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Abstract
We implement two deep architectures for the acoustic-
articulatory inversion mapping problem: a deep neural network
and a deep trajectory mixture density network. We find that
in both cases, deep architectures produce more accurate predic-
tions than shallow architectures and that this is due to the higher
expressive capability of a deep model and not a consequence of
adding more adjustable parameters. We also find that a deep
trajectory mixture density network is able to obtain better in-
version accuracies than smoothing the results of a deep neural
network. Our best model obtained an average root mean square
error of 0.885 mm on the MNGU0 test dataset.
Index Terms: Articulatory inversion, deep neural network,
deep belief network, deep regression network, pretraining

1. Introduction
The acoustic-articulatory inversion mapping problem (or sim-
ply articulatory inversion) involves the inference of the position
of the vocal tract articulators from an acoustic speech signal.
This nonlinear regression problem is ill-posed: several articula-
tor positions can generate the same sound.

Systems capable of approximating the position of the artic-
ulators from the acoustic signal are useful in several domains:
speech recognition, where articulatory information can improve
the performance of the recognition systems [1]; speech synthe-
sis, where it can be used to improve the quality or to modify the
characteristics of the synthesised voice [2]; character animation,
where it can be used to automate the facial animation of virtual
characters in films and video-games [3].

Rich articulography datasets of precise quantitative articu-
latory position data along with recordings of the acoustic data
produced, make it possible to use standard machine learning
methodologies such as artificial neural networks [4] or hidden
Markov models [5] to tackle this problem. Deep architectures
have recently been used to obtain state-of-the-art accuracies in
speech recognition [6, 7]. Motivated by this success, we hy-
pothesised that a deep architecture would be able to obtain high
accuracy in articulatory inversion.

In this work we have implemented a deep neural network
and a deep trajectory mixture density network and evaluated
its performance using the MNGU0 test dataset [8]1. Both ap-
proaches resulted in significant reductions in average root mean
squared error (RMSE), with respect to the best previously pub-
lished results obtained by Richmond [9] using a shallow trajec-
tory mixture density network. We conclude that deep architec-
tures are a suitable approach to articulatory inversion.

1We previously presented preliminary results using the deep neural
network at the NIPS 2011 Workshop on Deep Learning and Unsuper-
vised Feature Learning, which does not have official proceedings.

Figure 1: Unsupervised layer-wise initialisation of a regression
neural network with three hidden layers. Hidden layers are se-
quentially trained as Restricted Boltzmann Machines (RBMs).
The top layer performs a linear regression.

2. Deep regression neural networks

One hidden-layer neural networks are universal approxima-
tors [10]—given enough hidden units they can implement any
function to an arbitrary degree of accuracy. However, a network
with several hidden layers can implement some functions using
an exponentially smaller number of hidden units than in a one
hidden layer network [11].

Until recently, training networks with more than one or
two hidden layers was usually considered impractical. Back-
propagation training progresses very slowly when initialised us-
ing very small weights, and may get stuck in poor local optima
or weight-space plateaus when randomly initialised using big-
ger weights [12]. However many-hidden-layer neural networks
have been trained successfully through stacked or modular use
of back-propagation [13, 14] or by pretraining using restricted
Boltzmann machines (RBMs) [15] (see section 2.1).

In contrast to the work in speech recognition [6, 7], in which
deep neural networks are trained for classification, we train deep
regression networks in this paper. Figure 1 illustrates a three-
hidden-layer network initialised using unsupervised pretrain-
ing. The training process begins by pretraining the first hidden
layer of the network using an RBM, considering the input and
first hidden layers as the visible and hidden layers of the RBM
respectively. Each remaining hidden layer is pretrained sequen-
tially by treating the latest pretrained hidden layer as the visible
layer of a new RBM, and obtaining the visible inputs to that
RBM by feeding the input data through the layers trained pre-
viously. A deep regression network is completed by adding a
linear regression layer on top, which can also be initialised; in
the case of regression this can be done directly using the least-
square error solution. Finally, all of the parameters in the net-
work are fitted discriminatively: stochastic gradient descent is
used to minimize the mean square error.



2.1. Restricted Boltzmann machines

Restricted Boltzmann machines (RBMs) [16] are undirected
graphical models formed by two layers of probabilistic binary
units: a visible layer v, and a hidden layer h. All units are fully
connected to the units in the other layer and no connections be-
tween units of the same layer are present.

Restricted Boltzmann machines are energy-based models.
They capture dependencies between variables by assigning an
energy value to each configuration, with more probable config-
urations having a lower energy. Because no connections exist
between units of the same layer, the probability of the units in
each layer factorise given the state of the other layer.

Maximum likelihood training of an RBM requires the com-
putation of intractable expectations, which could be approxi-
mated with Gibbs sampling. A further popular approximation is
known as contrastive divergence (CD) learning [16, 17], which
uses the following update rules for the weights:

∆Wij ∝ 〈vihj〉0 − 〈vihj〉n, (1)

where 〈·〉n denotes the average after assigning the input data to
the visible units and performing just n updates (as in Gibbs sam-
pling) to each layer. Whereas for maximum likelihood training
the number of updates required to reach the stationary distribu-
tion can be very high, in contrastive divergence learning a very
low number of updates is used, usually just one.

2.2. Gaussian-Bernoulli RBM

For problems with real valued input features, having binary vis-
ible units is not an appropriate representation of the data. In
these cases a Gaussian-Bernoulli RBM [11] can be used. In
a Gaussian-Bernoulli RBM visible units are real valued and
follow a Gaussian probability distribution with diagonal co-
variance, while hidden units are binary valued and follow a
Bernoulli distribution.

3. Mixture density networks
Because articulatory inversion is ill-posed, Richmond [18] has
represented uncertainty in the regression output with mixture
density networks. As shown in Figure 2, a mixture density net-
work (MDN) [19] is a regression neural network whose out-
puts specify a mixture of Gaussians. The MDN maps each
input datapoint x, acoustic data, to a probability distribution
over the output space t, the position of each articulator; thus
implementing a conditional probability distribution p(t|x) ∼∑
j N (µj(x),Σj(x)).

The parameters of the mixture of Gaussians are derived
from the unconstrained outputs y of the neural network as fol-
lows: the outputs yα specifying the mixing fractions are trans-
formed with a softmax, αi = exp(yiα)/

∑
j exp(yjα); the out-

puts corresponding to the means are not modified µi = yiµ; and
the outputs corresponding to the variances are exponentiated,
σi = exp(yiσ).

MDNs are trained to minimise the negative log likelihood
of its parameters given the data. The gradient with respect to
all parameters can be easily calculated and used to train the net-
work using, for example, stochastic gradient descent.

A deep mixture density network can be constructed using
the same layer-wise pretraining method as for a deep neural
network. However, its last layer cannot be pretrained directly;
stochastic gradient descent on its parameters can be used, while
clamping all parameters in previous layers.
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Figure 2: Diagram of a mixture density network (MDN).

When, as in the articulatory inversion case, we want to infer
a trajectory, a mixture density network can be used to obtain a
pdf over the position at each time step. The outputs of such a
mixture density network can be augmented with their dynamic
components ∆ and ∆∆, calculated as finite differences. From
the sequence of pdfs over the position and dynamics the most
probable trajectory can be inferred using the maximum likeli-
hood parameter generation (MLPG) algorithm [20]. When the
density network output has just one Gaussian mixture compo-
nent, the MLPG algorithm only involves solving a linear sys-
tem. When the Gaussian mixture model has several compo-
nents, an EM-based algorithm is used.

4. Electromagnetic midsagittal
articulography dataset

Electromagnetic midsagittal articulography (EMA) is the most
widely used articulography technique for the creation of paral-
lel acoustic and articulator-position recordings. It uses electro-
magnetic transducer coils glued to the vocal-tract articulators to
record precise measurements of their positions [21].

In this paper we use the MNGU0 dataset because it has
higher accuracy [9] than other EMA datasets such as MOCHA-
TIMIT. MNGU0 consists of 1263 utterances recorded from a
single speaker in a single session. Parallel recordings of acous-
tic data and the position of 6 coils is available. Transducer coil
positioning can be seen in Figure 3. Each EMA data frame is
made up of 12 coordinates, the x and y position for the six ar-
ticulators tracked, with a sampling frequency of 200 Hz. The
acoustic data consists of frames of 40 frequency warped line
spectral frequencies (LSFs) [22] and a gain value, the frame
shift step is 5 ms in order to obtain acoustic features at the same
frequency as the EMA data.

In our experiments we used a context window of 10 acoustic
frames selecting only every other frame. Therefore, each input
window spanned a period of about 90 ms. Our target output was
the EMA frame for the time at the middle of the current acoustic
window, i.e. between acoustic frames 5 and 6.

The dataset is partitioned into three sets: validation and test-
ing sets comprising 63 utterances each, and a training set con-
sisting of the other 1137 utterances.
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Figure 3: Positioning of electromagnetic coils in the MNGU0
dataset. The articulators tracked are: upper lip (UL), lower
lip (LL), lower incisor (LI), tongue tip (T1), tongue blade (T2),
and tongue dorsum (T3).

5. Experiments
To measure the accuracy of our system we will use the aver-
age over utterances of the root mean-squared error (RMSE),√

1
N

∑
i(ei − ti)2, where ei is the estimated tract variable and

ti the actual tract variable at time i.
To put our later results in context, we report here the

MNGU0 test set performance of three baselines: 1) A linear
model obtains an average RMSE of 1.52 mm. 2) A one-hidden-
layer artificial neural network with 300 units, obtains an aver-
age RMSE of about 1.13 mm. 3) A state of the art method [9],
using twelve (one per articulator dimension) one-hidden-layer
trajectory mixture density networks with 1-, 2-, or 4-component
Gaussian mixtures (the number is optimised for each channel)
obtains an average RMSE of 0.99 mm.

5.1. Pretraining

To serve as an initial configuration for the parameters of both of
our deep articulatory inversion systems, we pretrained a set of
stacked RBMs using the acoustic data in the MNGU0 dataset.
Given that acoustic data is real valued, we used a Gaussian-
Bernoulli RBM for the first layer. Higher layers were trained on
top by following the conventional procedure [15]: the weights
of the layer just trained are frozen and its hidden layer activation
probabilities used as pseudo-binary values for the visible units
of the new layer. Both the visible and hidden units of higher
layers are treated as binary valued, and fitted with the regular
RBM procedure.

5.2. Deep neural networks for articulatory inversion

We trained different configurations of deep neural networks to
do articulatory inversion. The x and y coordinates of each of
the 6 articulators in the MNGU0 dataset corresponds to an out-
put of the neural network. In order to train this neural networks,
we initialised its parameters using the values obtained during
pretraining. A top regression layer was added on top and ini-
tialised with the least-square error solution. Then we performed
stochastic gradient descent to fine-tune all parameters.

Generating the output for each time step independently
gave rise to jagged trajectories with poor performance (RMSE
> 1 mm). To obtain smooth trajectories we applied a zero-shift
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Figure 4: RMSE performance of neural networks as a function
of the number of layers. The best results were achieved by net-
works with many hidden layers.

second-order Butterworth filter to the outputs [23]. Since dif-
ferent articulators can have different dynamical characteristics,
we calculated the RMSE on the MNGU0 training dataset using
integer cut-off frequencies in the range 1-20 Hz for each chan-
nel and chose the optimal for each. Several architectures were
trained, with different numbers of hidden layers and units per
layer. Figure 4 shows the mean RMSE on the test dataset. The
lowest mean RMSE on the validation dataset was obtained by a
5 hidden-layer-network with 300 units per layer, which has an
average RMSE of 0.942 mm on the test dataset.

Our results suggest that a deep architecture can obtain better
results than a shallow 1-hidden layer system. It could be argued
that it is the use of a greater number of parameters and not the
hidden layers that matters. However, the 1-hidden layer model
with 1024 hidden units has almost twice as many parameters
than a 7-hidden-layers model with 200 units per layer, yet still
obtains less accurate results.

To check whether we could have achieved similar results
without the pretraining phase, we trained a set of neural net-
works with weights initialised from a Gaussian distribution with
mean zero and standard deviation 0.05. In all twenty one cases,
a randomly initialised neural network obtained lower inversion
accuracy; with an average RMSE 0.051mm higher.

5.3. Deep trajectory mixture density network

We also trained a series of deep trajectory mixture density net-
works. The training process is very similar to that of our neural
networks. We utilised the parameters obtained in the pretraining
phase to initialise the network hidden layer weights and biases,
and added a linear layer on top whose outputs are adapted to
obtain the parameters of a Gaussian mixture model. The EMA
data in the MNGU0 dataset was augmented with ∆ and ∆∆
features in order to use the MLPG algorithm. Therefore, each
trajectory MDN models a 36-dimensional probability distribu-
tion conditioned on the acoustic inputs. A plot of the mean
RMSE on MNGU0’s test dataset after applying the MLPG al-
gorithm to the TMDN’s output can be seen in Figure 5. The
lowest mean RMSE on the validation dataset was obtained by a
6 hidden-layer network with 300 units per layer, which has an
average RMSE of 0.885 mm on the test dataset. We repeated
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Figure 5: RMSE performance of mixture density network as
a functions of the number of layers. The best results were
achieved by networks with many hidden layers.

the experiments initialising the TMDN weights randomly from
a Gaussian distribution with mean zero and standard deviation
0.05. In all cases, a randomly initialised TMDN obtained lower
inversion accuracy, with an average RMSE 0.054mm higher.

6. Discussion
We have implemented two different kinds of articulatory inver-
sion systems: a neural network and a trajectory mixture density
network. In both cases, we have found a deep architecture is
able to obtain better inversion accuracy than a one-hidden-layer
architecture.

All TMDN results shown in this paper used only one Gaus-
sian component, making them a simple Gaussian model. We re-
peated our experiments with 2 and 4 components, but their accu-
racy was slightly worse in almost all cases. Richmond’s previ-
ous work selected different number of components for each ar-
ticulator, which remains a possible improvement to the method
implemented in this paper.

We also repeated most experiments initialising our network
weights randomly. In all cases, the networks that had been pre-
trained obtained better results.

Finally, articulatory data exists as a time series, and it is not
possible to obtain competitive results by applying regression
methods independently to narrow time windows. This work
provides a first demonstration of applying deep architectures to
a complex, time-varying regression problem, and defines the
new state-of-the-art for this task.
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