$

Theorem

If the kernel k is C_0-universal, $\mathbb{E}_q h_q(Z, Z) < \infty$ and $\mathbb{E}_q \left(\log' \frac{p(Z)}{q(Z)} \right)^2 < \infty$ then

$$\text{MSD}(p, q, G) = 0 \text{ if and only if } p = q.$$

Kernel is C_0-universal if $f \rightarrow \int_X f(x)k(x, \cdot)d\mu(x)$ if is injective for all probability measures μ and all $f \in L^p(X, \mu)$, where $p \in [1, \infty]$.

The assumption $\mathbb{E}_q \left(\log' \frac{p(Z)}{q(Z)} \right)^2 < \infty$ states that difference between scores log' p and log' q is square integrable.
Empirical estimate of MSD: V-statistic

Empirical estimate of $\mathbb{E}_q h_p(Z, Z')$ is a V-statistic:

$$V_n(h_p) = \frac{1}{n^2} \sum_{i,j=1}^{n} h_p(Z_i, Z_j),$$

\{Z_1, \ldots Z_t \ldots Z_n\} time series with marginal distrib. q
Empirical estimate of MSD: V-statistic

Empirical estimate of $E_q h_p(Z, Z')$ is a V-statistic:

$$V_n(h_p) = \frac{1}{n^2} \sum_{i,j=1}^{n} h_p(Z_i, Z_j),$$

$\{Z_1, \ldots Z_t \ldots Z_n\}$ time series with marginal distrib. q

What are “typical” values of $E_q h_p(Z, Z')$ when $p = q$?
To estimate quantiles of $V_n(h_p)$ under the null (when $p = q$), we use **wild bootstrap**

$$B_n(h_p) = \frac{1}{n^2} \sum_{i,j=1}^{n} W_i W_j h_p(X_i, X_j).$$

where W_i are correlated zero mean RVs.

$$\text{Cov}(W_i, W_j) = (1 - 2p_n)^{-|i-j|}$$

p_n is the probability of the change and should be set to $o(n)$.
Wild bootstrapping; small correlation

\[X_t = 0.1X_{t-1} + \sqrt{1 - 0.1^2} \epsilon_t, \quad \epsilon_t \sim N(0, 1) \]
Wild bootstrapping, medium correlation

\[X_t = 0.4X_{t-1} + \sqrt{1 - 0.4^2}\epsilon_t, \quad \epsilon_t \sim N(0, 1) \]
Wild bootstrapping; huge correlation

\[X_t = 0.7X_{t-1} + \sqrt{1 - 0.7^2}\epsilon_t, \quad \epsilon_t \sim N(0, 1) \]
Approximate MCMC: tradeoff between bias and computation (e.g. Austerity in MCMC Land [2])

\[\theta_1 \sim \mathcal{N}(0, 10); \theta_2 \sim \mathcal{N}(0, 1) \]

\[X_i \sim \frac{1}{2} \mathcal{N}(\theta_1, 4) + \frac{1}{2} \mathcal{N}(\theta_1 + \theta_2, 4). \]
Approximate MCMC: tradeoff between bias and computation
(e.g. *Austerity in MCMC Land* [2])

\[\theta_1 \sim \mathcal{N}(0, 10); \theta_2 \sim \mathcal{N}(0, 1) \]
\[X_i \sim \frac{1}{2} \mathcal{N}(\theta_1, 4) + \frac{1}{2} \mathcal{N}(\theta_1 + \theta_2, 4). \]
We test the hypothesis that a Gaussian process model, learned from training data *, is a good fit for the test data [3].
We test the hypothesis that a Gaussian process model, learned from training data**, is a good fit for the test data [3].
Questions?
References

Measuring sample quality with stein’s method.

Austerity in mcmc land: Cutting the metropolis-hastings budget.

Statistical model criticism using kernel two sample tests.

Control functionals for monte carlo integration, 2015.
Consider the class

\[G = \{ f' + \log' p \cdot f | f \in \mathcal{F} \} \]
Stein’s trick in the RKHS

Consider the class

\[G = \{ f' + \log' p \cdot f | f \in \mathcal{F} \} \]

Given \(g \in G \), then (integration by parts)

\[
\mathbb{E}_p g(X) = \mathbb{E}_p \left[f'(X) + \log' p(X)f(X) \right] \\
= \int f(x)'p(x) + f(x)p'(x)dx \\
= \int_{-\infty}^{\infty} (f(x)p(x))'dx \\
= f(x)p(x)|_{x=\infty}^{x=-\infty} \\
= 0
\]

See [1, 4].