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[This discussion is intended to follow the Bayesian Statistics 9 paper by Huber and
Schott (2010), possibly available at http://www.uv.es/bernardo/Huber.pdf ]

TPA and Nested Sampling

In isolation, Algorithm 2.1 can be viewed as a special case of Nested Sampling. To
recover TPA one could run Nested Sampling with the target distribution as its prior
and with the likelihood to:

L(θ) =

{
1 θ ∈ B′

ε/(1 + eβ(θ)) θ /∈ B′, where β = inf{β′ : θ ∈ A(β′)}. (1)

Skilling (2007) previously identified that the number of steps required to reach a
given set is Poisson distributed. Huber and Schott suggest making this special case
central, recasting all computations as finding the mass of a distribution on a set.
Additional contributions are a theoretical analysis, two general ways of reducing
problems to the required form and a link to annealing.

The resulting TPA methods are different from a straight application of Nested
Sampling. For example, in both variants the initial sampling distribution is set to
the posterior of an inference problem rather than the prior.

Theory vs. practice

This work is partly motivated by seeing the errors of Nested Sampling as hard to
characterize. The difficulties I’ve had with Nested Sampling’s error bars, which
have otherwise been well calibrated, have been due to approximate sampling. I’m
unconvinced that TPA offers an improvement.

The second point in Section 10 is incorrect. A Nested Sampling implementation
might terminate near a maximum of the likelihood, however the answer is com-
pletely dominated by how long the algorithm took to reach the posterior region that
contributes to the bulk of Z and the likelihoods there. Nested Sampling must be
able to find typical samples from the posterior, but the presented TPA methods
start by sampling from the posterior.

It is suggested that two forms of errors in Nested Sampling are removed. 1) Nested
Sampling terminates when it doesn’t appear as though further iterations are going
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to change the estimator significantly. If a hidden narrow spike actually is significant
then wrong answers will result. However, a slice sampler for the posterior would also
miss such a spike; TPA based on such samples would fare no better. 2) Although
Nested Sampling contains classical numerical integration, upper and lower bounding
rectangle rules can give limits on this error (ignoring issues with the final spike).
It is easy to verify that errors from quadrature are irrelevant compared to Monte
Carlo noise.

TPA’s (ε, δ) procedure for choosing the number of runs is nice to have in theory.
However in brief experiments I have not found it to be very practical. As is often
the case with guarantees of this form, setting the mistake rate δ to reasonable values
such as 0.05 leads, in practice, to errors much smaller than ε far more often than 1−δ.
This means that (δ, ε) must be set very loose, or more computer time than really
necessary will be used. Of course the (ε, δ) guarantee doesn’t hold with approximate
sampling used in real applications.

Parameter truncation

In the parameter truncation variant of TPA the posterior mass in a small region
is estimated. The estimate is compared to the unnormalized probability to recover
the implied normalizer Z. Estimating the mass of a special state is reminiscent of
the family of methods introduced by Chib (1995), and I am concerned that it could
suffer from the same problems (Neal, 1999).

The number of samples that Nested Sampling requires for a given accuracy scales
with the square of the log-volume collapse (Murray, 2007). Parameter truncation
compresses from the posterior to a small region, which generally has a different
log-volume ratio than moving from the prior to the posterior.

Before thinking further about theoretical performance, I just tried it. I used
a slice-sampling (Neal, 2003) based implementation on the (tiny) galaxy problem
considered by Chib and Neal. After trying a few variations for picking the location
and size of the final region, I could get answers in the right ball-park, but wasn’t
able to get reproducible enough answers to demonstrate whether the method was
suffering the same problem as Chib’s method. The approximate slice sampling that
I could do in the time available caused the actual errors to vary by much more than
theory would predict. In contrast I was able to get accurate answers with both
Nested Sampling and the likelihood truncation version of TPA based on the same
slice-sampling code.

Likelihood truncation

Likelihood truncation TPA explains the initially curious use of β throughout the
paper. Traditionally β is used as an inverse temperature: to ‘cool’ or constrain
a system one would increase β. However, TPA samples from successively more
constrained subsets by decreasing its β. In the likelihood truncation variant the
temperature analogy makes sense. While truncating the likelihood constrains the
auxiliary space Ω × [0,∞), the marginal distribution on the parameter space Ω is
usually more diffuse.

Another link to temperatures is given in the proposed method for constructing
annealing schedules. Obtaining annealing schedules from the output of Nested Sam-
pling is something I have attempted, in a more convoluted way (Murray, 2007). It
will be interesting to see how the more straight-forward procedure presented here
compares in practice.
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Likelihood truncation TPA moves from sampling the posterior to the prior,
whereas Nested Sampling starts by sampling the prior and terminates shortly after
finding samples typical under the posterior. Having both methods could be useful:
in the context of annealing methods looking for ‘hysteresis’, differences between
cooling and heating curves, can be a useful diagnostic.

Likelihood truncation TPA and Nested Sampling aren’t true reverses of each
other. In particular, sampling from the likelihood truncated distributions with
standard Markov chain methods will not work when there is a first-order phase
transition, whereas Nested Sampling can work. As an aside: I have once seen a
first-order phase transition in a real modeling application, although in that case the
problem could be bypassed by re-representing the model.

Independent runs

Algorithm 2.1 specifies that independent runs are made and then combined. Per-
forming runs in parallel is useful when sampling approximately to help set appro-
priate step-size parameters, which vary dramatically with β. Nested Sampling was
explicitly presented with a multiple particle version. I have found that the multiple
particle version is much less affected by errors due to using approximate sampling
than the single particle version.

Summary

The core TPA algorithm is a simplified version of Nested Sampling with a single
particle, for the purposes of theoretical analysis. In practice the presented theory
doesn’t apply because the required sampling operations are going to be performed
approximately.

Huber and Schott have also presented novel methods that result from applying
TPA to measuring different aspects of a target distribution. Some nice properties
of Nested Sampling, robustness to first-order phase transitions and the multiple
particle version, have been discarded. I have found it difficult to get reliable error
bars from TPA, especially with the parameter truncation version, when using slice
sampling. However, there are several ideas in this paper. My hope is that one
or more of them inspire the development of useful tools, perhaps the method for
constructing annealing schedules.
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