
Gaussian Processes and Fast Matrix-Vector Multiplies

Iain Murray murray@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4 CANADA

Abstract

Gaussian processes (GPs) provide a flexible
framework for probabilistic regression. The
necessary computations involve standard ma-
trix operations. There have been several at-
tempts to accelerate these operations based
on fast kernel matrix-vector multiplications.
By focussing on the simplest GP computa-
tion, corresponding to test-time predictions
in kernel ridge regression, we conclude that
simple approximations based on clusterings
in a kd-tree can never work well for simple re-
gression problems. Analytical expansions can
provide speedups, but current implementa-
tions are limited to the squared-exponential
kernel and low-dimensional problems. We
discuss future directions.

1. Introduction

One attraction of Gaussian process based regression is
that inference requires only simple, standard matrix
operations. Straightforward implementations scale
poorly: O(n2) in memory and O(n3) in time, which
has lead to interest in improving the applicability of
Gaussian processes using fast numerical methods. We
have had difficulty obtaining worthwhile speedups by
using the methods proposed in the literature. This
abstract outlines some of the difficulties particular to
GPs and considers future directions.

2. Gaussian Process setup

Rasmussen and Williams (2006) provides a full re-
view of Gaussian processes for machine learning. In-
ferences are based on n training pairs given by in-
puts X = {x1, . . .xn} and corresponding scalar out-
puts stored in a vector y of length n. We assume that
each observation yi corresponds to a noisy observa-

Submitted to the workshop on numerical mathematics at
the 26th International Conference on Machine Learning,
Montreal, Canada, 2009.

tion, yi ∼ N (fi, σ
2
n), of an underlying function value

fi =f(xi). The prior distribution over latent function
values at any set of input points X is a multivariate
Gaussian distribution: f∼N (0,K). Each element Kij

of the n×n covariance matrix is given by k(xi,xj),
a positive semi-definite kernel function evaluated at a
pair of input locations.

The most common, although not always the most ap-
propriate, kernel for D-dimensional vectorial inputs is
the squared-exponential or “Gaussian”:

k(xi,xj) = σ2
f exp

(
− 1

2

D∑
d=1

(xd,i − xd,j)2/`2d

)
. (1)

Here σ2
f is the ‘signal variance’ controlling the overall

scale of the function, and the `d give the characteristic
lengthscale of each dimension. The lengthscales are
often set equal using a fixed ‘bandwidth’ `d =h/

√
2.

3. Fast Matrix-Vector Multiplication

The mean predictor for a set of test inputs is f̄∗=K>∗ α,
where K∗ is an n×n∗ matrix obtained by evaluating
the kernel function between the n training points and
the n∗ test inputs, and the weights α are the result
of solving a linear system at training time. The test-
time cost of the matrix-vector multiplication (MVM)
for prediction is O(n∗n). Algorithms providing faster
MVM operations can be directly applied to making
rapid mean predictions at test time. If this simplest
task can be accelerated there is hope for applying fast
MVM operations to other GP computations such as
finding α (section 4).

3.1. Sparsity of the kernel matrix

Matrix multiplications and other matrix computations
can be performed more cheaply when a matrix is
sparse, i.e. it contains many zero entries. It may also
be possible to exploit an approximately sparse matrix
containing many near-zero entries.

In local kernel regression training points far from a
test location can be ignored because the lengthscale



Gaussian Processes and Fast Matrix-Vector Multiplies

(or bandwidth) of the kernel becomes narrow for large
datasets. This has previously been exploited to create
a fast regression method (Moore et al., 1997).

In Gaussian process regression, however, the width
of the kernel is often comparable to the range of
the input points in the training set, as the under-
lying function is often a simple trend with respect
to any single input. To back up this assertion,
we trained GPs on 25 standard regression problems
collated by Lúıs Torgo (http://www.liaad.up.pt/
~ltorgo/Regression/DataSets.html). Using both
maximum likelihood and cross validation, the best
lengthscales for most datasets is similar to the width
of the data set. This means that the covariance ma-
trix is often not sparse, even when using a covariance
function with compact support (e.g. Rasmussen and
Williams 2006, § 4.2). A common exception is time-
series datasets, where often only a short window of
time is useful for prediction.

In high-dimensional input spaces it is possible to move
by a lengthscale in each of several dimensions, giving
very small covariances between some pairs of points.
The training set covariance matrix for a real-world
moderate-dimensional dataset SARCOS (http://
www.gaussianprocess.org/gpml/data/) does have
many near-zero values in it.

3.2. Multi-resolution data structures

There is a belief that multi-resolution space-
partitioning data structures enable fast use of huge
datasets in many statistical methods, including Gaus-
sian Process regression (Gray & Moore, 2001). Shen
et al. (2006) suggested adapting the fast locally-
weighted polynomial regression algorithm of Moore
et al. (1997) to GP regression. This method builds a
kd-tree of the training data, and assumes that groups
of kernel values are approximately equal. The use of
more advanced algorithms and data structures have
also been proposed (Gray, 2004; Freitas et al., 2006),
but the key underlying assumption is the same.

When making a test prediction these algorithms dy-
namically partition the training set into subsets Sc.
The subsets are chosen so that the kernel between
each member and the test location is close to some
constant kc. The mean prediction can then be ap-
proximated as follows:

f̄(x∗) =
∑

i

αi k(xi, x∗) ≈
∑

c

[∑
i∈Sc

αi

]
kc . (2)

Using cached statistics it is possible to compute the
sum over the αi weights for groups of nearby training
points efficiently. It is also possible to bound the error

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

lengthscale, l

M
ea

n 
ab

s 
er

ro
r

 

 

Full GP
KD−tree
FGT
IFGT

(a)

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

lengthscale, l

tim
e/

s

 

 

Full GP

KD−tree

FGT

IFGT

(b)

Figure 1. (a) Average error over 4096 test data points,
against length-scale. The training data was 4096 points
taken from the same draw from a 2-dimensional GP with
true lengthscale `= 1, and σn = 10−3. Each method had
both absolute and relative errors set to ε = 10−3, except
the IFGT, which had its relative error tolerance set to 10−6.
(b) Time against length-scale for the predictions in (a).

0 1
x

y

 

 Data
Full GP mean
Merge method
Subset of Data

Figure 2. A synthetic 1D data set. The GP mean predic-
tors using all the data and a subset of every other point
are very close. The merging method described in the text
gives much worse results. In this example, the IFGT can
produce a mean predictor indistinguishable from that of
the full GP in over an order of magnitude less time.

from this procedure and make the subsets sufficiently
small to guarantee any given error criterion. However,
there is no guarantee that the algorithm will actually
provide a speed-up.

In one experiment we generated a 2-dimensional syn-
thetic dataset drawn from a GP prior using a squared-
exponential kernel. The inputs were drawn uniformly
within a unit square, and the lengthscale was set
to ` = 1. Making accurate predictions depends on
using a length-scale close to the correct value (fig-
ure 1(a)). Figure 1(b) shows that the time taken for
a test MVM operation using several methods. The
‘Full GP’ simply used Matlab’s multiply operation.
The kd-tree results used the library provided by Lang
et al. (2006). Unfortunately, the kd-tree method satu-
rated at its worst running time at the optimal length-
scale. Performing the MVM directly would have been
considerably faster. This is representative of our ex-
perience with several datasets.

There are many free choices in implementing a fast
method, both in how the data-structures are built from
the data and in the recursions that are run on them to



Gaussian Processes and Fast Matrix-Vector Multiplies

compute the MVM. Lang et al.’s code is primarily pro-
vided as a demonstration of techniques for researchers,
and is not as heavily optimized as it could be. Our own
code also failed to provide speedups, although results
using any particular implementation cannot prove that
speedups are impossible.

To examine whether speedups are possible for any im-
plementation we simplify the situation further. We
focus only on the core approximation: replacing sim-
ilar kernel values with a single estimate. We test this
idea on a well-behaved 1D regression problem, figure 2.
None of the kernel values are close to zero here, so we
must merge large but numerically close values. We
consider combining pairs of adjacent training points:

αi k(x∗,xi) + αi+1 k(x∗,xi+1) ≈
(αi + αi+1) k(x∗, (xi + xi+1)/2). (3)

This won’t be an optimal merging, but these points
are all very close and should be reasonable merging
candidates. Besides, we would like to merge many
more points: the speedup here will be less than two-
fold and more dramatic speedups would be required to
make a big impact on the applicability of GP methods.

It is surprising and very disappointing that merging
pairs gives a significantly worse mean predictor. It
is worth comparing to a simpler approach: if we had
simply thrown away half the data from the start, the
resulting mean predictor is hard to distinguish from
that found using all the data. In this case, attempting
to use more data by introducing an approximation is
worse than simply ignoring the extra data.

The algorithms that have been proposed adaptively
merge points. They are able to merge two adjacent
weights when used for a far-away test point, but not
for nearby test points. This would be useful when some
kernel values are close to zero, which is not the case in
our one-dimensional example. However, a dataset with
a short lengthscale, such as a time series, may benefit.
High-dimensional problems with approximately sparse
covariance matrices could also potentially benefit, but
the training points with near-zero covariances are not
necessarily clustered in a way that is easily captured by
a space-partitioning data structure. To our knowledge,
no existing work has demonstrated a kd-tree-based GP
method in high dimensions.

Approximate kernel computations could potentially
work if the α weights and test MVMs systemati-
cally used the same effective kernel. The difficulty is
that simple piecewise-constant kernels are not positive-
semidefinite, and cannot be used for GP regression.
An approximation that would generally apply is mov-
ing groups of points to lie exactly on top of each other.

This is a pre-processing step after which points with
the same input location could be analytically com-
bined. There would be no need for recursions on a
multi-resolution data structure.

3.3. Expansion of the Gaussian kernel

Merging kernel values is a crude approximation. More
sophisticated analytical approximations can be made
for particular kernel functions. The Fast Gauss Trans-
form (FGT) (Greengard & Strain, 1991; Strain, 1991)
and the Improved Fast Gauss Transform (IFGT)
(Yang et al., 2005) offer fast MVM operations when us-
ing the Gaussian kernel. The most up-to-date descrip-
tion of the IFGT is provided in a tech-report and asso-
ciated open-source code (Raykar et al., 2005; Raykar
et al., 2006).

Results for the IFGT using the authors’ code and
the FGT using code from Lang et al. (2006) were in-
cluded in figure 1. Both can provide a speedup on
low-dimensional problems with minimal impact on ac-
curacy. Raykar and Duraiswami (2007) have already
applied the IFGT to Gaussian process mean predic-
tion. Given that both the IFGT code and the datasets
they used are available, we were able to confirm that
their results are broadly reproducible. Unlike the kd-
tree methods, there is significant, accessible and easily
reproducible evidence that expansion-based methods
can provide speedups on some real GP regression prob-
lems, without impacting accuracy.

However, the usefulness of the expansion-based meth-
ods is limited. In low dimensional problems, the test
performance often saturates for practical purposes af-
ter training on a manageable subset of the training
data. The FGT and IFGT have scaling problems on
high-dimensional problems where fast methods are re-
ally needed. Maintaining a speedup with the IFGT
requires the bandwidth or lengthscale to scale propor-
tional to

√
D, where D is the input dimensionality

(Raykar et al., 2006). However, our experience is that
lengthscales much wider than the width of the data
set are not learned for relevant features. Raykar and
Duraiswami (2007) state that the current version of
the IFGT does not accelerate GP regression on the
21-dimensional SARCOS dataset.

Even on low dimensional problems, using these codes
is not without practical difficulties. The (I)FGT per-
formance curves do not extend to small lengthscales
in figure 1(b) because some aspect of the codes failed
or crashed in these parameter regimes. Even if long
lengthscales are appropriate, this limitation makes pa-
rameter searches harder to implement.



Gaussian Processes and Fast Matrix-Vector Multiplies

4. Iterative Methods

All Gaussian process computations can take advan-
tage of fast matrix-vector multiplications through con-
jugate gradient methods (Gibbs, 1997). Alternative it-
erative methods may be useful (Li et al., 2007; Liberty
et al., 2007), but these are also based on matrix-vector
multiplications.

We have tried conjugate gradients and Li et al.’s
method, although performing a careful comparison is
involved. The conclusion on the datasets we tried was
that a working fast matrix-vector multiply code is es-
sential for these methods to have a strong impact. It
would be best to see fast MVMs working convincingly
for the simplest task of test-time mean prediction, be-
fore complicating the analysis significantly with outer
loop iterations to perform other tasks.

Raykar and Duraiswami (2007) have already explored
combining the IFGT with CG methods for training
Gaussian process mean prediction. Speedups on some
low- to medium-dimensional regression problems were
demonstrated. Although in these cases only moderate-
sized datasets are needed for high accuracy predic-
tions, so they could be dealt with naively. Obtaining
speedups on high-dimensional problems with mathe-
matical numerical methods is an open problem.

5. Discussion

Much of the work on fast kernel matrix computa-
tions has focussed on kernel density estimation (KDE).
While local kernel regression has a similar flavor to
KDE, Gaussian process regression does not. Although
some mathematical expressions look familiar, typical
kernel lengthscales are in a range seemingly designed
to give poor performance with kd-tree and FGT meth-
ods. Results with the IFGT show that speedups are
possible, although not in the most useful regimes.

Moderate dimensional datasets such as SARCOS give
approximately sparse covariance matrices. However,
we are unaware of a robust procedure for leveraging
this into a significant speedup.

Acknowledgments

This abstract describes experiences during a broader
study with Joaquin Quiñonero Candela, Carl Ras-
mussen, Edward Snelson, and Chris Williams.

References

Freitas, N. D., Wang, Y., Mahdaviani, M., & Lang,
D. (2006). Fast Krylov methods for N-body learn-

ing. Advances in Neural Information Processing Systems
(NIPS*18): Proceedings of the 2005 Conference. MIT
Press.

Gibbs, M. (1997). Bayesian Gaussian processes for classi-
fication and regression. PhD thesis, University of Cam-
bridge.

Gray, A. (2004). Fast kernel matrix-vector multiplication
with application to Gaussian process learning (Technical
Report CMU-CS-04-110). School of Computer Science,
Carnegie Mellon University.

Gray, A. G., & Moore, A. W. (2001). ‘N-body’ problems
in statistical learning. Advances in Neural Information
Processing Systems (NIPS*13): Proceedings of the 2000
Conference. MIT Press.

Greengard, L., & Strain, J. (1991). The fast Gauss trans-
form. SIAM J. Sci. Stat. Comput., 12, 79–94.

Lang, D., Klaas, M., Hamze, F., & Lee, A. (2006). N-
body methods code and Matlab binaries. http://www.
cs.ubc.ca/~awll/nbody_methods.html.

Li, W., Lee, K.-H., & Leung, K.-S. (2007). Large-scale
RLSC learning without agony. Proceedings of the 24th
international conference on Machine learning (pp. 529–
536). ACM Press New York, NY, USA.

Liberty, E., Woolfe, F., Martinsson, P.-G., Rokhlin, V.,
& Tygert, M. (2007). Randomized algorithms for the
low-rank approximation of matrices. Proceedings of the
National Academy of Sciences, 104, 20167–72.

Moore, A., Schneider, J., & Deng, K. (1997). Efficient lo-
cally weighted polynomial regression predictions. Four-
teenth International Conference on Machine Learning
(pp. 236–244).

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian
Processes for machine learning. MIT Press.

Raykar, V. C., & Duraiswami, R. (2007). Fast large
scale Gaussian process regression using approxi-
mate matrix-vector products. Learning workshop
2007, San Juan, Peurto Rico. Available from:
http://www.umiacs.umd.edu/~vikas/publications/
raykar_learning_workshop_2007_full_paper.pdf.

Raykar, V. C., Yang, C., & Duraiswami, R. (2006). Im-
proved fast Gauss transform: user manual (Technical
Report). Department of Computer Science, University of
Maryland, CollegePark. http://www.umiacs.umd.edu/

~vikas/Software/IFGT/IFGT_code.htm.

Raykar, V. C., Yang, C., Duraiswami, R., & Gumerov,
N. (2005). Fast computation of sums of Gaussians in
high dimensions (Technical Report CS-TR-4767). De-
partment of Computer Science, University of Maryland,
CollegePark.

Shen, Y., Ng, A., & Seeger, M. (2006). Fast Gaussian pro-
cess regression using KD-trees. Advances in Neural In-
formation Processing Systems (NIPS*18): Proceedings
of the 2005 Conference. MIT Press.

Strain, J. (1991). The fast Gauss transform with variable
scales. SIAM J. Sci. Stat. Comput, 12, 1131–1139.

Yang, C., Duraiswami, R., & Davis, L. (2005). Efficient
kernel machines using the improved fast Gauss trans-
form. Advances in Neural Information Processing Sys-
tems (NIPS*17): Proceedings of the 2004 Conference
(pp. 1561–1568). MIT Press.


