GANs with integral probability metrics: some results and conjectures

Arthur Gretton

Gatsby Computational Neuroscience Unit,
University College London

University of Oxford, 2020
A motivation: comparing two samples

- **Given**: Samples from unknown distributions P and Q.
- **Goal**: do P and Q differ?
Training implicit generative models

- **Have:** One collection of samples X from unknown distribution P.
- **Goal:** generate samples Q that look like P

Using a critic $D(P, Q)$ to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018),
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)
Outline

- Measures of distance between distributions
 - The MMD: an integral probability metric
 - f-divergences vs integral probability metrics

- Gradient penalties for GAN critics
 - The optimisation viewpoint
 - The regularisation viewpoint

- Theory
 - Relation of MMD critic and Wasserstein
 - Gradient bias

- Evaluating GAN performance, experiments
The Maximum Mean Discrepancy: An Integral Probability Metric
Integral probability metrics

Are P and Q different?
Integral probability metrics

Are P and Q different?

Samples from P and Q
Integral probability metrics

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y)$$
Integral probability metrics

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$E_Pf(X) - E_Qf(Y)$$
The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, Q; F) := \sup_{\|f\| \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y) \right]$$

($F = \text{unit ball in RKHS } \mathcal{F}$)
The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, Q; F) := \sup_{\|f\| \leq 1} [E_P f(X) - E_Q f(Y)]$$

($F = \text{unit ball in RKHS } \mathcal{F}$)

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_\ell \varphi_\ell(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^T$$

$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \leq 1$$
Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$\varphi(x) = [... \varphi_i(x) ...] \in \ell_2$

For positive definite k,

$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{F}}$

Infinitely many features $\varphi(x)$, dot product in closed form!
Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$\varphi(x) = [\ldots \varphi_i(x) \ldots] \in \ell_2$$

For positive definite k,

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x, x') = \exp \left(-\gamma \|x - x'\|^2 \right)$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.
The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, Q; F) := \sup_{||f|| \leq 1} [\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y)]$$

(F = unit ball in RKHS \mathcal{F})

For characteristic RKHS \mathcal{F}, $MMD(P, Q; F) = 0$ iff $P = Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded variation 1 (Kolmogorov metric) [Müller, 1997]
- Lipschitz (Wasserstein distances) [Dudley, 2002]
- Energy distance is a special case [Sejdinovic, Sriperumbudur, G. Fukumizu, 2013]
The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

\[MMD(P, Q; F) := \sup_{\|f\| \leq 1} \left[E_P f(X) - E_Q f(Y) \right] \]

($F = \text{unit ball in RKHS } \mathcal{F}$)

Expectations of functions are linear combinations of expected features

\[E_P(f(X)) = \langle f, E_P \varphi(X) \rangle_{\mathcal{F}} = \langle f, \mu_P \rangle_{\mathcal{F}} \]

(always true if kernel is bounded)
Integral prob. metric vs feature mean difference

The MMD:

\[MMD(P, Q; F) = \sup_{||f|| \leq 1} [\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y)] \]
The MMD:

\[
\text{MMD}(P, Q; F) = \sup_{\|f\| \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y) \right] = \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_Q \rangle_F
\]

use

\[
\mathbb{E}_P f(X) = \langle \mu_P, f \rangle_F
\]
The MMD:

\[
MMD(P, Q; F) = \sup_{\|f\| \leq 1} \left| E_P f(X) - E_Q f(Y) \right|
\]

\[
= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_Q \rangle_{\mathcal{F}}
\]
The MMD:

\[
MMD(\mathcal{P}, \mathcal{Q}; \mathcal{F}) = \sup_{\|f\| \leq 1} [\mathbb{E}_{\mathcal{P}} f(X) - \mathbb{E}_{\mathcal{Q}} f(Y)]
\]

\[
= \sup_{\|f\| \leq 1} \langle f, \mu_{\mathcal{P}} - \mu_{\mathcal{Q}} \rangle_{\mathcal{F}}
\]
The MMD:

\[
\text{MMD}(P, Q; F) = \sup_{\|f\| \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y) \right] = \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_Q \rangle_F
\]

\[
f^* = \frac{\mu_P - \mu_Q}{\|\mu_P - \mu_Q\|}
\]
The MMD:

\[
MMD(P, Q; F) = \sup_{\|f\| \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y) \right]
\]

\[
= \sup_{\|f\| \leq 1} \left\langle f, \mu_P - \mu_Q \right\rangle_{\mathcal{F}}
\]

\[
= \|\mu_P - \mu_Q\|
\]

IPM view equivalent to feature mean difference (kernel case only)
Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe $X = \{x_1, \ldots, x_n\} \sim P$

Observe $Y = \{y_1, \ldots, y_n\} \sim Q$
Construction of MMD witness

Construction of empirical witness function (proof: next slide!)
Construction of MMD witness

Construction of empirical \textit{witness function} (proof: next slide!)
Construction of MMD witness

Construction of empirical **witness function** (proof: next slide!)
Derivation of empirical witness function

Recall the witness function expression

\[f^* \propto \mu_P - \mu_Q \]
Derivation of empirical witness function

Recall the witness function expression

\[f^* \propto \mu_P - \mu_Q \]

The empirical feature mean for \(P \)

\[\hat{\mu}_P := \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) \]
Derivation of empirical witness function

Recall the witness function expression

\[f^* \propto \mu_P - \mu_Q \]

The empirical feature mean for \(P \)

\[\hat{\mu}_P := \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) \]

The empirical witness function at \(v \)

\[f^*(v) = \langle f^*, \varphi(v) \rangle_{\mathcal{F}} \]
Derivation of empirical witness function

Recall the witness function expression

\[f^* \propto \mu_P - \mu_Q \]

The empirical feature mean for \(P \)

\[\hat{\mu}_P := \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) \]

The empirical witness function at \(v \)

\[f^*(v) = \langle f^*, \varphi(v) \rangle_\mathcal{F} \]
\[\propto \langle \hat{\mu}_P - \hat{\mu}_Q, \varphi(v) \rangle_\mathcal{F} \]
Derivation of empirical witness function

Recall the witness function expression

\[f^* \propto \mu_P - \mu_Q \]

The empirical feature mean for \(P \)

\[\hat{\mu}_P := \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) \]

The empirical witness function at \(v \)

\[f^*(v) = \langle f^*, \varphi(v) \rangle_F \]

\[\propto \langle \hat{\mu}_P - \hat{\mu}_Q, \varphi(v) \rangle_F \]

\[= \frac{1}{n} \sum_{i=1}^{n} k(x_i, v) - \frac{1}{n} \sum_{i=1}^{n} k(y_i, v) \]

Don’t need explicit feature coefficients

\[f^* := \begin{bmatrix} f_1^* & f_2^* & \cdots \end{bmatrix} \]
Interlude: divergence measures
Divergences
Divergences

Integral prob. metrics

$$D_{\mathcal{H}}(P, Q) = \sup_{g \in \mathcal{H}} |E_{X \sim P} g(X) - E_{Y \sim Q} g(Y)|$$

F-divergences

$$D_f(P, Q) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) dx$$
Divergences

Integral prob. metrics

\[D_{\mathcal{H}}(P, Q) = \sup_{g \in \mathcal{H}} |\mathbb{E}_{X \sim P} g(X) - \mathbb{E}_{Y \sim Q} g(Y)| \]

wasserstein

MMD

F-divergences

\[D_f(P, Q) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) dx \]
Divergences

Integral prob. metrics

- Wasserstein

\[D_\mathcal{H}(P, Q) = \sup_{g \in \mathcal{H}} |\mathbb{E}_{X \sim P} g(X) - \mathbb{E}_{Y \sim Q} g(Y)| \]

- MMD

F-divergences

- Hellinger

\[D_f(P, Q) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) dx \]

- Pearson chi\(^2\)

- KL
Divergences

\[
D_{\mathcal{H}}(P, Q) = \sup_{g \in \mathcal{H}} |E_{X \sim P} g(X) - E_{Y \sim Q} g(Y)|
\]

\[
MMD
\]

\[
F\text{-divergences}
\]

\[
D_f(P, Q) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) dx
\]

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
Training Generative Adversarial Networks: Critics and Gradient Penalties
Visual notation: GAN setting
Visual notation: GAN setting
What I won’t cover: the generator

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a 64×64 pixel image. Notably, no fully connected or pooling layers are used.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting and memorization of training samples have risen. To demonstrate how our model scales with more data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing a little over 3 million training examples. Recent analysis has shown that there is a direct link between how fast models learn and their generalization performance (Hardt et al., 2015). We show samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality samples via simply overfitting/memorizing training examples. No data augmentation was applied to the images.

4.1.1 Deduplication

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer activations are then binarized via thresholding the ReLU activation which has been shown to be an effective information preserving technique (Srivastava et al., 2014) and provides a convenient form of semantic-hashing, allowing for linear time de-duplication. Visual inspection of hash collisions showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 Faces

We scraped images containing human faces from random web image queries of peoples names. The people names were acquired from dbpedia, with a criterion that they were born in the modern era. This dataset has 3M images from 10K people. We run an OpenCV face detector on these images, keeping the detections that are sufficiently high resolution, which gives us approximately 350,000 face boxes. We use these face boxes for training. No data augmentation was applied to the images.

Radford, Metz, Chintala, ICLR 2016
F-divergence as critic

An unhelpful critic? Jensen-Shannon, Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2}) \]

\[D_{JS}(P, Q) = \log 2 \]
F-divergence as critic

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2}) \]

\[D_{JS}(P, Q) = \log 2 \]
F-divergence as critic

An unhelpful critic? Jensen-Shannon, Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2}) \]

What is done in practice?
F-divergence as critic

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2}) \]

What is done in practice?

- Use a variational approximation to the critic, alternate generator and critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
F-divergence as critic

An unhelpful critic? Jensen-Shannon, Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2}) \]

What is done in practice?

- Use a variational approximation to the critic, alternate generator and critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
- Add “instance noise” to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]
F-divergence as critic

An unhelpful critic? Jensen-Shannon,

\[D_{JS}(P, Q) = \frac{1}{2} D_{KL}(p, \frac{p+q}{2}) + \frac{1}{2} D_{KL}(q, \frac{p+q}{2}) \]

What is done in practice?

- Use a variational approximation to the critic, alternate generator and critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
- Add “instance noise” to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]
 - ...or (approx. equivalently) a data-dependent gradient penalty for the variational critic (we will return to this!) Roth et al [NeurIPS 2017], Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]
Wasserstein distance as critic

A helpful critic witness:

\[W_1(P, Q) = \sup_{\|f\|_L \leq 1} E_P f(X) - E_Q f(Y). \]

\[\|f\|_L := \sup_{x \neq y} |f(x) - f(y)| / \|x - y\| \]

\[W_1 = 0.88 \]
Wasserstein distance as critic

A helpful critic witness:

\[W_1(P, Q) = \sup_{\|f\|_{L^1} \leq 1} E_P f(X) - E_Q f(Y). \]

\[\|f\|_L := \sup_{x \neq y} |f(x) - f(y)| / \|x - y\| \]

\[W_1 = 0.65 \]

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
MMD as critic

A helpful critic witness:

\[MMD(P, Q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y). \]

MMD = 1.8
MMD as critic

A helpful critic witness:

$$MMD(P, Q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y)$$

MMD=1.1
MMD as critic

An *unhelpful* critic witness:
\(MMD(P, Q)\) with a narrow kernel.

\[\text{MMD}=0.64\]
MMD as critic

An *unhelpful* critic witness:

\[MMD(P, Q) \] with a narrow kernel.

\[
\text{MMD} = 0.64
\]
f-divergences (ϕ – divergences)
The ϕ-divergences

Define the ϕ-divergence (f-divergence):

$$D_\phi(P, Q) = \int \phi \left(\frac{dP}{dQ} \right) dQ = \int \phi \left(\frac{p(x)}{q(x)} \right) q(x) dx$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(x) = -\log(x)$ gives reverse KL divergence,

$$D_{KL}(Q, P) = \int \log \left(\frac{q(x)}{p(x)} \right) q(x) dx$$
The ϕ-divergences

Define the ϕ-divergence (f-divergence):

$$D_{\phi}(P, Q) = \int \phi \left(\frac{dP}{dQ} \right) dQ = \int \phi \left(\frac{p(x)}{q(x)} \right) q(x) dx$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(x) = -\log(x)$ gives reverse KL divergence,

$$D_{KL}(Q, P) = \int \log \left(\frac{q(x)}{p(x)} \right) q(x) dx$$
How do ϕ-divergences behave?

Simple example: disjoint support, revisited.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[
D_{KL}(Q, P) = \infty \quad D_{JS}(P, Q) = \log 2
\]
How do ϕ-divergences behave?

Simple example: disjoint support, revisited.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

\[
D_{KL}(Q, P) = \infty \quad D_{JS}(P, Q) = \log 2
\]
\textbf{\(\phi \)-divergences in practice}

\textbf{Background:} the Fenchel dual

- Conjugate (fenchel) dual:

\[
\phi^*(v) = \sup_{u \in \mathbb{R}} \{uv - \phi(u)\}.
\]

- \(v \) is slope of \(\phi \)
- \(u \) is the argument of \(\phi \) where it has slope \(v \).

\[
\partial \phi^*(v) = u
\]

- \(\phi^*(v) \) is the negative of the intercept of the line with slope \(v \), tangent to \(\phi(u) \) at \(u \).
ϕ-divergences in practice

Background: the Fenchel dual

- **Conjugate (fenchel) dual:**

\[\phi^*(v) = \sup_{u \in \mathbb{R}} \{ uv - \phi(u) \}. \]

- \(v \) is slope of \(\phi \)
- \(u \) is the argument of \(\phi \) where it has slope \(v \).

\[\partial \phi^*(v) = u \]

- \(\phi^*(v) \) is the negative of the intercept of the line with slope \(v \), tangent to \(\phi(u) \) at \(u \).

- For a convex l.s.c. \(\phi \) we have

\[\phi^{**}(v) = \phi(v) = \sup_{u \in \mathbb{R}} \{ uv - \phi^*(u) \} \]
ϕ-divergences in practice

Background: the Fenchel dual

- **Conjugate (fenchel) dual:**

 \[\phi^*(v) = \sup_{u \in \mathbb{R}} \{ uv - \phi(u) \} . \]

 - \(v \) is slope of \(\phi \)
 - \(u \) is the argument of \(\phi \) where it has slope \(v \).

 \[\partial \phi^*(v) = u \]

 - \(\phi^*(v) \) is the negative of the intercept of the line with slope \(v \), tangent to \(\phi(u) \) at \(u \).

- **Reverse KL:**

 \[\phi(u) = - \log(u) \quad \phi^*(v) = \begin{cases}
 -1 - \log v & v < 0 \\
 \infty & v \geq 0
 \end{cases} \]
A variational lower bound

How to compute ϕ-divergences in practice:

$$D_{\phi}(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) dz$$

A variational lower bound

How to compute ϕ-divergences in practice:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz$$

$$= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right)$$

$\phi^*(u)$ is dual of $\phi(u)$.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
A variational lower bound

How to compute ϕ-divergences in practice:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz$$

$$= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right)$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
A variational lower bound

How to compute ϕ-divergences in practice:

\[
D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz \\
= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right) \\
\geq \sup_{f \in \mathcal{H}} \mathbb{E}_P f(X) - \mathbb{E}_Q \phi^*(f(Y))
\]

(restrict the function class)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
A variational lower bound

How to compute ϕ-divergences in practice:

$$D_\phi(P, Q) = \int q(z) \phi \left(\frac{p(z)}{q(z)} \right) \, dz$$

$$= \int q(z) \sup_{f_z} \left(\frac{p(z)}{q(z)} f_z - \phi^*(f_z) \right)$$

$$\geq \sup_{f \in \mathcal{H}} \mathbb{E}_P f(X) - \mathbb{E}_Q \phi^*(f(Y))$$

(restrict the function class)

Optimum f_z^\ast has property

$$\frac{p(z)}{q(z)} = \partial \phi^*(f_z^\ast) \iff f_z^\ast = \partial \phi \left(\frac{p(z)}{q(z)} \right).$$

ϕ-divergences in practice

Case of the reverse KL

\[D_{KL}(Q, P) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) dz \]

φ-divergences in practice

Case of the reverse KL

\[D_{KL}(Q, P) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) \, dz \]

\[\geq \sup_{f<0, f \in \mathcal{H}} E_P f(X) + E_Q \log (-f(Y)) + 1 \]

ϕ-divergences in practice

Case of the reverse KL

\[D_{KL}(Q, P) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) \, dz \]

\[\geq \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log (-f(Y)) + 1 \]

Bound tight when:

\[f^\circ(z) = - \frac{q(z)}{p(z)} \]

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
Case of the reverse KL

\[
D_{KL}(Q, P) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) \, dz
\]

\[
\geq \sup_{f < 0, f \in \mathcal{H}} \mathbb{E}_P f(X) + \mathbb{E}_Q \log (-f(Y)) + 1
\]

\[
\approx \sup_{f < 0, f \in \mathcal{H}} \left[\frac{1}{n} \sum_{i=1}^{n} f(x_i) + \frac{1}{n} \sum_{i=1}^{n} \log(-f(y_i)) \right] + 1
\]
\textbf{\textit{\phi}-divergences in practice}

Case of the reverse KL

\begin{align*}
D_{KL}(Q, P) &= \int q(z) \log \left(\frac{q(z)}{p(z)} \right) \, dz \\
\geq \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log(-f(Y)) + 1 \\
\approx \sup_{f < 0, f \in \mathcal{H}} \left[\frac{1}{n} \sum_{j=1}^{n} f(x_j) + \frac{1}{n} \sum_{i=1}^{n} \log(-f(y_i)) \right] + 1
\end{align*}

This is a\textbf{KL Approximate Lower-bound Estimator.}
\(\phi \)-divergences in practice

Case of the reverse KL

\[
D_{KL}(Q, P) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) \, dz
\]

\[
\geq \sup_{f < 0, f \in \mathcal{H}} \mathbb{E}_P f(X) + \mathbb{E}_Q \log (-f(Y)) + 1
\]

\[
\approx \sup_{f < 0, f \in \mathcal{H}} \left[\frac{1}{n} \sum_{j=1}^{n} f(x_i) + \frac{1}{n} \sum_{i=1}^{n} \log(-f(y_i)) \right] + 1
\]

This is a

K

A

L

E
\(\phi\)-divergences in practice

Case of the reverse KL

\[
D_{KL}(Q, P) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) dz
\]

\[
\geq \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log (-f(Y)) + 1
\]

\[
\approx \sup_{f < 0, f \in \mathcal{H}} \left[\frac{1}{n} \sum_{j=1}^{n} f(x_i) + \frac{1}{n} \sum_{i=1}^{n} \log(-f(y_i)) \right] + 1
\]

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
How does the KALE divergence behave?

\[KALE(Q, P) = \sup_{f < 0, f \in \mathcal{H}} \mathbb{E}_P f(X) + \mathbb{E}_Q \log (-f(Y)) + 1 \]

\[f = -\exp \langle w, \phi(x) \rangle_{\mathcal{F}} \]

\[||w||^2_{\mathcal{F}} \text{ penalized:} \]
How does the KALE divergence behave?

\[
KALE(Q, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log(-f(Y)) + 1
\]

\[
f = -\exp \langle w, \phi(x) \rangle_{\mathcal{F}}
\]

\[
\|w\|^2_{\mathcal{F}} \quad \text{penalized: KALE smoothie}
\]
How does the KALE divergence behave?

\[
KALE(Q, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log(-f(Y)) + 1
\]

\[
f = -\exp \langle w, \phi(x) \rangle_{\mathcal{F}}
\]

\[
\|w\|_{\mathcal{F}}^2 \quad \text{penalized: KALE smoothie}
\]

\[
KALE(Q, P) = 0.18
\]
How does the KALE divergence behave?

\[KALE(Q, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log(-f(Y)) + 1 \]

\[f = -\exp \langle w, \phi(x) \rangle_{\mathcal{F}} \]

\[||w||_{\mathcal{F}}^2 \text{ penalized: KALE smoothie} \]

\[KALE(Q, P) = 0.12 \]
The KALE smoothie and "mode collapse"

- Two Gaussians with same means, different variance

Example thanks to M. Arbel and M. Rosca
Gradient penalty:
the regularisation viewpoint
MMD for GAN critic

Can you use MMD as a critic to train GANs?

From ICML 2015:

Generative Moment Matching Networks

Yujia Li1
Kevin Swersky1
Richard Zemel1,2

1Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge
MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

\[K(x; y) = h(x) h(y) \]
where \(h(x) \) is a CNN map:

- Wasserstein GAN Arjovsky et al. [ICML 2017]
- WGAN-GP Gulrajani et al. [NeurIPS 2017]

\[\mathcal{K}(x, y) = k(h(x), h(y)) \]
where \(h(x) \) is a CNN map, \(k \) is e.g. an exponentiated quadratic kernel

- MMD Li et al., [NeurIPS 2017]
- Cramer Bellemare et al. [2017]
- Coulomb Unterthiner et al., [ICLR 2018]
- Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018]
CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

\[\mathcal{K}(x, y) = h_\psi(x)^\top h_\psi(y) \]
where \(h_\psi(x) \) is a CNN map:

- **Wasserstein GAN** Arjovsky et al. [ICML 2017]
- **WGAN-GP** Gulrajani et al. [NeurIPS 2017]

\[\mathcal{K}(x, y) = k(h_\psi(x), h_\psi(y)) \]
where \(h_\psi(x) \) is a CNN map,
\(k \) is e.g. an exponentiated quadratic kernel

- **MMD** Li et al., [NeurIPS 2017]
- **Cramer** Bellemare et al. [2017]
- **Coulomb** Unterthiner et al., [ICLR 2018]
- **Demystifying MMD GANs** Binkowski, Sutherland, Arbel, G., [ICLR 2018]
Witness function, kernels on deep features

Reminder: witness function,

\[k(x, y) \] is exponentiated quadratic
Witness function, kernels on deep features

Reminder: witness function,
\[k(h_\psi(x), h_\psi(y)) \] with nonlinear \(h_\psi \) and exp. quadratic \(k \)
Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_\psi(x), h_\psi(y))$ must give useful gradient to generator.
Challenges for learned critic features

Learned critic features:
MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Relation with test power?
If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?
Challenges for learned critic features

Learned critic features:
MMD with kernel $k(h_\psi(x), h_\psi(y))$ must give useful gradient to generator.

Relation with test power?
If the MMD with kernel $k(h_\psi(x), h_\psi(y))$ gives a powerful test, will it be a good critic?
A simple 2-D example

Samples from target P and model Q
A simple 2-D example

Witness gradient, MMD with exp. quad. kernel $k(x, y)$
A simple 2-D example

What the kernels $k(x, y)$ look like

MMD Gaussian

[Diagram of MMD Gaussian with points labeled 'target' and 'model']
On gradient regularizers for MMD GANs

Michael Arbel
Gatsby Computational Neuroscience Unit
University College London
michael.n.arbel@gmail.com

Dougal J. Sutherland
Gatsby Computational Neuroscience Unit
University College London
dougal@gmail.com

Mikołaj Bińkowski
Department of Mathematics
Imperial College London
mikbinkowski@gmail.com

Arthur Gretton
Gatsby Computational Neuroscience Unit
University College London
arthur.gretton@gmail.com
A data-adaptive gradient penalty: NeurIPS 2018

- **New gradient regulariser** Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- **Also related to Sobolev GAN** Mroueh et al. [ICLR 2018]

Modified witness constraint:

\[
\widehat{\text{MMD}} := \sup_{\|f\|_S \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y) \right]
\]

where

\[
\|f\|_S^2 = \|f\|_{L_2(P)}^2 + \|\nabla f\|_{L_2(P)}^2 + \lambda \|f\|_{k}^2
\]

Maximise \(\text{MMD} \) wrt critic features
A data-adaptive gradient penalty: NeurIPS 2018

- **New gradient regulariser** Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- **Also related to Sobolev GAN** Mroueh et al. [ICLR 2018]

Modified witness constraint:

\[
\widehat{MMD} := \sup_{\|f\|_{S} \leq 1} \left[\mathbb{E}_{P} f(X) - \mathbb{E}_{Q} f(Y) \right]
\]

Problem: not computationally feasible: \(O(n^3)\) per iteration.
A data-adaptive gradient penalty: NeurIPS 2018

- **New gradient regulariser** Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Also related to **Sobolev GAN** Mroueh et al. [ICLR 2018]

Modified witness constraint:

\[\hat{MMD} := \sup_{\|f\|_S \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_Q f(Y) \right] \]

Maximise scaled MMD over critic features:

\[S\text{MMD}(P, \lambda) = \sigma_{P,\lambda} \ MMD \]

where

\[\sigma^2_{P,\lambda} = \lambda + \int k(h_\psi(x), h_\psi(x)) \, dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(h_\psi(x), h_\psi(x)) \, dP(x) \]

Replace expensive constraint with **cheap upper bound**:

\[\|f\|_S^2 \leq \sigma_{P,\lambda}^{-1} \|f\|_k^2 \]
A data-adaptive gradient penalty: NeurIPS 2018

- **New gradient regulariser** Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Also related to **Sobolev GAN** Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

\[
SMMD(P, \lambda) = \sigma_{P,\lambda} \ MMD
\]

where

\[
\sigma_{P,\lambda}^2 = \lambda + \int k(h_\psi(x), h_\psi(x)) dP(x) + \sum_{i=1}^{d} \int \partial_i \partial_{i+d} k(h_\psi(x), h_\psi(x)) dP(x)
\]

Replace expensive constraint with **cheap upper bound**:

\[
\|f\|_S^2 \leq \sigma_{P,\lambda}^{-1} \|f\|_k^2
\]

Idea: rather than regularise the critic or witness function, regularise features directly
Simple 2-D example revisited

Samples from target P and model Q
Simple 2-D example revisited

Use kernels $k(h_{\psi}(x), h_{\psi}(y))$ with features

$$h_{\psi}(x) = L_3 \left(\begin{bmatrix} x \\ L_2(L_1(x)) \end{bmatrix} \right)$$

where L_1, L_2, L_3 are fully connected with quadratic nonlinearity.
Simple 2-D example revisited

Witness gradient, maximise $\text{SMMD}(P, \lambda)$
to learn $h_\psi(x)$ for $k(h_\psi(x), h_\psi(y))$

vector field movie, use Acrobat Reader to play
Simple 2-D example revisited

What the kernels $k(h_{\psi}(x), h_{\psi}(y))$ look like

isolines movie, use Acrobat Reader to play
Our empirical observations

Data-adaptive critic loss:

- Witness function class for \(SMMD(P, \lambda) \) depends on \(P \).
 - Without data-dependent regularisation, maximising MMD over features \(h_\psi \) of kernel \(k(h_\psi(x), h_\psi(y)) \) can be unhelpful.
 - WGAN-GP is a pretty good data-dependent regularisation strategy

- Similar regularisation strategies apply to variational form in f-GANs

Roth et al [NeurIPS 2017, eq. 19 and 20]
Our empirical observations

Data-adaptive critic loss:

- Witness function class for $SMMD(P, \lambda)$ depends on P.
 - Without data-dependent regularisation, maximising MMD over features h_ψ of kernel $k(h_\psi(x), h_\psi(y))$ can be unhelpful.
 - WGAN-GP is a pretty good data-dependent regularisation strategy

- Similar regularisation strategies apply to variational form in f-GANs
 [Roth et al, NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

- Weaker critics can give better signals to poor (early stage) generators.
- Incomplete training of the critic is also a regularisation strategy
Linear vs nonlinear kernels

- **Critic features from DCGAN**: an f-filter critic has f, $2f$, $4f$ and $8f$ convolutional filters in layers 1-4. LSUN 64×64.

\[
k(h_\psi(x), h_\psi(y)), f = 64, \quad \text{KID}=3
\]

\[
h_\psi^\top(x) h_\psi(y), f = 64, \quad \text{KID}=4
\]
Linear vs nonlinear kernels

- Critic features from DCGAN: an f-filter critic has f, $2f$, $4f$ and $8f$ convolutional filters in layers 1-4. LSUN 64×64.

\[
k(h_\psi(x), h_\psi(y)), \quad f = 16, \quad \text{KID}=9
\]

\[
h_\psi^T(x)h_\psi(y), \quad f = 16, \quad \text{KID}=37
\]
The theory for MMD GANs
Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let $k_\psi = k \circ h_\psi$.

Wasserstein-1 bounds SMMD,

$$SMMD(P, Q) \leq \frac{Q_k \kappa^L}{d_L \alpha^L} W(P, Q)$$

- Conditions on the neural network layers:
 - $h_\psi : \mathcal{X} \to \mathbb{R}^s$ fully-connected L-layer network, Leaky-ReLU α activations whose layers do not increase in width
 - Width of ℓth layer is d_ℓ.
 - κ is the bound on condition number of the weight matrices W^ℓ

- Conditions on the kernel and gradient regulariser:
 - k satisfying mild smoothness conditions, summarised in $Q_k < \infty$.
 - μ is a probability measure with support over \mathcal{X},

$$\int k(x, x) d\mu(x) + \sum_{i=1}^{d} \int \partial_i \partial_{i+d} k(x, x) d\mu(x)$$
Let $k_\psi = k \circ h_\psi$.

Wasserstein-1 bounds SMMD,

$$\text{SMMD}(P, Q) \leq \frac{Q_k \kappa^L}{d_L \alpha^L} \mathcal{W}(P, Q)$$

Conditions on the neural network layers:
- $h_\psi : \mathcal{X} \rightarrow \mathbb{R}^s$ fully-connected L-layer network, Leaky-ReLU$_\alpha$ activations whose layers do not increase in width
- Width of ℓth layer is d_ℓ.
- κ is the bound on condition number of the weight matrices W^ℓ

Conditions on the kernel and gradient regulariser:
- k satisfying mild smoothness conditions, summarised in $Q_k < \infty$.
- μ is a probability measure with support over \mathcal{X},

$$\int k(x, x) \, d\mu(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x, x) \, d\mu(x)$$
Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let $k_\psi = k \circ h_\psi$.

Wasserstein-1 bounds SMMD,

$$
\text{SMMD}(P, Q) \leq \frac{Q_k \kappa^L}{d_L \alpha^L} \mathcal{W}(P, Q)
$$

- **Conditions on the neural network layers:**
 - $h_\psi : \mathcal{X} \to \mathbb{R}^s$ fully-connected L-layer network, Leaky-ReLU$_\alpha$ activations whose layers do not increase in width
 - Width of lth layer is d_l.
 - κ is the bound on condition number of the weight matrices W^l

- **Conditions on the kernel and gradient regulariser:**
 - k satisfying mild smoothness conditions, summarised in $Q_k < \infty$.
 - μ is a probability measure with support over \mathcal{X},
 - $\int k(x, x) d\mu(x) + \sum_{i=1}^{d} \int \partial_i \partial_{i+d} k(x, x) d\mu(x)$
Unbiased gradients of MMD, WGAN-GP (ICLR 18)

Subject to mild conditions on
- Critic mappings h_{ψ} (conditions hold for almost all feedforward networks: convolutions, max pooling, ReLU,...)
- kernel k (a growth assumption)
- Target distribution P, generator network $Y \sim G_{\theta}(Z)$ (densities not needed, second moments must exist),

Then for μ-almost all ψ, θ where μ is Lebesgue,

$$E_{X \sim P, Z \sim R} [\partial_{\psi, \theta} k(h_{\psi}(X), h_{\psi}(G_{\theta}(Z)))] = \partial_{\psi, \theta} E_{X \sim P, Z \sim R} [k(h_{\psi}(X), h_{\psi}(G_{\theta}(Z)))] .$$

and thus MMD gradients unbiased.

Also true for WGAN-GP.
Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?

Recall definition of MMD for P vs Q

$$MMD(P, Q; F) := \sup_{||f|| \leq 1} [E_P f(X) - E_Q f(Y)]$$

($F = \text{unit ball in RKHS } \mathcal{F}$)

Define f_{tr} as discriminator witness trained on $\{x_i^{tr}\}_{i=1}^m \sim \text{i.i.d. } P$, $\{y_i^{tr}\}_{i=1}^n \sim \text{i.i.d. } Q$.

Then

$$[E_P f_{tr}(X) - E_Q f_{tr}(Y)] \leq MMD(P, Q; F)$$

Downwards bias. Unless bias is in f_{tr} constant, biased gradients too. Same true for WGAN-GP.
Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
Recall definition of MMD for P vs Q

$$MMD(P, Q; F) := \sup_{\|f\| \leq 1} [E_P f(X) - E_Q f(Y)]$$

($F =$ unit ball in RKHS \mathcal{F})

Define f_{tr} as discriminator witness trained on $\{x_i^{tr}\}^{m}_{i=1}$ i.i.d. P, $\{y_i^{tr}\}^{n}_{i=1}$ i.i.d. Q. Then

$$[E_P f_{tr}(X) - E_Q f_{tr}(Y)] \leq MMD(P, Q; F)$$

Downwards bias. Unless bias is in f_{tr} constant, biased gradients too.
Same true for WGAN-GP.
Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?

Recall definition of MMD for P vs Q

\[
MMD(P, Q; F) := \sup_{\|f\| \leq 1} \left[E_P f(X) - E_Q f(Y) \right]
\]

($F = \text{unit ball in RKHS } \mathcal{F}$)

Define f_{tr} as discriminator witness trained on $\{x_i^{tr}\}_{i=1}^m \overset{\text{i.i.d.}}{\sim} P$, $\{y_i^{tr}\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} Q$.

Then

\[
[E_P f_{tr}(X) - E_Q f_{tr}(Y)] \leq MMD(P, Q; F)
\]

Downwards bias. Unless bias is in f_{tr} constant, biased gradients too.

Same true for WGAN-GP.
Training minibatch critic function f_{tr}

Trained witness function f_{tr}
Bias of MMD GAN critic (ICLR 18)

Population critic function f^*

Population witness function f^*
Bias in MMD vs training minibatch size:

Bias of MMD GAN critic (ICLR 18)
Evaluation and experiments
Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output $p(y|x)$ of the inception model Szegedy et al. [ICLR 2014],

$$E_X \exp KL(P(y|X)||P(y)).$$

High when:

- predictive label distribution $P(y|x)$ has low entropy (good quality images)
- label entropy $P(y)$ is high (good variety).
Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output \(p(y|x) \) of the inception model Szegedy et al. [ICLR 2014],

\[
E_X \exp \text{KL}(P(y|X)||P(y)).
\]

High when:

- predictive label distribution \(P(y|x) \) has low entropy (good quality images)
- label entropy \(P(y) \) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new categories (celeb, bedroom...)

Evaluation of GANs

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

\[
FID(P, Q) = ||\mu_P - \mu_Q||^2 + \text{tr}(\Sigma_P) + \text{tr}(\Sigma_Q) - 2\text{tr} \left((\Sigma_P \Sigma_Q)^{1/2} \right)
\]

where \(\mu_P \) and \(\Sigma_P \) are the feature mean and covariance of \(P \).
Evaluation of GANs

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

\[FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \text{tr}(\Sigma_P) + \text{tr}(\Sigma_Q) - 2\text{tr}\left(\left(\Sigma_P \Sigma_Q\right)^{\frac{1}{2}}\right) \]

where \(\mu_P \) and \(\Sigma_P \) are the feature mean and covariance of \(P \)

Problem: bias. For finite samples can consistently give incorrect answer.

- Bias demo, CIFAR-10 train vs test
Evaluation of GANs

The FID can give the wrong answer in theory.

Assume \(m \) samples from \(P \) and \(n \to \infty \) samples from \(Q \).

Given two alternatives:

\[
P_1 \sim \mathcal{N}(0, (1 - m^{-1})^2) \quad P_2 \sim \mathcal{N}(0, 1) \quad Q \sim \mathcal{N}(0, 1).
\]

Clearly,

\[
FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0
\]

Given \(m \) samples from \(P_1 \) and \(P_2 \),

\[
FID(\hat{P}_1, Q) < FID(\hat{P}_2, Q).
\]
Evaluation of GANs

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

$$P_1 \sim \mathcal{N}(0, (1 - m^{-1})^2) \quad P_2 \sim \mathcal{N}(0, 1) \quad Q \sim \mathcal{N}(0, 1).$$

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2,

$$FID(\hat{P}_1, Q) < FID(\hat{P}_2, Q).$$
Evaluation of GANs

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

$$P_1 \sim \mathcal{N}(0, (1 - m^{-1})^2) \quad P_2 \sim \mathcal{N}(0, 1) \quad Q \sim \mathcal{N}(0, 1).$$

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0.$$

Given m samples from P_1 and P_2,

$$FID(\hat{P}_1, Q) < FID(\hat{P}_2, Q).$$
Evaluation of GANs

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

\[
P_1 \sim \mathcal{N}(0, (1 - m^{-1})^2) \quad P_2 \sim \mathcal{N}(0, 1) \quad Q \sim \mathcal{N}(0, 1).
\]

Clearly,

\[
FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0
\]

Given m samples from P_1 and P_2,

\[
FID(\hat{P}_1, Q) < FID(\hat{P}_2, Q).
\]
Evaluation of GANs

The FID can give the wrong answer in practice.

Let $d = 2048$, and define

$$
P_1 = \text{relu}(\mathcal{N}(0, I_d)) \quad P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma+.2I_d)) \quad Q = \text{relu}(\mathcal{N}(1, I_d))$$

where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$$

With $m = 50000$ samples,

$$FID(\widehat{P}_1, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P}_2, Q)$$

At $m = 100000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.
Evaluation of GANs

The FID can give the wrong answer in practice.

Let $d = 2048$, and define

$$
P_1 = \text{relu}(\mathcal{N}(0, I_d)) \quad P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma + .2I_d)) \quad Q = \text{relu}(\mathcal{N}(1, I_d))$$

where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$$

With $m = 50000$ samples,

$$FID(\widetilde{P}_1, Q) \approx 1133.7 < 1136.2 \approx FID(\widetilde{P}_2, Q)$$

At $m = 100000$ samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C.
Evaluation of GANs

The FID can give the **wrong answer in practice**.

Let \(d = 2048 \), and define

\[
P_1 = \text{relu}(N(0, I_d)) \quad P_2 = \text{relu}(N(1, .8\Sigma + .2I_d)) \quad Q = \text{relu}(N(1, I_d))
\]

where \(\Sigma = \frac{4}{d} CC^T \), with \(C \) a \(d \times d \) matrix with iid standard normal entries.

For a random draw of \(C \):

\[
FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)
\]

With \(m = 50\,000 \) samples,

\[
FID(\hat{P}_1, Q) \approx 1133.7 < 1136.2 \approx FID(\hat{P}_2, Q)
\]

At \(m = 100\,000 \) samples, the ordering of the estimates is correct. This behavior is similar for other random draws of \(C \).
Evaluation of GANs

The FID can give the wrong answer in practice. Let \(d = 2048 \), and define

\[
P_1 = \text{relu}(\mathcal{N}(0, I_d)) \quad P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma + .2I_d)) \quad Q = \text{relu}(\mathcal{N}(1, I_d))
\]

where \(\Sigma = \frac{4}{d} CC^T \), with \(C \) a \(d \times d \) matrix with iid standard normal entries.

For a random draw of \(C \):

\[
FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)
\]

With \(m = 50000 \) samples,

\[
FID(\widehat{P}_1, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P}_2, Q)
\]

At \(m = 100000 \) samples, the ordering of the estimates is correct. This behavior is similar for other random draws of \(C \).
The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception architecture (pool3 layer)

\[k(x, y) = \left(\frac{1}{d} x^\top y + 1 \right)^3. \]

- Checks match for feature means, variances, skewness
- Unbiased: eg CIFAR-10 train/test
The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception architecture (pool3 layer)

MMD with kernel

\[k(x, y) = \left(\frac{1}{d} x^\top y + 1 \right)^3. \]

- Checks match for feature means, variances, skewness
- **Unbiased** : eg CIFAR-10 train/test

...“but isn’t KID is computationally costly?”
The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception architecture (pool3 layer)

MMD with kernel

\[k(x, y) = \left(\frac{1}{d} x^\top y + 1 \right)^3. \]

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!
The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception architecture (pool3 layer)

MMD with kernel

\[k(x, y) = \left(\frac{1}{d} x^\top y + 1 \right)^3. \]

- Checks match for feature means, variances, skewness
- **Unbiased** : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if \(KID(\hat{P}_{t+1}, Q) \) not significantly better than \(KID(\hat{P}_t, Q) \) then reduce learning rate.

[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [arxiv, June 2018]
Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³
¹miyato, kataoka}@preferred.jp
²koyama-asanori@gmail.com
³yoshida@nii.ac.jp

SOBOLEV GAN

Youssef Mroueh¹, Chun-Liang Li²,⁰, Tom Sercu¹,⁰, Anant Raj³,⁰ & Yu Cheng¹
¹IBM Research AI
²Carnegie Mellon University
³Max Planck Institute for Intelligent Systems
* denotes Equal Contribution
{mroueh, chengyu}@us.ibm.com, chunlial@cs.cmu.edu,
tom.sercu@ibm.com, anant.raj@tuebingen.mpg.de

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski¹
Department of Mathematics
Imperial College London
mikbinkowski@gmail.com

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hjelm²
MILA, University of Montréal, IVADO
erroneus@gmail.com

Tong Che²
MILA, University of Montréal
tong.che@umontreal.ca

Adam Trischler²
MIL, MSR, University of Waterloo
adam.trischler@microsoft.com

Kyunghyun Cho²
New York University,
CIFAR Azrieli Global Scholar
kyunghyun.cho@nyu.edu

Yoshua Bengio²
MILA, University of Montréal, CIFAR, IVADO
yoshua.bengio@umontreal.ca

We combine with scaled MMD

Our ICLR 2018 paper
Results: unconditional imagenet 64×64

KID scores:

- **BGAN:**
 47

- **SN-GAN:**
 44

- **SMMD GAN:**
 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64. 1000 classes.
Results: unconditional imagenet 64×64

KID scores:

- **BGAN:**
 47
- **SN-GAN:**
 44
- **SMMD GAN:**
 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64. 1000 classes.
Results: unconditional imagenet 64×64

KID scores:

- **BGAN:**
 47

- **SN-GAN:**
 44

- **SMMD GAN:**
 35

ILSVRC2012 (ImageNet) dataset, 1,281,167 images, resized to 64 × 64. 1000 classes.
Summary

- GAN critics rely on two sources of regularisation
 - Regularisation by incomplete training
 - Data-dependent gradient regulariser

- Some advantages of hybrid kernel/neural features:
 - MMD loss still a valid critic when features not optimal (unlike WGAN-GP)
 - Kernel features do some of the “work”, so simpler h_ψ features possible.

“Demystifying MMD GANs,” including KID score, ICLR 2018: https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel
Gatsby Computational Neuroscience Unit
University College London
michael.n.arbel@gmail.com

Anna Korba
Gatsby Computational Neuroscience Unit
University College London
a.korba@ucl.ac.uk

Adil Salim
Visual Computing Center
KAUST
adil.salim@kaust.edu.sa

Arthur Gretton
Gatsby Computational Neuroscience Unit
University College London
arthur.gretton@gmail.com
Questions?