4th July 2005 — Vishy: Exponential Families in Feature Space

Another guest speaker: Vishy will give the following talk:

Exponential Families in Feature Space

Joint work with Alex Smola and Thomas Hofmann

In this talk we will discuss how log linear models can be extended to feature space. These log linear models have been studied by statisticians for a long time under the name of exponential family of probability distributions. We provide a unified framework which can be used to view many existing kernel algorithms as special cases. Our framework also allows us to derive many natural generalizations of existing algorithms. In particular, we show how we can recover Gaussian Processes, Support Vector Machines, multi-class discrimination, and sequence annotation (via Conditional Random Fields). We also show to deal with missing data and perform MAP estimation on Conditional Random Fields in feature space.