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Abstract

In this paper we present the Infinite Hier-
archical Hidden Markov Model (IHHMM), a
nonparametric generalization of Hierarchical
Hidden Markov Models (HHMMs). HHMMs
have been used for modeling sequential data
in applications such as speech recognition,
detecting topic transitions in video and ex-
tracting information from text. The IHHMM
provides more flexible modeling of sequen-
tial data by allowing a potentially unbounded
number of levels in the hierarchy, instead of
requiring the specification of a fixed hierar-
chy depth. Inference and learning are per-
formed efficiently using Gibbs sampling and
a modified forward-backtrack algorithm. We
present encouraging results on toy sequences
and English text data.

1 Introduction

Hierarchical Hidden Markov Models (HHMM) are
multiscale models of sequences where each level of the
model is a separate Hidden Markov Model (HMM)
emitting lower level HMMs in a recursive manner [Fine
et al., 1998]. HHMMs are well-suited to the multi-
scale nature of many naturally occurring sequential
data, and have been successfully applied across a wide
spectrum of domains, including language and speech
processing [Fine et al., 1998], information extraction
[Skounakis et al., 2003], video structure discovery [Xie
et al., 2002] and activity detection and recognition
[Nguyen et al., 2005].

Inference and learning in the HHMM are carried out
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in a straightforward manner using extensions of both
the standard forward-backward algorithm and the
Baum-Welch algorithm. However, learning the model
structure of HHMMs is significantly harder, due to
the multitude of local optima and the inherent non-
identifiability of such a flexible model.

We present a nonparametric Bayesian approach to HH-
MMs. Rather than assuming a hierarchy of finite
depth and attempting to learn the appropriate depth,
our model assumes an infinite number of levels in the
HHMM at the outset. The assumption made in our
model instead is that in any finite length sequence only
a finite number of state transitions (over a finite num-
ber of levels) will be performed. This assumption al-
lows for a computationally and statistically tractable
alternative to model selection in HHMMs.

The graphical model representation of our infinite hi-
erarchical HMM (IHHMM) consists of an infinite num-
ber of levels, where each level is a sequence of latent
variables dependent on the level above, and where the
observed sequence lies at the bottom level. This re-
sults in an approach to nonparametric Bayesian mod-
eling that differs significantly from previous work, in
that previous work has dealt only with models with a
finite hierarchy. See Section 6 for further discussion.

The structure of the rest of this paper is as follows.
In section 2 we review HHMMs. In section 3 we in-
troduce and define the infinite hierarchical HMM and
place it within the context of previous HHMM mod-
els. Section 4 derives a block Gibbs sampling based
inference algorithm for the IHHMM, while section 5
presents the results of using the IHHMM on toy se-
quence and English text data, comparing it with pre-
vious approaches. Related work, including a variety
of related method available for grammar learning, is
discussed in section 6. Lastly we conclude with a dis-
cussion in section 7.
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2 Hierarchical Hidden Markov Models

Hierarchical Hidden Markov Models (HHMMs) [Fine
et al., 1998] are used for modeling the hierarchical
structure of data found in many application domains,
such as natural language [Fine et al., 1998] or music
[Weiland et al., 2005]. HHMMs are an extension of
HMMs where instead of being restricted to emitting
single observations, the states of the HHMM are them-
selves HHMMs, which contain substates, and can emit
strings of observations. States that emit strings of ob-
servations are called “abstract states”, while those that
have single emissions are called “production states”.
Internal HHMMs can be called recursively from ab-
stract states, such that control is returned to the ab-
stract state when it has completed running. Every
HHMM can be represented with a standard HMM
where the state of the HMM consists of the production
state as well as the abstract states higher up the hi-
erarchy of the HHMM. However, this results in an ex-
ponential number of states and parameters, and lacks
the informative hierarchical structure of the HHMM
and the ability to reuse the same internal model com-
ponents in differing situations.

Murphy and Paskin [2001] show that the HHMM can
be represented as a dynamic Bayesian network (DBN)
which allows the application of a whole spectrum of
learning and inference methods to the HHMM. In the
DBN representation of the HHMM the observed sym-
bol at time t, Ot, depends on the state variables at time
t at all levels of the hierarchy Qt = (Q1

t . . . QL
t ), where

level L is the top level. These state variables represent
the sequence of abstract states leading from the root
node to the production state for Ot in the HHMM. In-
dicator variables F l

t control completion of the HHMM
at level l and time t and enforce higher level HMMs
transitioning only when ones at lower levels have com-
pleted.

Our Infinite Hierarchical Hidden Markov Model bears
close resemblence to the HHMM described above. In
addition to the infinite levels of the hierarchy, in cer-
tain aspects we opted to simplify the description of our
model relative to that of Murphy and Paskin [2001],
largely for clarity’s sake. The resulting differences will
be discussed in section 3.1.

3 The Infinite Hierarchical Hidden
Markov Model

The Infinite Hierarchical Hidden Markov Model
(IHHMM) is a nonparametric generalization of the
HHMM which allows the HHMM hierarchy to have
a potentially infinite number of levels. Let yt be
the observation at time t, sl

t the state at time t and

level l = 1, 2, . . ., and zl
t a binary variable indicating

whether there is a completion of the HHMM at level
l − 1 right before time t. There is a state transition
at level l exactly when the HHMM at level l− 1 com-
pletes, thus zl

t also indicates presence of a state tran-
sition from sl

t−1 to sl
t (absence of a transition means

sl
t = sl

t−1). For simplicity, all state and observation
variables are discrete with finite cardinality. The con-
ditional probability of zl

t is:

P (zl
t = 1|zl−1

t ) =

{
αl if zl−1

t = 1
0 otherwise

(1)

where αl is a parameter which controls the chance of
a state transition at level l and z0

t = 1 for simplicity.
Notice that there is an opportunity to transition at
level l only if there was a transition at level l−1—this
imposes the hierarchy on the state transitions of the
IHHMM.

The structure of the variables zl
t implies a number of

properties regarding state transitions in the IHHMM.
Firstly, the number of transitions at level l−1 before a
transition at level l occurs is geometrically distributed
with parameter αl, which has a mean of 1/αl. This
implies that the expected number of time steps for
which a state at level l persists in its current value
is 1/

∏l
k=1 αk. Thus we see that states at higher lev-

els persist longer—we expect these states to capture
longer range dependencies in the IHHMM, while states
at levels below capture shorter range ones. Secondly,
the first non-transitioning level at time t, Lt, has the
following distribution:

P (Lt = l) = (1− αl)
l−1∏
k=1

αk (2)

Thus 1 − αl is the hazard rate at step l of Lt. If all
αl = α are equal, Lt is geometrically distributed as
well with parameter 1 − α. Note that Lt can take
on arbitrarily large values. Thus the IHHMM allows
for a potentially infinite number of levels in the hi-
erarchy with a decreasing number of state transitions
at higher levels. We take the top level of the hierar-
chy corresponding to a finite sequence of observations
(y1, . . . , yT ) to be the first level, L∗, where zL∗

t = 0,∀t.
Note that as the number of time steps increases L∗ in-
creases as well.

The remainder of the generative process for the obser-
vation yt given z1:∞

t now proceeds quite similarly to
the HHMM, where states sl

t are generated from levels
Lt − 1 down to 1:

P (sl
t = a|sl

t−1 = b, sl+1
t = c, zl

t = 1) = Al
abc (3)

where Al is a 3D state transition matrix at level l.
States at levels l ≥ Lt persist: sl

t = sl
t−1. We assume
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Figure 1: Graphical model for the IHHMM. Parame-
ters of the model has been omitted for clarity.

that at time t = 0 states at all levels start at a special
begining-of-sequence value sl

0 = 0. Finally, the data is
generated from an emissions matrix:

P (yt = o|s1
t = a) = Eoa (4)

The graphical model for the IHHMM is given in figure
4. We place beta priors on αl, and symmetric Dirichlet
priors on the transition A and emission E probabilities.

3.1 Relation to the HHMM

Most obviously the IHHMM is a nonparametric exten-
sion of the HHMM and allows for an unbounded hier-
archy depth. This is a valuable property because the
best number of levels to include in the hierarchy of an
HHMM is usually unknown a priori. Utilizing a non-
parametric method which allows the number of levels
to be inferred directly from the data can improve the
performance of the model while avoiding costly model
comparisons.

The IHHMM also differs from the HHMM in a num-
ber of other respects. We did not require the chance
of transition zl

t to depend on the state sl−1
t−1. In other

words, the completion of an internal HHMM in the
model is not governed by the internal HHMM itself
(e.g. by transitioning into a termination state), but
rather by an independent process. We allow states
sl

t to always depend on sl
t−1, regardless of whether

there were transitions at higher levels of the IHHMM,
whereas in the HHMM sl

t only depends on sl−1
t if there

was a transition into sl−1
t . This might be a better as-

sumption for certain kinds of data (for example a video
sequence), but not for others (for example the begin-
ning of sentences might be modeled better by not being
conditioned on the end of the previous sentence). Fi-
nally, we allow states sl

t to depend only on sl−1
t but

not on higher level states (similarly for the observa-
tions yt). All of these differences can be reconciled

with the HHMM at additional complexity in specify-
ing the IHHMM model architecture, and at a cost of
complicating the exposition and detracting attention
from the main idea of the IHHMM. We show some ex-
amples of using some of these differences in Section 5.

4 Inference and Learning

We perform inference and learning in the IHHMM us-
ing Gibbs sampling and a modified forward-backtrack
algorithm. Our inference algorithm iterates between
sampling the state values of the IHHMM with fixed
parameters and then relearning the parameters con-
ditioned on the state values. These two steps are ex-
plained in detail below.

Sampling State Values with Fixed Parameters:
Resampling the state values at all levels of the IHHMM
conditioned on the current sampled parameter values
is done by Gibbs sampling the state trajectory at each
level of the hierarchy, starting at the bottom, condi-
tioned on all the other levels (though only the lev-
els immediately above and below are relevant) using
a modified forward-backtrack algorithm. For a given
level of the hierarchy, l, we compute forward messages,
starting from t = 1 and going forward to t = T :

Γt(sl
t, z

l
t) , P (sl

t, z
l
t, s

l−1
1:t , zl+1

1:t |s
l+1
1:t , zl−1

1:t )

=
∑

sl
t−1,zl

t−1

Γt−1(sl
t−1, z

l
t−1)P (zl

t|zl−1
t )P (zl+1

t |zl
t)

× P (sl
t|sl

t−1, s
l+1
t , zl

t)P (sl−1
t |sl−1

t−1, s
l
t, z

l
t) (5)

These terms can all be simply computed. The first
term is the preceding message Γt−1, the next two terms
are given by equation (1), and the last two terms are
given by the state transition matrix, A. For level l = 1
we replace the transition term P (sl−1

t |sl−1
t−1, s

l
t, z

l
t) with

the emission probability P (yt|s1
t ). A backward pass

can now resample st and zt, starting at t = T and
going back to t = 1:

sl
t, z

l
t ∼P (sl

t, z
l
t|sl

t+1, z
l
t+1, s

l±1
1:T , zl±1

1:T )

∝ Γt(sl
t, z

l
t)P (sl

t+1|sl
t, s

l+1
t+1, z

l
t+1) (6)

The last term is easy to compute and given by the tran-
sition matrix A (or emission matrix if l = 1). When
the top level is reached it is also resampled by creat-
ing a new level above it with all states having a state
value of 1 (this property always defines the top level).
If state transitions did occur after resampling the top
level, then the level above becomes the new top level
and is retained. Analogously if the level below the cur-
rent top level has no state transitions it becomes the
new top level. Thus the number of levels in the hier-
archy can grow (or shrink) in an unbounded manner
during sampling.
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Sampling Parameters Given the Current State:
Parameters are initialized as draws from the prior.
State transition and emission variables are given sym-
metric Dirichlet priors. Given the state trajectories
sampled in the previous step counts of state transitions
and emissions can be computed and used to calculate
the posterior distribution (also Dirichlet) from which
the transition and emission parameters are redrawn.

Notice that the running time of each iteration of this
Gibbs sampler is O(TL∗). This is in contrast with the
O(T 3) algorithm of Fine et al. [1998] and the O(TKL∗)
algorithm of Murphy and Paskin [2001]. However it
may take a larger number of iterations to converge.

Predicting New Observations:
Given the current state of the IHHMM (consisting of
the state variables s1:L∗

1:T , transition indicators z1:L∗
1:T ,

and parameters α1:L∗ , A1:L∗ and E), we can efficiently
compute the probability of each possible symbol being
the next observation yT+1 using dynamic program-
ming. This probability requires summing over the
infinitely many states s1:∞

T+1 and transition indicators
z1:∞
T+1. We will show that we can compute it using

O(L∗) computations. Consider the following set of re-
cursions starting from l = L∗ − 1 and going down to
l = 1:

Φl(sl
T+1) , P (sl

T+1|zl−1
T+1 = 1, s1:L∗

1:T , z1:L∗
1:T )

=P (zl
T+1 = 0|zl−1

T+1 = 1)P (sl
T+1|sl

T , sl+1
T+1, z

l
T+1 = 0)+∑

sl+1
T+1

P (zl
T+1 = 1|zl−1

T+1 = 1)P (sl
T+1|sl

T , sl+1
T+1, z

l
T+1 = 1)

× P (sl+1
T+1|z

l
T+1 = 1, s1:L∗

1:T , z1:L∗
1:T )

=(1− αl)I(sl
T+1 = sl

T )+

αl

∑
sl+1

T+1

P (sl
T+1|sl

T , sl+1
T+1, z

l
T+1 = 1)Φl+1(sl+1

T+1) (7)

where we have suppressed dependence on the parame-
ters for clarity, and I(·) = 1 if its argument is true and
0 otherwise. The recursion can be initialized at the
top level L∗ with ΦL∗(s

L∗
T+1) = 1/NL∗ where NL∗ is

the number of states at level L∗. This is because level
L∗ is the first level for which no transition has been
encountered, thus integrating out AL∗ the state SL∗

T+1

will be uniformly distributed among the NL∗ possible
states. Finally, the probability of observing yT+1 can
be computed from Φ1(s1

T+1):

P (yT+1|s1:L∗
1:T , z1:L∗

1:T )

=P (z1
T+1 = 0)P (yT+1|s1

T+1 = s1
T )+

P (z1
T+1 = 1)

∑
s1

T+1

P (yT+1|s1
T+1)Φ1(s1

T+1) (8)
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Figure 2: top: Data generated from a IHHMM model.
bottom: The sampled states of the IHHMM used to
generate the data (levels in reverse order with emis-
sion level at top). To generate data from the model
with specified hyperparameters, we start at time t = 0
with a single level, with state = 1 and sample indi-
cator variables of each level for time t = 1 until we
sample a zero indicator for a level. Given the number
of turned on levels, we sample the states of each level
starting from the top, and finally generate the obser-
vation. We generate the following observations simi-
larly by first initiating the levels in the hierarchy, then
sampling states of each level and finally emitting the
observation. Note that the big jumps in the dataset
correspond to state transitions at higher levels of the
hierarchy.

5 Demonstrations

We begin by generating data from the IHHMM. The
IHHMM model allows us to capture the underlying
hierarchical structure in the data. To have a better
intuition about what we mean by ”underlying hierar-
chical structure in the data”, we have generated data
from the model, shown in Figure 2. Here we allow ob-
servations to depend on transitions at all levels of the
generated hierarchy. We see that there are low-level
fluctuations in the data as well as fewer larger jumps.
The state transitions at the lower levels of the hier-
archy produce the fine scale fluctuations while higher
level structure produces bigger jumps. Note that mod-
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Figure 3: Number of levels L∗ used by the IHHMM
as a function of sequence length T . Each of 30 dashed
blue lines is an independent run with all αl = .8 while
the bold red line is the average.

eling this data with an HMM would require exponen-
tially many additional states than is necessitated in an
HHMM.

We also looked at the rate at which the model increases
the number of levels it used. In Figure 3 we plotted
the number of levels used by the model as a function
of the sequence length T . We see that in this case
where αl = .8, the model increases its number of levels
logarithmically in T .

To demonstrate that the model can successfully cap-
ture the structure in hierarchical data, we performed
experiments on two sets of toy data. Both toy datasets
consist of concatenation of an increasing and decreas-
ing series of integers. The first dataset consists of re-
peats of integers increasing from 1 to 7, followed by
repetitions of integers decreasing from 5 to 1, repeated
twice. The second dataset is the first data concate-
nated with another series of repeated increasing and
decreasing sequences of integers. We use 7 states in
the model for this data, at all levels of the IHHMM.
Note in Figure 4(a) that the model needs two levels
of hierarchy to express the structure in the data. The
state transition on the second level corresponds to the
transition from repetitions of increasing integers to the
repetitions of decreasing numbers. In Figure 4(b), the
model still finds the same structure on the same part of
the data and adds another level of hierarchy to model
the second half of the data part of which comes from a
different series. We computed the predictive log prob-
ability of the next integer in the sequence for both
the IHHMM and vanilla (Gibbs sampling based) HMM
over 10 sequences, each being run 10 times. Each pre-

a)
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Figure 4: Results on toy number data. The first and
third plot from the top show the z values (determining
whether there is a state transition; red means 1 while
blue means 0) for each of two data sets. The second
and bottom plots show the state values for the final
sample of IHHMM inference (one color for each state
value). The model successfully captures the hierar-
chical structure in the data. A higher level initiation
(i.e. transition from the default state to another state
at a higher level) is possible only when its indicator
variable is turned on.

diction averaged over 20 samples taken after burn in.
The mean predictive likelihood for the HMM was 0.25
versus 0.31 for the IHHMM. We also computed pre-
dictive likelihood scores for a fixed level HHMM and
found results to be comparable with the IHHMM (0.30
for 2-4 levels of hierarchy). This is to be expected since
most of the structure of the data can be captured with
the first two levels of the IHHMM. On points where
there is a transition at the third level, we did find that
the IHHMM outperforms the two-level HHMM, but
there are very few of these points since the data set
size is small. In order to eliminate the possiblity of
sampling noise in these results we plan to perform a
deeper evaluation when running the IHHMM on large
scale application data.

We also ran the IHHMM on spectral data from Han-
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Figure 5: Alice in Wonderland letters data set. Top:
The difference in log predictive likelihood between the
IHHMM and a standard HMM learned using the EM
algorithm. Bottom: The difference in log predictive
likelihood between the IHHMM and a one level HMM
learned using Gibbs sampling. The long tail signifies
that there are letters which can be better predicted
by learning long range correlations through the use of
higher hierarchical levels and infered by the IHHMM
model.

del’s Hallelujah chorus. The data is shown at the bot-
tom of figure 6. For this dataset, the model learns a
single level of the hierarchy since it infers that adding
more levels does not benefit inference for this particu-
lar data set. We can see in the middle (state) plot in
figure 6 that the structure corresponding to the high
frequency regions of the data are discovered by the
model. These high frequency regions correspond to
two sung ’Hallelujahs’ in the music. We also note that
the IHHMM does not discover higher levels of struc-
ture in this data, implying that the model in its current
form (with discrete emissions, etc.) might not be ap-
propriate for this type of data. A similar result was
also found when running our algorithm on other pieces
of music.

Lastly, we used the IHHMM model to infer characters
in written text. We used characters from the first two
chapters of ’Alice in Wonderland’ as given by the data
set from Project Gutenberg. We ran the IHHMM al-
gorithm over the first N characters (where N ranged
between 1000 and 3000) and then predicted on the
N+1st character. We used 7 latent states per level,
an alpha value of 0.5 and performed 200 iterations of

Gibbs sampling per run. The value of alpha was held
fixed in order to improve mixing of the sampler (and
thereby removing some flexibility from the model).
Our predictions averaged over 20 samples taken af-
ter a burn in period. We also ran a standard HMM
using Gibbs sampling on this data (analogous to alpha
always being 0 in the IHHMM), and a standard HMM
which is learned using the Expectation-Maximization
algorithm (EM). A histogram of the differences in log
predictive likelihood between the IHHMM and each of
these two competing algorithms are given in figure 5
for many runs of the algorithms and subsequent pre-
dictions of the next character in the text. The IHHMM
obviously performs much better than the HMM with
EM (the maximum value over 5 initializations was
taken for each prediction). The histogram for the
IHHMM versus the one level Gibbs HMM shows a long
tail where the IHHMM is performing significantly bet-
ter on some letters. This is due to the fact that while
many letters can be well predicted with one level of
hierarchy structure, there some letters can be better
predicted by learning long range correlations through
the use of higher hierarchical levels and infered by the
IHHMM model. The heavy tails in both plots are sig-
nificant, but the EM HMM often performs quite poorly
due to the fact that it is a maximum likelihood based
algorithm and is prone to overfitting. The mean dif-
ferences in both plots are positive, demonstrating that
the IHHMM gives superior performance on this data.

6 Related Work and Extensions

The problem of modelling multi-scale structure in se-
quential data has been well studied. We describe
a number of previously proposed models besides the
HHMM and contrast them with the IHHMM. In ad-
dition, the version of the IHHMM presented in this
paper is of the most basic architecture. Inspired by
some of the related work, we also describe a number
of variations and extensions within the same IHHMM
framework. We expect different variations to be suit-
able for different types of data.

6.1 Stochastic Grammars

Probabilistic context free grammars form a large class
of approaches to multi-scale structure learning that is
especially prevalent in the linguistics and bioinformat-
ics literature. Grammar induction methods include
bottom-up approaches which reduce redundancies by
identifying common subsequences [Stolcke and Omo-
hundro, 1994], as well as nonparametric Bayesian ap-
proaches using MCMC or variational inference [Liang
et al., 2007, Johnson et al., 2007, Finkel et al., 2007].

Grammar-based approaches define distributions over



Heller, Teh, Görür

2000 4000 6000 8000 10000 12000 14000 16000

1

2

3

4

5

2000 4000 6000 8000 10000 12000 14000 16000

1

2

3

4

5

2000 4000 6000 8000 10000 12000 14000 16000

50

100

150

200

250

300

350

400

Figure 6: The IHHMM run on spectral data from Han-
del’s Hallelujah chorus. Top plot are z values (red is
1, blue is 0), middle plot is state values, and bottom
plot is the original data. Time is on the x-axis. The
IHHMM discovers two high frequency regions in the
data (corresponding to two hallelujahs in the music -
shown on top).

finite (but potentially arbitrarily long) sequences,
while our model gives a well-defined distribution over
infinitely long sequences. Another difference is that
each state in a grammar typically describes a “phrase”
or specific sequence of states in the level below, while
in the IHHMM each state describes a Markov chain of
states below.

A significantly different variation on the IHHMM is
inspired by the phrasal structure of stochastic gram-
mars. Consider the distribution over state sequences in
a level of the IHHMM given a state of the level above.
We can use a factorized distribution where each state
is independent of other states in the sequence but de-
pendent on its location in its sequence. This allows
each state in the IHHMM to encode for a “phrase” or
specific sequence of states in the level below.

6.2 Nonparametric Bayesian Models

The IHHMM is an example of a nonparametric
Bayesian model for sequential data. Related models
include the infinite HMM [Beal et al., 2002], which
has a single state variable per time point with infinite
cardinality, and the infinite factorial HMM [Van Gael
et al., 2008], which has an infinite collection of inde-
pendently evolving Markov chains. On the other hand,
the IHHMM has an infinite number of levels, each be-
ing a Markov chain dependent on the chain above.

The relationship among these three nonparametric
time series models highlights an interesting develop-
ment in the nonparametric Bayes literature repre-
sented by the IHHMM. Specifically, the novel mecha-
nism to derive the IHHMM allows for a graphical rep-
resentation with unbounded depth while maintaining
tractability, while past models have simpler graphical
representations with only a few levels.

The obvious extension to the model presented here is
to make the number of states at each level infinite as
well a la the infinite HMM. We can achieve this in
a straightforward manner by using a hierarchical DP
to share the set of next states among the transition
probabilities [Teh et al., 2006].

6.3 Other Extensions

Other straightforward extensions on the IHHMM are
to allow more complex dependencies within the model.
For example, the next state can not just depend on the
previous state and the state on the level above, but also
on states further up the hierarchy as well. Another
variation is to allow higher order Markov chains where
each state depends on a number of previous states. Yet
another variation is to allow the probability of whether
there is a transition to depend on the current states
of the IHHMM, rather than using a state-independent
probability. We can also replace the emission distri-
bution over discrete symbols with other distributions,
e.g. mixture of Gaussians to model continuous data.

6.4 Efficient Inference Algorithms

For practical applications of the IHHMM, another im-
portant avenue of research is to develop efficient infer-
ence algorithms that can be applied to large data sets.
Effective initializations need to be developed. For ex-
ample, we can develop greedy layer-wise initialization
where we train the IHHMM with just one layer, fix
the first layer while we train the second layer, followed
by the third, fourth etc. This allows the model to
learn lower level structure first (typically easier) be-
fore higher level structure. Better MCMC samplers or
variational approximations need to be developed, as
well as MAP inference using a Viterbi-like algorithm.
One possible approach might be to use a slice sam-
pler to dynamically limit the number of levels of the
hierarchy, so that the inside-outside algorithm can be
applied on the finite number of levels, thus allowing
for potentially much larger steps than the level-wise
Gibbs sampler proposed in this paper.
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7 Discussion

We proposed the infinite hierarchical hidden Markov
model, a hierarchical model for sequential data that
operates on multiple time scales. The IHHMM is a
nonparametric Bayesian model that allows for an in-
finite number of levels in the hierarchy. We proposed
a Gibbs sampler for the IHHMM that samples each
level efficiently using a modified forward-backtrack al-
gorithm.

Nonparametric Bayesian models have recently caught
the attention of the machine learning and statis-
tics communities as elegant alternatives to traditional
structure learning approaches. The first heavily uti-
lized nonparametric Bayesian models were the Dirich-
let process and other clustering-based models, which,
from a structure learning standpoint, assume a fi-
nite number of variables with infinite cardinality [Ras-
mussen, 2000, Teh et al., 2006]. The Indian buffet Pro-
cess takes the next step, being a latent feature model
with an infinite number of independent latent features,
but only a finite number of which will be active for any
given data item [Griffiths and Ghahramani, 2006]. The
IHHMM represents the logical next step, whereby an
infinite number of dependent latent variables interact
in a complex fashion to produce the data, but only
a finite amount of computation is needed to perform
learning and inference in the model. This is not to say
that the IHHMM subsumes these or other previous
models. Instead, we wish to highlight an interesting
development in the nonparametric Bayesian literature.

There are many exciting avenues for future research.
Firstly it will be interesting to see how the model per-
forms for various applications on large scale data, such
as video segmentation, speech recognition, and syn-
thetic music compositions. We have described a vari-
ety of potential extensions and variations of the model,
as well as highlighted the need for more efficient in-
ference algorithms. We are particularly keen on the
grammatical variation of the IHHMM. In most of our
experiments we have found that the Markov structure
within each level was able to capture the regularities
in the level below. The grammatical variation assumes
that each state is independent given the higher level
state, thus forces all regularities to be captured by the
hierarchical structure. We believe this should allow
the model to capture interesting and deep hierarchical
structure inherent in many data sets.
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