# Gradient Flows on Kernel Divergence Measures

#### Arthur Gretton



Gatsby Computational Neuroscience Unit, University College London

Measure-theoretic Approaches and Optimal Transportation in Statistics, 2022

## Outline

#### MMD and MMD flow

- Introduction to MMD as an integral probability metric
- Connection with neural net training
- Wasserstein-2 Gradient Flow on the MMD, consistency
- Noise injection for improved convergence

#### KALE and KALE flow

- Introduction to KALE as a variational lower bound on the KL divergence
- Wasserstein-2 gradient flow on KALE
- Properties in relation to MMD

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow (NeurIPS 2019)

Glaser, Arbel, G., KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support (NeurIPS 2021)

## Motivation

Main motivation: gradient flow when the target distribution represented by samples

#### Gradient flow on MMD

- MMD (and related IPMs) are GAN critics
- Understand dynamics of GAN training
- Neural network training dynamics

#### Gradient flow on KALE

- The KALE (and other lower bounds on *φ*-divergences) are GAN critics
- Understand dynamics of GAN training

Source and target might have disjoint support: KL undefined!

Binkowski, Sutherland, Arbel, G., Demystifying MMD GANs (ICLR 2018 $\overline{)}$ 

Chizat, Bach. "On the global convergence of gradient descent for over-parameterized models using optimal transport", NeurIPS (2018)

Arbel, Zhou, G. Generalized Energy-Based Models, (ICLR 2021) Nowozin, Cseke, Tomioka, NeurIPS (2016)

#### Divergences



# The MMD, and MMD flow

#### All of kernel methods

"The kernel trick"

$$egin{aligned} f(x) &= \sum_{\ell=1}^\infty f_\ell arphi_\ell(x) \ &= \sum_{i=1}^m lpha_i \underbrace{k(x_i,x)}_{\langle arphi(x_i),arphi(x) 
angle_j} \end{aligned}$$



#### All of kernel methods

"The kernel trick"



Function of infinitely many features expressed using m coefficients.

#### MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[ \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} f(Y) 
ight] \ (F = \mathrm{unit\ ball\ in\ RKHS\ \mathcal{F}}) \end{aligned}$$



## MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|\leq 1} \left[ \operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(Y) 
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

For characteristic RKHS  $\mathcal{F}$ , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

#### MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[ \operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(Y) 
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

A result for the proof on the next slide:

$$\mathrm{E}_{P}(f(X)) = \mathrm{E}_{P}\left\langle f, arphi(X) 
ight
angle_{\mathcal{F}} = \left\langle f, \mathrm{E}_{P}arphi(X) 
ight
angle_{\mathcal{F}} = \left\langle f, oldsymbol{\mu}_{P} 
ight
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

#### The MMD:

 $egin{aligned} MMD(P, oldsymbol{Q}; F) \ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} f(Y) 
ight] \end{aligned}$ 



The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \operatorname{E}_{\mathcal{P}} f(X) \operatorname{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left\langle f, \mu_P \mu_Q 
  ight
  angle_{\mathcal{F}}$

use

 $\mathrm{E}_{P}f(X) = \langle \mu_{P}, f \rangle_{\mathcal{F}}$ 

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \operatorname{E}_{\mathcal{P}} f(X) \operatorname{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} ig\langle f, \mu_P \mu_Q ig
  angle_{\mathcal{F}}$



The MMD:

- MMD(P, Q; F)
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \operatorname{E}_{\mathcal{P}} f(X) \operatorname{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\|f\|_{\mathcal{F}} \leq 1} ig\langle f, \mu_P \mu_Q ig
  angle_{\mathcal{F}}$



The MMD:

$$egin{aligned} MMD(P, oldsymbol{Q}; F) \ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} f(Y) 
ight] \ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left\langle f, \mu_P - \mu_{oldsymbol{Q}} 
ight
angle_{\mathcal{F}} \ &= \|\mu_P - \mu_{oldsymbol{Q}} \| \end{aligned}$$

 $f^*(x) \propto \mu_P(x) - \mu_Q(x) = \mathrm{E}_P k(X,x) - \mathrm{E}_Q k(Y,x)$ 

# Function view and feature view equivalent

The maximum mean discrepancy is the distance between feature means:

$$MMD^{2}(P, Q) = \frac{\|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}}{= \underbrace{\mathbb{E}_{P}k(x, x')}_{(a)} + \underbrace{\mathbb{E}_{Q}k(y, y')}_{(a)} - 2\underbrace{\mathbb{E}_{P,Q}k(x, y)}_{(b)}}_{(b)}$$

(a) = within distrib. similarity, (b) = cross-distrib. similarity.

## Computing the MMD

The maximum mean discrepancy is the distance between feature means:

$$MMD^{2}(P, Q) = \frac{\|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}}{= \underbrace{\mathbb{E}_{P}k(x, x')}_{(a)} + \underbrace{\mathbb{E}_{Q}k(y, y')}_{(a)} - 2\underbrace{\mathbb{E}_{P,Q}k(x, y)}_{(b)}}_{(b)}$$

Empirical estimate:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{x_i},\pmb{x_j}) \ &+rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{ extbf{y_i,y_j}}) \ &-rac{2}{n^2}\sum_{i,j}k(\pmb{ extbf{x_i,y_j}}) \end{aligned}$$



## Computing the MMD

The maximum mean discrepancy is the distance between feature means:

$$MMD^2(P, Q) = \frac{\|\mu_P - \mu_Q\|_{\mathcal{F}}^2}{(\mathbf{a})} + \underbrace{\mathbb{E}_Q k(\mathbf{y}, \mathbf{y}')}_{(\mathbf{a})} - 2\underbrace{\mathbb{E}_{P,Q} k(\mathbf{x}, \mathbf{y})}_{(\mathbf{b})}$$

Empirical witness:

$$\hat{f}_{oldsymbol{
u}^{\star},oldsymbol{
u}_t}(z) \propto \sum_j k(z, x_j) {-} \sum_j k(z, \mathbf{y}_j)$$



# MMD Flow







 $(x, y) \sim data$ 



$$\min_{Z_1,...,Z_N\in\mathcal{Z}}\mathcal{L}\left(rac{1}{n}\sum_{i=1}^n\delta_{Z_i}
ight)$$

Optimization using gradient descent:

$$Z_i^{t+1} = Z_i^t {-} \gamma 
abla_{Z_i} \mathcal{L} \left( rac{1}{n} \sum_{i=1}^n \delta_{Z_i^t} 
ight)$$

Chizat, Bach. "On the global convergence of gradient descent for over-parameterized models using optimal transport", NeurIPS (2018)



Chizat, Bach. "On the global convergence of gradient descent for over-parameterized models using optimal transport", NeurIPS (2018) 12/43

From previous slide:

$$\min_{oldsymbol{
u}\in\mathcal{P}}\mathcal{L}(oldsymbol{
u}):=\mathbb{E}_{(x,y)}[\|y-\mathbb{E}_{Z\simoldsymbol{
u}}[\phi_Z(x)]\|^2]$$

Want to prove global convergence of GD when  $n 
ightarrow \infty$  and

$$\phi_Z(x) = w g_ heta(x), \qquad Z = (w, heta)$$

Chizat, Bach. "On the global convergence of gradient descent for over-parameterized models using optimal transport", NeurIPS (2018)

From previous slide:

$$\min_{oldsymbol{
u}\in\mathcal{P}}\mathcal{L}(oldsymbol{
u}):=\mathbb{E}_{(x,y)}[\|y-\mathbb{E}_{Z\simoldsymbol{
u}}[\phi_Z(x)]\|^2]$$

Want to prove global convergence of GD when  $n 
ightarrow \infty$  and

$$\phi_Z(x) = w g_ heta(x), \qquad Z = (w, heta)$$

Connection to the MMD:

- Assume well-specified setting,  $y = \mathbb{E}_{U \sim \nu^{\star}}[\phi_U(x)]$
- Random feature formulation,

$$\mathcal{L}(oldsymbol{
u}) = \mathbb{E}_x \left[ \|\mathbb{E}_{oldsymbol{U} \sim oldsymbol{
u}^\star}[oldsymbol{\phi}_U(x)] - \mathbb{E}_{oldsymbol{Z} \sim oldsymbol{
u}}[oldsymbol{\phi}_Z(x)] \|^2 
ight] = MMD^2(oldsymbol{
u},oldsymbol{
u}^\star)$$

• The kernel is:  $k(\underline{U}, \underline{Z}) = \mathbb{E}_x[\phi_{\underline{U}}(x)^\top \phi_{\underline{Z}}(x)].$ 

Chizat, Bach. "On the global convergence of gradient descent for over-parameterized models using optimal transport", NeurIPS (2018)

#### Preliminaries: Wasserstein gradient flow on MMD

Assume henceforth

$$oldsymbol{
u},oldsymbol{
u}^{st}\in\mathcal{P}_2(\mathbb{R}^d):=\left\{\mu\in\mathcal{P}(\mathbb{R}^d)\ :\ \int\|x\|^2d\mu(x)<\infty
ight\}.$$

MMD as free energy: target  $\nu^*$ , current distribution  $\nu$ 

$$\mathcal{F}(oldsymbol{
u}):=rac{1}{2}MMD^2(oldsymbol{
u}^*,oldsymbol{
u})==rac{1}{2}\underbrace{\mathbb{E}_{
u}k(x,x')}_{ ext{interaction}}+rac{1}{2}\underbrace{\mathbb{E}_{
u^*}k(y,y')}_{ ext{constant}}-\underbrace{\mathbb{E}_{
u,
u^*}k(x,y)}_{ ext{confinement}}$$

#### Preliminaries: Wasserstein gradient flow on MMD

Assume henceforth

$$oldsymbol{
u},oldsymbol{
u}^{st}\in\mathcal{P}_2(\mathbb{R}^d):=\left\{\mu\in\mathcal{P}(\mathbb{R}^d)\ :\ \int\|x\|^2d\mu(x)<\infty
ight\}.$$

MMD as free energy: target  $\nu^*$ , current distribution  $\nu$ 

$$\mathcal{F}(oldsymbol{
u}) := rac{1}{2} MMD^2(oldsymbol{
u}^*,oldsymbol{
u}) = = rac{1}{2} \underbrace{\mathbb{E}_{
u} k(x,x')}_{ ext{interaction}} + rac{1}{2} \underbrace{\mathbb{E}_{
u^*} k(y,y')}_{ ext{constant}} - \underbrace{\mathbb{E}_{
u,
u^*} k(x,y)}_{ ext{confinement}}$$

Consider  $\{\mathbf{y}_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \boldsymbol{\nu}^*$  and  $\{x_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \boldsymbol{\nu}$ . Force on a particle  $\boldsymbol{z}$ :

$$-\sum_j 
abla_z k(z, x_j) + \sum_j 
abla_z k(z, \mathbf{y}_j) = -
abla_z \hat{f}_{oldsymbol{
u}^\star, oldsymbol{
u}_t}(z)$$

#### Wasserstein gradient flows

Tangent space of  $(\mathcal{P}_2(\mathbb{R}^d), W_2)$  is  $h \in L^2(\mu)$  where  $h : \mathbb{R}^d \to \mathbb{R}^d$ . Define  $\nabla_{W_2} \mathcal{F}(\mu)$  of  $\mathcal{F}$  at  $\mu$  using Taylor expansion

$$\mathcal{F}((\mathrm{Id} + \epsilon h)_{\#\mu}) = \mathcal{F}(\mu) + \epsilon \langle \nabla_{W_2} \mathcal{F}(\mu), h \rangle_{\mu} + o(\epsilon)$$
 (1)

#### Wasserstein gradient flows

Tangent space of  $(\mathcal{P}_2(\mathbb{R}^d), W_2)$  is  $h \in L^2(\mu)$  where  $h : \mathbb{R}^d \to \mathbb{R}^d$ . Define  $\nabla_{W_2} \mathcal{F}(\mu)$  of  $\mathcal{F}$  at  $\mu$  using Taylor expansion

$$\mathcal{F}((\mathrm{Id} + \epsilon h)_{\#\mu}) = \mathcal{F}(\mu) + \epsilon \langle \nabla_{W_2} \mathcal{F}(\mu), h \rangle_{\mu} + o(\epsilon)$$
 (1)

Under reasonable assumptions [A. Theorem 10.4.13]

$$abla_{W_2}\mathcal{F}(\mu)=
abla\mathcal{F}'(\mu).$$

where first variation in direction  $\xi$ :

$$\mathcal{F}(\mu+\epsilon\xi)=\mathcal{F}(\mu)+\epsilon\int\mathcal{F}'(\mu)(x)d\xi(x)+o(\epsilon)\qquad \mu+\epsilon\xi\in\mathcal{P}_2(\mathbb{R}^d)$$
 (2)

#### Wasserstein gradient flows

Tangent space of  $(\mathcal{P}_2(\mathbb{R}^d), W_2)$  is  $h \in L^2(\mu)$  where  $h : \mathbb{R}^d \to \mathbb{R}^d$ . Define  $\nabla_{W_2} \mathcal{F}(\mu)$  of  $\mathcal{F}$  at  $\mu$  using Taylor expansion

$$\mathcal{F}((\mathrm{Id} + \epsilon h)_{\#\mu}) = \mathcal{F}(\mu) + \epsilon \langle \nabla_{W_2} \mathcal{F}(\mu), h \rangle_{\mu} + o(\epsilon)$$
 (1)

Under reasonable assumptions [A. Theorem 10.4.13]

$$abla_{W_2}\mathcal{F}(\mu)=
abla\mathcal{F}'(\mu).$$

where first variation in direction  $\xi$ :

$$\mathcal{F}(\mu+\epsilon\xi)=\mathcal{F}(\mu)+\epsilon\int \mathcal{F}'(\mu)(x)d\xi(x)+o(\epsilon)\qquad \mu+\epsilon\xi\in\mathcal{P}_2(\mathbb{R}^d)$$
 (2)

The gradient flow is then:

$$\partial_t \mathbf{\nu}_t = \operatorname{div}(\mathbf{\nu}_t 
abla_{W_2} \mathcal{F}(\mathbf{\nu}_t))$$

#### Wasserstein gradient flow on MMD

First variation of  $\frac{1}{2}MMD^2(\nu^*,\nu) =: \mathcal{F}(\nu)$ 

 $\mathcal{F}'(
u)(z):=f_{
u^{\star},
u}(z)=2\left(\mathbb{E}_{U\sim
u^{\star}}[k(U,z)]-\mathbb{E}_{U\sim
u}[k(U,z)]
ight)$ 

The  $W_2$  gradient flow of the MMD:

$$\partial_t 
u_t = \operatorname{div}(
u_t 
abla_{W_2} \mathcal{F}(
u_t)) = \operatorname{div}(
u_t 
abla f_{
u^\star,
u_t})$$

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of probability measures. (2008, Ch. 10) Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019) Arbel, Korba, Salim, G. (NeurIPS 2019)

#### Wasserstein gradient flow on MMD

First variation of  $\frac{1}{2}MMD^2(\nu^*,\nu) =: \mathcal{F}(\nu)$ 

 $\mathcal{F}'(
u)(z):=f_{
u^{\star},
u}(z)=2\left(\mathbb{E}_{U\sim
u^{\star}}[k(U,z)]-\mathbb{E}_{U\sim
u}[k(U,z)]
ight)$ 

The  $W_2$  gradient flow of the MMD:

$$\partial_t 
u_t = \operatorname{div}(
u_t 
abla_{W_2} \mathcal{F}(
u_t)) = \operatorname{div}(
u_t 
abla f_{
u^\star,
u_t})$$

McKean-Vlasof dynamics for particles (existence and uniqueness under Assumption A):

$$dZ_t = - 
abla_{Z_t} f_{oldsymbol{
u}^\star, 
u_t}(Z_t) dt, \qquad Z_0 \sim oldsymbol{
u}_0$$

Assumption A:  $k(x, x) \leq K$ , for all  $x \in \mathbb{R}^d$ ,  $\sum_{i=1}^d \|\partial_i k(x, \cdot)\|^2 \leq K_{1d}$ and  $\sum_{i,j=1}^d \|\partial_i \partial_j k(x, \cdot)\|^2 \leq K_{2d}$ , d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of probability measures. (2008, Ch. 10) Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019) Arbel, Korba, Salim, G. (NeurIPS 2019)

#### Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

$$egin{aligned} & 
u_{n+1} = (I - \gamma 
abla f_{oldsymbol{
u^{\star}}, 
u_t})_{\#} 
u_n \ & Z_{n+1} = Z_n - \gamma 
abla_{Z_n} f_{oldsymbol{
u^{\star}}, 
u_n}(Z_n), & Z_0 \sim 
u_0, \ Z_n \sim 
u_n \end{aligned}$$

Under Assumption A,  $\nu_n$  approaches  $\nu_t$  as  $\gamma \to 0$ 

#### Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

$$egin{aligned} & 
u_{n+1} = (I - \gamma 
abla f_{oldsymbol{
u^{\star}}, 
u_t})_{\#} 
u_n \ & Z_{n+1} = Z_n - \gamma 
abla_{Z_n} f_{oldsymbol{
u^{\star}}, 
u_n}(Z_n), & Z_0 \sim 
u_0, \ Z_n \sim 
u_n \end{aligned}$$

Under Assumption A,  $\nu_n$  approaches  $\nu_t$  as  $\gamma \to 0$ 

Consistency? Does  $\nu_t$  converge to  $\nu^*$  as  $t \to \infty$ ?

# Consistency (1)

Can we use geodesic (displacement) convexity?

• A geodesic  $\rho_t$  between  $\nu_1$  and  $\nu_2$  is given by the transport map  $T_{\nu_1}^{\nu_2}$  :  $\mathbb{R}^d \to \mathbb{R}^d$ :

$$ho_t = \left((1-t) \mathrm{Id} + t T^{
u_2}_{
u_1}
ight)_{\#
u_1}$$

• A functional  $\mathcal{F}$  is displacement convex if:

$$\mathcal{F}(
ho_t) \leq (1-t)\mathcal{F}(
u_1) + t\mathcal{F}(
u_2)$$

MMD is not displacement convex in general (it is always mixture<sup>1</sup> convex).

$${}^{1}\mathcal{F}(t\nu_{1}+(1-t)\nu_{2}) \leq t\mathcal{F}(\nu_{1})+(1-t)\mathcal{F}(\nu_{2}) \qquad \forall t \in [0,1]$$

# Consistency (2)

Dissipation inequalities:

■ Rate by which *F* decreases along the gradient flow [A, Proposition 2]

$$rac{d\mathcal{F}(oldsymbol{
u}_t)}{dt} = -\mathbb{E}_{oldsymbol{
u}_t}[\|
abla f_{oldsymbol{
u}^\star,oldsymbol{
u}_t}\|^2]$$

 Assume the dissipation rate is controlled (path-dependent Lojasiewicz inequality)

$$\mathcal{F}(oldsymbol{
u}_t) \leq C \mathbb{E}_{
u_t}[\|
abla f_{
u^\star,
u_t}\|^2]$$

From above, [A, Proposition 7]:

$$\mathcal{F}(\boldsymbol{\nu}_t) \leq \frac{1}{\mathcal{F}(\boldsymbol{\nu}_0)^{-1} + 2C^{-1}t}$$

# Consistency (2)

Dissipation inequalities:

**Rate** by which  $\mathcal{F}$  decreases along the gradient flow [A, Proposition 2]

$$\frac{d\mathcal{F}(\boldsymbol{\nu}_t)}{dt} = -\mathbb{E}_{\boldsymbol{\nu}_t}[\|\nabla f_{\boldsymbol{\nu^\star},\boldsymbol{\nu}_t}\|^2]$$

 Assume the dissipation rate is controlled (path-dependent Lojasiewicz inequality)

$$\mathcal{F}(oldsymbol{
u}_t) \leq C \mathbb{E}_{oldsymbol{
u}_t}[\|
abla f_{oldsymbol{
u}^\star,oldsymbol{
u}_t}\|^2]$$

From above, [A, Proposition 7]:

$$\mathcal{F}(\boldsymbol{\nu}_t) \leq \frac{1}{\mathcal{F}(\boldsymbol{\nu}_0)^{-1} + 2C^{-1}t}$$

# Consistency (2)

Dissipation inequalities:

■ Rate by which *F* decreases along the gradient flow [A, Proposition 2]

$$\frac{d\mathcal{F}(\boldsymbol{\nu}_t)}{dt} = -\mathbb{E}_{\boldsymbol{\nu}_t}[\|\nabla f_{\boldsymbol{\nu^\star},\boldsymbol{\nu}_t}\|^2]$$

 Assume the dissipation rate is controlled (path-dependent Lojasiewicz inequality)

$$\mathcal{F}(oldsymbol{
u}_t) \leq C \mathbb{E}_{oldsymbol{
u}_t}[\|
abla f_{oldsymbol{
u}^\star,oldsymbol{
u}_t}\|^2]$$

From above, [A, Proposition 7]:

$$\mathcal{F}(oldsymbol{
u}_t) \leq rac{1}{\mathcal{F}(oldsymbol{
u}_0)^{-1} + 2C^{-1}t}$$
# Consistency (2)

Check: Lojasiewicz inequality for MMD?

• Does there exist C > 0 such that

 $\mathcal{F}(oldsymbol{
u}_t) \leq C \mathbb{E}_{oldsymbol{
u}_t}[\|
abla f_{oldsymbol{
u}^\star,oldsymbol{
u}_t}\|^2]$ 

By Cauchy-Schwarz in the RKHS, [A, eq. 16]

$$\mathcal{F}(oldsymbol{
u}_t) =: rac{1}{2} MMD^2(oldsymbol{
u}_t,oldsymbol{
u}^{\star}) \leq S(oldsymbol{
u}^{\star}|oldsymbol{
u}_t) \mathbb{E}_{oldsymbol{
u}_t}[\|
abla f_{oldsymbol{
u}^{\star},oldsymbol{
u}_t}\|^2]$$

where  $S(\boldsymbol{\nu}^{\star}|\boldsymbol{\nu}_{t})$  is the Negative Sobolev Distance<sup>2</sup>

Require  $S(\nu^*|\nu_t) < C$  for entire sequence  $\nu_t$ : hard to check in theory, fails in practice.

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)  ${}^{2}S(\nu^{\star}|\nu_{t}) = \sup_{g, \mathbb{E}_{Z \sim \nu_{t}}[||\nabla g(Z)||^{2}] \leq 1} |\mathbb{E}_{Z \sim \nu_{t}}[g(Z)] - \mathbb{E}_{U \sim \nu^{\star}}[g(U)]|$ 

Data





Data



















Data

Particles



A

DataParticles

۲



21/43

Some observations:

- Almost all particles tend to collapse at the center of mass m of the target ν<sup>\*</sup>, i.e.: (ν<sub>t</sub> ≃ δ<sub>m</sub>)
  - However, the loss stops decreasing: ∇f<sub>ν\*,νt</sub>(z) ≃ 0 for z on the support of νt (and is small when far from ν\*)...
  - ...and in general,  $\nabla f_{\nu^{\star},\nu_t}(z) \neq 0$  outside the support of  $\nu_t$ .

Can these observations be used to improve convergence?

#### Noise injection to improve convergence

Noise injection: Evaluate  $\nabla f_{\nu^*,\nu_t}$  outside of the support of  $\nu_t$  to get a better signal!

Sample  $u_t \sim \mathcal{N}(0, 1)$  and  $\beta_t$  is the noise level:

$$Z_{t+1} = Z_t - \gamma 
abla f_{oldsymbol{
u}^\star, oldsymbol{
u}_t}(Z_t + oldsymbol{eta}_t u_t); \qquad Z_t \sim oldsymbol{
u}_t$$

- Similar to <u>continuation methods</u>,<sup>3</sup> but extended to interacting particles.
- Different from entropic regularization:

$$Z_{t+1} = Z_t - \gamma 
abla f_{oldsymbol{
u}^\star,oldsymbol{
u}_t}(Z_t) + oldsymbol{eta}_t u_t$$

<sup>&</sup>lt;sup>3</sup>Chaudhari, Oberman, Osher, Soatto, Carlier. Deep relaxation: partial differential equations for optimizing deep neural networks. Research in the Mathematical Sciences (2017) Hazan, Levy, Shalev-Shwartz. On graduated optimization for stochastic non-convex problems. ICML (2016).

#### Noise injection: consistency

 $\begin{array}{ll} \text{Recall:} & Z_{t+1} = Z_t - \gamma \nabla f_{\nu^\star,\nu_t} (Z_t + \pmb{\beta}_t u_t); & Z_t \sim \nu_t \\ \text{Tradeoff for } \pmb{\beta}_t \end{array}$ 

- Large  $\beta_t$ :  $\nu_{t+1} \nu_t$  not a descent direction any more:  $\mathcal{F}(\nu_{t+1}) > \mathcal{F}(\nu_t)$
- Small  $\beta_t$ : Back to the failure mode:  $\nabla f_{\nu^{\star},\nu_t}(Z_t + \beta_t u_t) \simeq 0$

#### Noise injection: consistency

 $\begin{array}{ll} \text{Recall:} & Z_{t+1} = Z_t - \gamma \nabla f_{\nu^\star,\nu_t} (Z_t + \pmb{\beta}_t u_t); & Z_t \sim \nu_t \\ \text{Tradeoff for } \pmb{\beta}_t \end{array}$ 

• Large  $\beta_t$ :  $\nu_{t+1} - \nu_t$  not a descent direction any more:  $\mathcal{F}(\nu_{t+1}) > \mathcal{F}(\nu_t)$ 

Small  $\beta_t$ : Back to the failure mode:  $\nabla f_{\nu^*,\nu_t}(Z_t + \beta_t u_t) \simeq 0$ Need  $\beta_t$  such that:

$$egin{aligned} \mathcal{F}(oldsymbol{
u}_{t+1}) &- \mathcal{F}(oldsymbol{
u}_t) \leq -C\gamma \mathbb{E}_{\substack{X_t \sim oldsymbol{
u}_t \sim \mathcal{N}(0,1)}} [\|
abla f_{oldsymbol{
u}^\star,oldsymbol{
u}_t}(X_t + oldsymbol{eta}_t u_t)\|^2] \ &\sum_i^t oldsymbol{eta}_i^2 \ & oldsymbol{
u}_t o \infty \end{aligned}$$

Then [A, Proposition 8]

$$\mathcal{F}(\boldsymbol{\nu}_t) \leq \mathcal{F}(\boldsymbol{\nu}_0) e^{-C\gamma \sum_i^t \beta_i^2}.$$

#### [A] Arbel, Korba, Salim, G. (NeurIPS 2019)

DataParticles





Data





#### Noise injection: neural net setting





#### Noise injection: neural net setting



#### Noise injection: neural net setting



# The KALE, and KALE flow



#### The $\phi$ -divergences

Define the  $\phi$ -divergence(*f*-divergence):

$$D_{\phi}(P, Q) = \int \phi\left(rac{p(z)}{q(z)}
ight) q(z) dz$$

where  $\phi$  is convex, lower-semicontinuous,  $\phi(1) = 0$ .

**Example:**  $\phi(u) = u \log(u)$  gives KL divergence,

$$egin{aligned} D_{KL}(P,oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z) dz \ &= \int \left(rac{p(z)}{q(z)}
ight) \log\left(rac{p(z)}{q(z)}
ight) q(z) dz \end{aligned}$$

#### The $\phi$ -divergences

Define the  $\phi$ -divergence(*f*-divergence):

$$D_{\phi}(P, Q) = \int \phi\left(rac{p(z)}{q(z)}
ight) q(z) dz$$

where  $\phi$  is convex, lower-semicontinuous,  $\phi(1) = 0$ .

**Example:**  $\phi(u) = u \log(u)$  gives KL divergence,

$$egin{aligned} D_{KL}(P, oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z) dz \ &= \int \left(rac{p(z)}{q(z)}
ight) \log\left(rac{p(z)}{q(z)}
ight) q(z) dz \end{aligned}$$

## The challenge of disjoint support



#### Simple example: disjoint support.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

 $D_{KL}(\boldsymbol{P},\boldsymbol{Q})=\infty$   $D_{JS}(\boldsymbol{P},\boldsymbol{Q})=\log 2$ 



## The challenge of disjoint support



#### Simple example: disjoint support.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

 $D_{KL}(P, Q) = \infty$   $D_{JS}(P, Q) = \log 2$ 


# $\phi$ -divergences in practice

Notation: the conjugate (Fenchel) dual

$$\phi^*(v) = \sup_{u\in\mathbb{R}} \left\{ uv - \phi(u) 
ight\}.$$



•  $\phi^*(v)$  is negative intercept of tangent to  $\phi$  with slope v

# $\phi$ -divergences in practice

Notation: the conjugate (Fenchel) dual

$$\phi^*(v) = \sup_{u \in \mathbb{R}} \left\{ uv - \phi(u) 
ight\}.$$

For a convex l.s.c.  $\phi$  we have

$$\phi^{**}(x)=\phi(x)=\sup_{v\in\mathbb{R}}\left\{xv-\phi^{*}(v)
ight\}$$

# $\phi$ -divergences in practice

Notation: the conjugate (Fenchel) dual

$$\phi^*(v) = \sup_{u\in\mathbb{R}} \left\{ uv - \phi(u) 
ight\}.$$

For a convex l.s.c.  $\phi$  we have

$$\phi^{**}(x)=\phi(x)=\sup_{v\in\mathbb{R}}\left\{xv-\phi^{*}(v)
ight\}$$

■ KL divergence:

$$\phi(x)=x\log(x)\qquad \phi^*(v)=\exp(v-1)$$

A lower-bound  $\phi$ -divergence approximation:

$$D_{\phi}(P, Q) = \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz$$

A lower-bound  $\phi$ -divergence approximation:

$$egin{aligned} D_{\phi}(P, oldsymbol{Q}) &= \int oldsymbol{q}(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int oldsymbol{q}(z) \sup_{f_z} igg(rac{p(z)}{q(z)}f_z - \phi^*(f_z)igg) \ & oldsymbol{\phi}(rac{p(z)}{q(z)}igg) \end{aligned}$$

 $\phi^*(v)$  is dual of  $\phi(x)$ .

A lower-bound  $\phi$ -divergence approximation:

$$egin{aligned} D_{\phi}(P,oldsymbol{Q}) &= \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int q(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} \phi^*\left(f(oldsymbol{Y})
ight) \end{aligned}$$

(restrict the function class)

A lower-bound  $\phi$ -divergence approximation:

$$egin{aligned} D_{\phi}(P,oldsymbol{Q}) &= \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int q(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} \phi^*\left(f(oldsymbol{Y})
ight) \end{aligned}$$

(restrict the function class)

Bound tight when:

$$f^\diamond(z) = \partial \phi \left( rac{p(z)}{q(z)} 
ight)$$

if ratio defined.

$$D_{KL}(P, oldsymbol{Q}) = \int \log\left(rac{p(z)}{oldsymbol{q}(z)}
ight) p(z) dz$$

$$egin{aligned} D_{KL}(P, oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_{P}f(X) + 1 - \mathrm{E}_{oldsymbol{Q}} \underbrace{\exp\left(f(oldsymbol{Y})
ight)}_{\phi^*(f(oldsymbol{Y})+1)} \end{aligned}$$

$$egin{aligned} D_{KL}(P, oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) + 1 - \mathrm{E}_{oldsymbol{Q}}\exp\left(f(oldsymbol{Y})
ight) \end{aligned}$$

Bound tight when:

$$f^{\diamond}(z) = \log rac{q(z)}{p(z)}$$

if ratio defined.



$$egin{split} D_{KL}(P,oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) + 1 - \mathrm{E}_{oldsymbol{Q}}\exp\left(f(oldsymbol{Y})
ight) \ &pprox \sup_{f\in\mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(oldsymbol{x}_i) - rac{1}{n}\sum_{i=1}^n \exp(f(oldsymbol{y}_i))
ight] + 1 \end{split}$$



$$egin{split} D_{KL}(P,oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) + 1 - \mathrm{E}_oldsymbol{Q}\exp\left(f(Y)
ight) \ &pprox \sup_{f\in\mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) - rac{1}{n}\sum_{i=1}^n \exp(f(y_i))
ight] + 1 \end{split}$$

This is a

 $\mathbf{KL}$ 

Approximate

Lower-bound

Estimator.

$$egin{split} D_{KL}(P,oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) + 1 - \mathrm{E}_{oldsymbol{Q}}\exp\left(f(Y)
ight) \ &pprox \sup_{f\in\mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) - rac{1}{n}\sum_{i=1}^n \exp(f(y_i))
ight] + 1 \end{split}$$

This is a

K

A

L

 $\mathbf{E}$ 

$$egin{split} D_{KL}(P,oldsymbol{Q}) &= \int \log\left(rac{p(z)}{q(z)}
ight) p(z)dz \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_{P}f(X) + 1 - \mathrm{E}_{oldsymbol{Q}}\exp\left(f(oldsymbol{Y})
ight) \ &pprox \sup_{f\in\mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) - rac{1}{n}\sum_{i=1}^n \exp(f(y_i))
ight] + 1 \end{split}$$

## The KALE divergence

# Empirical properties of KALE



$$egin{aligned} & ext{KALE}(P, oldsymbol{Q}; \mathcal{H}) = \sup_{f \in \mathcal{H}} E_P f(X) - E_oldsymbol{Q} \exp\left(f(oldsymbol{Y})
ight) + 1 \ & f = \langle w, \phi(x) 
angle_{\mathcal{H}} \qquad \mathcal{H} ext{ an RKHS} \ & \|w\|_{\mathcal{H}}^2 \quad ext{penalized} \end{aligned}$$

Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2) 34/43

## Empirical properties of KALE





Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2) 34/43

## Empirical properties of KALE







Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS 2021, Section 2) 34/43

# Topological properties of KALE (1)

Key requirements on  $\mathcal{H}$  and  $\mathcal{X}$ :

- Compact domain  $\mathcal{X}$ ,
- $\mathcal{H}$  dense in the space  $C(\mathcal{X})$  of continuous functions on  $\mathcal{X}$  wrt  $\|\cdot\|_{\infty}$ .
- If  $f \in \mathcal{H}$  then  $-f \in \mathcal{H}$  and  $cf \in \mathcal{H}$  for  $0 \leq c \leq C_{\max}$ .

Theorem:  $KALE(P, Q; \mathcal{H}) \geq 0$  and  $KALE(P, Q; \mathcal{H}) = 0$  iff P = Q.

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs" (ICLR 2018, Corollary 2.4; Theorem B.1) Arbel, Liang, G. (ICLR 2021, Proposition 1)

# Topological properties of KALE (1)

Key requirements on  $\mathcal{H}$  and  $\mathcal{X}$ :

- Compact domain  $\mathcal{X}$ ,
- $\mathcal{H}$  dense in the space  $C(\mathcal{X})$  of continuous functions on  $\mathcal{X}$  wrt  $\|\cdot\|_{\infty}$ .
- If  $f \in \mathcal{H}$  then  $-f \in \mathcal{H}$  and  $cf \in \mathcal{H}$  for  $0 \leq c \leq C_{\max}$ .

Theorem:  $KALE(P, Q; \mathcal{H}) \geq 0$  and  $KALE(P, Q; \mathcal{H}) = 0$  iff P = Q.

 $\mathcal{H}$  dense in  $C(\mathcal{X})$  for  $\mathcal{X} \subset \mathbb{R}^d$  when:

 $\mathcal{H} = ext{span}\{\sigma(w op x + b) : [w, b] \in \Theta\}$  $\sigma(u) = ext{max}\{u, 0\}^{lpha}, \, lpha \in \mathbb{N}, \, ext{and} \, \{\lambda heta : \lambda > 0, heta \in \Theta\} = \mathbb{R}^{d+1}.$ 

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs" (ICLR 2018, Corollary 2.4; Theorem B.1) Arbel, Liang, G. (ICLR 2021, Proposition 1)

# Topological properties of KALE (2)

Additional requirement: all functions in  $\mathcal{H}$  Lipschitz in their inputs with constant L

Theorem:  $KALE(P, Q^n; \mathcal{H}) \to 0$  iff  $Q^n \to P$  under the weak topology.

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1)

## Topological properties of KALE (2)

Additional requirement: all functions in  $\mathcal{H}$  Lipschitz in their inputs with constant L

Theorem:  $KALE(P, Q^n; \mathcal{H}) \to 0$  iff  $Q^n \to P$  under the weak topology.

Partial proof idea:

$$\begin{split} \text{KALE}(P, \mathcal{Q}; \mathcal{H}) &= \int f \, dP - \int \exp(f) \, d\mathcal{Q} + 1 \\ &= -\int f(x) \, d\mathcal{Q}(x) + f(x') \, dP(x') \\ &- \int \underbrace{(\exp(f) - f - 1)}_{\geq 0} \, d\mathcal{Q} \\ &\leq \int f(x') \, dP(x') - \int f(x) \, d\mathcal{Q}(x) \leq LW_1(P, \mathcal{Q}) \end{split}$$

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1)

# KALE vs KL vs MMD

A scaled KALE (non-degenerate for  $\lambda = 0$  or  $\lambda \to \infty$ ):

$$egin{aligned} ext{KALE}_\lambda(P,oldsymbol{Q};\mathcal{H}) &= (1+\lambda) \sup_{f\in\mathcal{H}} \left| E_P f(X) - E_oldsymbol{Q} \exp\left(f(oldsymbol{Y})
ight) + 1 - rac{\lambda}{2} \|f\|_\mathcal{H}^2 
ight| \end{aligned}$$

-

MMD limit:

$$\lim_{\lambda \to +\infty} \mathrm{KALE}_{\lambda}(P, \boldsymbol{Q}; \mathcal{H}) = rac{1}{2} \mathrm{MMD}^2(P, \boldsymbol{Q}).$$

KL limit (assuming  $\log \frac{dP}{dQ} \in \mathcal{H}$ ):

 $\lim_{\lambda\to 0} \mathrm{KALE}_{\lambda}(P, \, \boldsymbol{Q}; \mathcal{H}) = \mathrm{KL}(P, \, \boldsymbol{Q}).$ 

Glaser, Arbel, G. (NeurIPS 2021, Proposition 1)

## Wasserstein gradient flow on KALE

First variation of the  $KALE_{\lambda}(\nu, \nu^{\star})$  $\frac{\partial KALE_{\lambda}}{\partial \nu}(\nu)(z) := (1 + \lambda) f_{\nu,\nu^{\star}}(z)$ 

where  $f_{\nu,\nu^{\star}}$  is the solution of

$${f}_{{oldsymbol 
u},{oldsymbol 
u}^\star} = rg\max_{f\in\mathcal{H}} \left\{ \mathcal{K}(f,{oldsymbol 
u}) 
ight\},$$

where

$$\mathcal{K}(f,oldsymbol{
u}):=E_{oldsymbol{
u}}f(X)-E_{oldsymbol{
u}^*}\exp\left(f(oldsymbol{Y})
ight)+1-rac{\lambda}{2}\|f\|_{\mathcal{H}}^2$$

## Wasserstein gradient flow on KALE

First variation of the  $KALE_{\lambda}(\nu, \nu^{\star})$  $\frac{\partial KALE_{\lambda}}{\partial \nu}(\nu)(z) := (1 + \lambda) f_{\nu, \nu^{\star}}(z)$ 

where  $f_{\nu,\nu^{\star}}$  is the solution of

$${f}_{{m 
u},{m 
u}^{\star}} = rg\max_{f\in \mathcal{H}} \left\{ \mathcal{K}(f,{m 
u}) 
ight\},$$

where

$$\mathcal{K}(f,oldsymbol{
u}):=E_{oldsymbol{
u}}f(X)-E_{oldsymbol{
u^*}}\exp\left(f(oldsymbol{Y})
ight)+1-rac{\lambda}{2}\|f\|_{\mathcal{H}}^2$$

Proof (idea):

$$\frac{\partial \mathrm{KALE}_{\lambda}}{\partial \nu} = \frac{\partial \mathcal{K}(f_{\nu,\nu^{\star}},\nu)}{\partial \nu} + \underbrace{\frac{\partial \mathcal{K}(f,\nu)}{\partial f}\Big|_{f=f_{\nu,\nu^{\star}}}}_{=0} \frac{\partial f_{\nu,\nu^{\star}}}{\partial \nu}$$

as long as  $\frac{\partial f_{\nu,\nu^{\star}}}{\partial \nu}$  exists (via implicit function theorem)

### Wasserstein gradient flow on KALE

The  $W_2$  gradient flow of the KALE:

$$\partial_t 
u_t = -(1+\lambda) ext{div}(
u_t 
abla f_{
u_t, 
u^\star}), \qquad 
u_0 = P_0$$

where

$$f_{oldsymbol{
u},oldsymbol{
u}^\star} = rg\max_f \mathcal{K}(f,oldsymbol{
u})$$

Glaser, Arbel, G. (NeurIPS 2021, Lemma 3)

# Consistency (2)

Again, under the (strong!) assumption

$$egin{aligned} S(oldsymbol{
u}^{\star}|oldsymbol{
u}_t) &:= \sup_{g, \mathbb{E}_{Z \sim oldsymbol{
u}_t}[\| 
abla g(Z)\|^2] \leq 1} |\mathbb{E}_{Z \sim oldsymbol{
u}_t}[g(Z)] - \mathbb{E}_{U \sim oldsymbol{
u}^{\star}}[g(U)]| \ &\leq C \end{aligned}$$

we have

$$\operatorname{KALE}(\nu_t) \leq \frac{1}{\operatorname{KALE}(\nu_0)^{-1} + C^{-1}t}$$

Once again, noise injection can be used (similar result to MMD flow).

Glaser, Arbel, G. (NeurIPS 2021, Proposition 3)

# Consistency (2)

Again, under the (strong!) assumption

$$egin{aligned} Sig( oldsymbol{
u}^{\star} | oldsymbol{
u}_t ig) &:= \sup_{g, \mathbb{E}_{Z \sim oldsymbol{
u}_t} [\| 
abla g(Z) \|^2] \leq 1} |\mathbb{E}_{Z \sim oldsymbol{
u}_t} [g(Z)] - \mathbb{E}_{U \sim oldsymbol{
u}^{\star}} [g(U)]| \ &\leq C \end{aligned}$$

we have

$$ext{KALE}(oldsymbol{
u}_t) \leq rac{1}{ ext{KALE}(oldsymbol{
u}_0)^{-1} + C^{-1}t}$$

Once again, noise injection can be used (similar result to MMD flow). Compare with linear rate for Wasserstein-2 flow on KL when  $\nu^*$  satisfies log-Sobolev inequality with constant  $\rho$ :

$$rac{d}{dt} \mathit{KL}(oldsymbol{
u}_t,oldsymbol{
u}^{\star}) \leq -2
ho \mathit{KL}(oldsymbol{
u}_t,oldsymbol{
u}^{\star})$$

Glaser, Arbel, G. (NeurIPS 2021, Proposition 3)

### KALE flow vs MMD flow in practice



Figure 1: MMD and KALE flow trajectories for "three rings" target

Glaser, Arbel, G. (NeurIPS 2021)

## Summary

#### Gradient flows based on kernel dependence measures:

- MMD flow is simpler, KALE flow is mode-seeking
- Noise injection can improve convergence
- NeurIPS 2019, NeurIPS 2021

#### NeurIPS 2019:

#### arXiv > stat > arXiv:1906.04370

Statistics > Machine Learning

(Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2))

Maximum Mean Discrepancy Gradient Flow

Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton

#### NeurIPS 2021:



Statistics > Machine Learning

[Submitted on 16 Jun 2021 (v1), last revised 29 Oct 2021 (this version, v2)]

KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support

Pierre Glaser, Michael Arbel, Arthur Gretton

## Summary

#### Gradient flows based on kernel dependence measures:

- MMD flow is simpler, KALE flow is mode-seeking
- Noise injection can improve convergence
- NeurIPS 2019, NeurIPS 2021

#### NeurIPS 2019:

#### arXiV > stat > arXiv:1906.04370

Statistics > Machine Learning

[Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2)]

Maximum Mean Discrepancy Gradient Flow

Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton

#### NeurIPS 2021:

#### arXiv > stat > arXiv:2106.08929

#### Statistics > Machine Learning

[Submitted on 16 Jun 2021 (v1), last revised 29 Oct 2021 (this version, v2)]

#### KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support

Pierre Glaser, Michael Arbel, Arthur Gretton

### KALE as GAN critic: ICLR 2021:

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning

[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]

#### **Generalized Energy Based Models**

Michael Arbel, Liang Zhou, Arthur Gretton

#### NeurIPS 2020:



Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio

# Questions?

