
Differentiation of the Cholesky decomposition
Iain Murray

February 2016

Abstract

We review strategies for differentiating matrix-based computations, and derive symbolic and
algorithmic update rules for differentiating expressions containing the Cholesky decomposition.
We recommend new ‘blocked’ algorithms, based on differentiating the Cholesky algorithm
DPOTRF in the LAPACK library, which uses ‘Level 3’ matrix-matrix operations from BLAS, and so is
cache-friendly and easy to parallelize. For large matrices, the resulting algorithms are the fastest
way to compute Cholesky derivatives, and are an order of magnitude faster than the algorithms
in common usage. In some computing environments, symbolically-derived updates are faster
for small matrices than those based on differentiating Cholesky algorithms. The symbolic and
algorithmic approaches can be combined to get the best of both worlds.

1 Introduction

The Cholesky decomposition L of a symmetric positive definite matrix Σ is the unique lower-
triangular matrix with positive diagonal elements satisfying Σ = LL>. Alternatively, some library
routines compute the upper-triangular decomposition U = L>. This note compares ways to
differentiate the function L(Σ), and larger expressions containing the Cholesky decomposition
(Section 2). We consider compact symbolic results (Section 3) and longer algorithms (Section 4).

Existing computer code that differentiates expressions containing Cholesky decompositions
often uses an algorithmic approach proposed by Smith (1995). This approach results from
manually applying the ideas behind ‘automatic differentiation’ (e.g. Baydin et al., 2015) to a
numerical algorithm for the Cholesky decomposition. Experiments by Walter (2011) suggested
that — despite conventional wisdom — computing symbolically-derived results is actually faster.
However, these experiments were based on differentiating slow algorithms for the Cholesky
decomposition. In this note we introduce ‘blocked’ algorithms for propagating Cholesky deriva-
tives (Section 4), which use cache-friendly and easy-to-parallelize matrix-matrix operations. In
our implementations (Appendix A), these are faster than all previously-proposed methods.

2 Computational setup and tasks

This section can be safely skipped by readers familiar with “automatic differentiation”, the Σ̇ notation for
“forward-mode sensitivities”, and the Σ̄ notation for “reverse-mode sensitivities” (e.g. Giles, 2008).

We consider a sequence of computations,

x → Σ → L → f , (1)

that starts with an input x, computes an intermediate symmetric positive-definite matrix Σ, its
lower-triangular Cholesky decomposition L, and then a final result f . Derivatives of the overall
computation ∂ f

∂x , can be decomposed into reusable parts with the chain rule. However, there are
multiple ways to proceed, some much better than others.

1

Matrix chain rule: It’s tempting to simply write down the chain rule for the overall procedure:

∂ f
∂x

= ∑
i,j≤i

∑
k,l≤k

∂ f
∂Lij

∂Lij

∂Σkl

∂Σkl
∂x

, (2)

where we only sum over the independent elements of symmetric matrix Σ and the occupied
lower-triangle of L. We can also rewrite the same chain rule in matrix form,

∂ f
∂x

=
∂ f

∂ vech(L)
∂ vech(L)
∂ vech(Σ)

∂ vech(Σ)
∂x

, (3)

where the vech operator creates a vector by stacking the lower-triangular columns of a matrix.
A derivative ∂y

∂z is a matrix or vector, with a row for each element of y and a column for each
element of z, giving a row vector if y is a scalar, and a column vector if z is a scalar.

The set of all partial derivatives
{

∂Lij
∂Σkl

}
, or equivalently the matrix ∂ vech(L)

∂ vech(Σ) , contains O(N4)

values for the Cholesky decomposition of an N×N matrix. Explicitly computing each of the
terms in equations (2) or (3) is inefficient, and simply not practical for large matrices.

We give expressions for these O(N4) derivatives at the end of Section 3 for completeness, and
because they might be useful for analytical study. However, the computational primitives we
really need are methods to accumulate the terms in the chain rule moving left (forwards) or right
(backwards), without creating enormous matrices. We outline these processes now, adopting the
‘automatic differentiation’ notation used by Giles (2008) and others.

Forwards-mode accumulation: We start by computing a matrix of sensitivities for the first stage
of the computation, with elements Σ̇kl =

∂Σkl
∂x . If we applied an infinitesimal perturbation to the

input x← x+dx, the intermediate matrix would be perturbed by dΣ= Σ̇dx. This change would
in turn perturb the output of the Cholesky decomposition by dL= L̇dx, where L̇ij =

∂Lij
∂x . We

would like to compute the sensitivities of the Cholesky decomposition, L̇, from the sensitivities
of the input matrix Σ̇ and other ‘local’ quantities (L and/or Σ), without needing to consider
where these came from. Finally, we would compute the required result ḟ = ∂ f

∂x from L and L̇,
again without reference to downstream computations (the Cholesky decomposition).

The forwards-mode algorithms in this note describe how to compute the reusable function L̇(L, Σ̇),
which propagates the effect of a perturbation forwards through the Cholesky decomposition. The
computational cost will have the same scaling with matrix size as the Cholesky decomposition.
However, if we want the derivatives with respect to D different inputs to the computation, we
must perform the whole forwards propagation D times, each time accumulating sensitivities
with respect to a different input x.

Reverse-mode accumulation: We can instead accumulate derivatives by starting at the other
end of the computation sequence (1). The effect of perturbing the final stage of the computation
is summarized by a matrix with elements L̄ij =

∂ f
∂Lij

. We need to ‘back-propagate’ this summary
to compute the sensitivity of the output with respect to the downstream matrix, Σ̄kl =

∂ f
∂Σkl

. In
turn, this signal is back-propagated to compute x̄= ∂ f

∂x , the target of our computation, equal to ḟ
in the forwards propagation above.

The reverse-mode algorithms in this note describe how to construct the reusable function Σ̄(L, L̄),
which propagates the effect of a perturbation in the Cholesky decomposition backwards, to
compute the effect of perturbing the original positive definite matrix. Like forwards-mode
propagation, the computational cost has the same scaling with matrix size as the Cholesky
decomposition. Reverse-mode differentiation or ‘back-propagation’ has the advantage that Σ̄
can be reused to compute derivatives with respect to multiple inputs. Indeed if the input x
to the sequence of computations (1) is a D-dimensional vector, the cost to obtain all D partial
derivatives ∇x f scales the same as a single forwards computation of f . For D-dimensional
inputs, reverse-mode differentiation scales a factor of D times better than forwards-mode.

Reverse-mode computations can have greater memory requirements than forwards mode, and
are less appealing than forwards-mode if there are more outputs of the computation than inputs.

2

3 Symbolic differentiation

It is not immediately obvious whether a small, neat symbolic form should exist for the derivatives
of some function of a matrix, or whether the forward- and reverse-mode updates are simple
to express. For the Cholesky decomposition, the literature primarily advises using algorithmic
update rules, derived from the algorithms for numerically evaluating the original function
(Smith, 1995; Giles, 2008). However, there are also fairly small algebraic expressions for the
derivatives of the Cholesky decomposition, and for forwards- and reverse-mode updates.

Forwards-mode: Särkkä (2013) provides a short derivation of a forwards propagation rule (his
Theorem A.1), which we adapt to the notation used here.

An infinitesimal perturbation to the expression Σ = LL> gives:

dΣ = dLL> + LdL>. (4)

We wish to re-arrange to get an expression for dL. The trick is to left-multiply by L−1 and
right-multiply by L−>:

L−1dΣ L−> = L−1dL + dL>L−>. (5)

The first term on the right-hand side is now lower-triangular. The second term is the transpose
of the first, meaning it is upper-triangular and has the same diagonal. We can therefore remove
the second term by applying a function Φ to both sides, where Φ takes the lower-triangular part
of a matrix and halves its diagonal:

Φ(L−1dΣ L−>) = L−1dL, where Φij(A) =

Aij i > j
1
2 Aii i = j

0 i < j.

(6)

Multiplying both sides by L gives us the perturbation of the Cholesky decomposition:

dL = L Φ(L−1dΣ L−>). (7)

Substituting the forward-mode sensitivity relationships dΣ = Σ̇dx and dL = L̇dx (Section 2),
immediately gives a forwards-mode update rule, which is easy to implement:

L̇ = L Φ(L−1Σ̇ L−>). (8)

The input perturbation Σ̇ must be a symmetric matrix, Σ̇kl = Σ̇lk = ∂Σkl
∂x , because Σ is assumed

to be symmetric for all inputs x.

Reverse-mode: We can also obtain a neat symbolic expression for the reverse mode updates.
We substitute (7) into d f =Tr(L̄>dL), and with a few lines of manipulation, rearrange it into the
form d f =Tr(S>dΣ). Brewer (1977)’s Theorem 1 then implies that for a symmetric matrix Σ, the
symmetric matrix containing reverse mode sensitivities will be:

Σ̄ = S + S> − diag(S), where S = L−>Φ(L> L̄)L−1, (9)

where diag(S) is a diagonal matrix containing the diagonal elements of S, and function Φ is still
as defined in (6).

Alternatively, a lower-triangular matrix containing the independent elements of Σ̄ can be
constructed as:

tril(Σ̄) = Φ(S + S>) = Φ
(

L−>(P + P>)L−1), where P = Φ(L> L̄), (10)

with S as in (9), and using function Φ again from (6).

Since first writing this section we have discovered two similar reverse-mode expressions (Wal-
ter, 2011; Koerber, 2015). It seems likely that other authors have also independently derived
equivalent results, although these update rules do not appear to have seen wide-spread use.

3

Matrix of derivatives: By choosing the input of interest to be x = Σkl = Σlk, and fixing the
other elements of Σ, the sensitivity Σ̇ becomes a matrix of zeros except for ones at Σ̇kl = Σ̇lk =1.
Substituting into (8) gives an expression for all of the partial derivatives of the Cholesky
decomposition with respect to any chosen element of the covariance matrix. Some further
manipulation, expanding matrix products as sums over indices, gives an explicit expression for
any element,

∂Lij

∂Σkl
=

(
∑

m>j
LimL−1

mk +
1
2 LijL−1

jk

)
L−1

jl + (1− δkl)

(
∑

m>j
LimL−1

ml +
1
2 LijL−1

jl

)
L−1

jk . (11)

If we compute every (i, j, k, l) element, each one can be evaluated in constant time by keeping
running totals of the sums in (11) as we decrement j from N to 1. Explicitly computing every
partial derivative therefore costs Θ(N4).

These derivatives can be arranged into a matrix, by ‘vectorizing’ the expression (Magnus and
Neudecker, 2007; Minka, 2000; Harmeling, 2013). We use a well-known identity involving the
vec operator, which stacks the columns of a matrix into a vector, and the Kronecker product ⊗:

vec(ABC) = (C>⊗ A) vec(B). (12)

Applying this identity to (7) yields:

vec(dL) = (I ⊗ L) vec
(

Φ
(

L−1dΣL−>
))

. (13)

We can remove the function Φ, by introducing a diagonal matrix Z defined such that Z vec(A) =

vec Φ(A) for any N×N matrix A. Applying (12) again gives:

vec(dL) = (I ⊗ L)Z(L−1⊗ L−1) vec(dΣ). (14)

Using the standard elimination matrix L, and duplication matrix D (Magnus and Neudecker,
1980), we can convert between the vec and vech of a matrix, where vech(A) is a vector made by
stacking the columns of the lower triangle of A.

vech(dL) = L(I ⊗ L)Z(L−1⊗ L−1)D vech(dΣ) ⇒ ∂ vech L
∂ vech Σ

= L(I ⊗ L)Z(L−1⊗ L−1)D. (15)

This compact-looking result was stated on MathOverflow1 by pseudonymous user ‘pete’. It may
be useful for further analytical study, but doesn’t immediately help with scalable computation.

4 Differentiating Cholesky algorithms

We have seen that it is inefficient to compute each term in the chain rule, (2) or (3), applied to a
high-level matrix computation. For Cholesky derivatives the cost is Θ(N4), compared to O(N3)

for the forward- or reverse-mode updates in (8), (9), or (10). However, evaluating the terms of
the chain rule applied to any low-level computation — expressed as a series of elementary scalar
operations — gives derivatives with the same computational complexity as the original function
(e.g. Baydin et al., 2015). Therefore O(N3) algorithms for the dense Cholesky decomposition can
be mechanically converted into O(N3) forward- and reverse-mode update algorithms, which is
called ‘automatic differentiation’.

Smith (1995) proposed taking this automatic differentiation approach, although presented
hand-derived propagation algorithms that could be easily implemented in any programming
environment. Smith also reported applications to sparse matrices, where automatic differentia-
tion inherits the improved complexity of computing the Cholesky decomposition. However, the

1. http://mathoverflow.net/questions/150427/the-derivative-of-the-cholesky-factor#comment450752

167719 — comment from 2014-09-01

4

http://mathoverflow.net/questions/150427/the-derivative-of-the-cholesky-factor#comment450752_167719
http://mathoverflow.net/questions/150427/the-derivative-of-the-cholesky-factor#comment450752_167719

algorithms that were considered for dense matrices aren’t cache-friendly or easy to parallelize,
and will be slow in practice.

Currently-popular numerical packages such as NumPy, Octave, and R (Oliphant, 2006; Eaton et al.,
2009; R Core Team, 2012) compute the Cholesky decomposition using the LAPACK library (Ander-
son et al., 1999). LAPACK implements block algorithms that express computations as cache-friendly,
parallelizable ‘Level 3 BLAS’ matrix-matrix operations that are fast on modern architectures.
Dongarra et al. (1990) described the Level 3 BLAS operations, including an example block imple-
mentation of a Cholesky decomposition. For large matrices, we have sometimes found LAPACK’s
routine to be 50× faster than a C or Fortran implementation of the Cholesky algorithm consid-
ered by Smith (1995). Precise timings are machine-dependent, however it’s clear that any large
dense matrix computations, including derivative computations, should be implemented using
blocked algorithms where possible2.

Block routines, like those in LAPACK, ultimately come down to elementary scalar operations inside
calls to BLAS routines. In principle, automatic differentiation tools could be applied. However,
the source code and compilation tools for the optimized BLAS routines for a particular machine
are not always available to users. Even if they were, automatic differentiation tools would not
necessarily create cache-friendly algorithms. For these reasons Walter (2011) used symbolic
approaches (Section 3) to provide update rules based on standard matrix-matrix operations.

An alternative approach is to extend the set of elementary routines understood by an automatic
differentiation procedure to the operations supported by BLAS. We could then pass derivatives
through the Cholesky routine implemented by LAPACK, treating the best available matrix-matrix
routines as black-box functions. Giles (2008) provides an excellent tutorial on deriving forward-
and reverse-mode update rules for elementary matrix operations, which we found invaluable for
deriving the algorithms that follow3. While his results can largely be found in materials already
mentioned (Magnus and Neudecker, 2007; Minka, 2000; Harmeling, 2013), Giles emphasised
forwards- and reverse-mode update rules, rather than huge objects like (15).

In the end, we didn’t follow an automatic differentiation procedure exactly. While we derived
derivative propagation rules from the structure of the Cholesky algorithms (unlike Section 3), we
still symbolically manipulated some of the results to make the updates neater and in-place. In
principle, a sophisticated optimizing compiler for automatic differentiation could do the same.

4.1 Level 2 routines

LAPACK also provides ‘unblocked’ routines, which use ‘Level 2’ BLAS operations (Dongarra et al.,
1988a,b) like matrix-vector products. Although a step up from scalar-based algorithms, these are
intended for small matrices only, and as helpers for ‘Level 3’ blocked routines (Section 4.2).

The LAPACK routine DPOTF2 loops over columns of an input matrix A, replacing the lower-
triangular part in-place with its Cholesky decomposition. At each iteration, the algorithm uses a
row vector r, a diagonal element d, a matrix B, and a column vector c as follows:

function level2partition(A, j)
r = Aj, 1:j−1

d = Aj, j

B = Aj+1:N, 1:j−1

c = Aj+1:N, j

return r, d, B, c

where A =

. . .

−− r −− d
|

. . .

B c . . .

|
. . .

2. Historical note: It’s entirely reasonable that Smith (1995) did not use blocked algorithms. Primarily, Smith’s
applications used sparse computations. In any case, blocked algorithms weren’t universally adopted until later. For
example, Matlab didn’t incorporate LAPACK until 2000, http://www.mathworks.com/company/newsletters/articles/
matlab-incorporates-lapack.html.
3. Ironically, Giles (2008) also considered differentiating the Cholesky decomposition but, like Smith (1995), gave
slow scalar-based algorithms.

5

http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html

Here ‘=’ creates a view into the matrix A, meaning that in the algorithm below, ‘←’ assigns
results into the corresponding part of matrix A.

function chol unblocked(A)

If at input tril(A)= tril(Σ)= tril(LL>), at output tril(A)=L.
for j = 1 to N:

r, d, B, c = level2partition(A, j)
d←

√
d− rr>

c← (c− Br>)/d
return A

The algorithm only inspects and updates the lower-triangular part of the matrix. If the upper-
triangular part did not start out filled with zeros, then the user will need to zero out the upper
triangle of the final array with the tril function:

tril(A)ij =

Aij i ≥ j

0 otherwise.
(16)

In each iteration, r and B are parts of the Cholesky decomposition that have already been
computed, and d and c are updated in place, from their original settings in A to give another
column of the Cholesky decomposition. The matrix-vector multiplication Br> is a Level 2 BLAS

operation. These multiplications are the main computational cost of this algorithm.

Forwards-mode differentiation:

The in-place updates obscure the relationships between parts of the input matrix and its Cholesky
decomposition. We could rewrite the updates more explicitly as

Ld =
√

Σd − LrL>r , (17)

Lc = (Σc − LBL>r)/Ld . (18)

Applying infinitesimal perturbations to these equations gives

dLd =
1
2
(Σd − LrL>r)−1/2(dΣd − 2dLrL>r)

=
1
Ld

(dΣd/2− dLrL>r) , (19)

dLc = (dΣc − dLBL>r − LBdL>r)/Ld − ((Σc − LBL>r)/L2
d)dLd

= (dΣc − dLBL>r − LBdL>r − LcdLd)/Ld . (20)

We then get update rules for the forward-mode sensitivities by substituting their relationships,
dΣ= Σ̇dx and dL= L̇dx (Section 2), into the equations above. Mirroring the original algorithm,
we can thus convert Σ̇ to L̇ in-place, with the algorithm below:

function chol unblocked fwd(L, Ȧ)

If at input tril(Ȧ)= tril(Σ̇), at output tril(Ȧ)= L̇, where Σ=LL>.
for j = 1 to N:

r, d, B, c = level2partition(L, j)
ṙ, ḋ, Ḃ, ċ = level2partition(Ȧ, j)
ḋ← (ḋ/2− rṙ>)/d
ċ← (ċ− Ḃr> − Bṙ> − cḋ)/d

return Ȧ

Alternatively, the Cholesky decomposition and its forward sensitivity can be accumulated in one
loop, by placing the updates from this algorithm after the corresponding lines in chol unblocked.

6

Reverse-mode differentiation:

Reverse mode automatic differentiation traverses an algorithm backwards, reversing the direction
of loops and the updates within them. At each step, the effect Z̄ of perturbing an output
Z(A, B, C, . . .) is ‘back-propagated’ to compute the effects (Ā(Z), B̄(Z), C̄(Z), . . .) of perturbing
the inputs to that step. If the effects of the perturbations are consistent then

Tr(Z̄>dZ) = Tr(Ā(Z)>dA) + Tr(B̄(Z)>dB) + Tr(C̄(Z)>dC) + . . . , (21)

and we can find (Ā(Z), B̄(Z), C̄(Z), . . .) by comparing coefficients in this equation. If a quantity
A is an input to multiple computations (X, Y, Z, . . .), then we accumulate its total sensitivity,

Ā = Ā(X) + Ā(Y) + Ā(Z) + . . . , (22)

summarizing the quantity’s effect on the final computation, Āij =
∂ f

∂Aij
(as reviewed in Section 2).

Using the standard identities Tr(AB) = Tr(BA), Tr(A>) = Tr(A), and (AB)> = B>A>, the
perturbations from the final line of the Cholesky algorithm (20) imply:

Tr(L̄>c dLc) = Tr((L̄c/Ld)
>dΣc)− Tr((L̄cLr/Ld)

>dLB)

− Tr((L̄>c LB/Ld)
>dLr)− Tr((L>c L̄c/Ld)

>dLd) . (23)

We thus read off that Σ̄c = L̄c/Ld, where the sensitivities L̄c include the direct effect on f ,
provided by the user of the routine, and the knock-on effects that changing this column
would have on the columns computed to the right. These knock-on effects should have been
accumulated through previous iterations of the reverse propagation algorithm. From this
equation, we can also identify the knock-on effects that changing Ld, Lr, and LB would have
through changing column c, which should be added on to their existing sensitivities for later.

The perturbation (19) to the other update in the Cholesky algorithm implies:

Tr(L̄>d dLd) = Tr((L̄d/(2Ld))
>dΣd)− Tr((L̄dLr/Ld)

>dLr) . (24)

Comparing coefficients again, we obtain another output of the reverse-mode algorithm, Σ̄d =

L̄d/(2Ld). We also add L̄dLr/Ld to the running total for the sensitivity of Lr for later updates.

The algorithm below tracks all of these sensitivities, with the updates rearranged to simplify
some expressions and to make an algorithm that can update the sensitivities in-place.

function chol unblocked rev(L, Ā)

If at input tril(Ā)= L̄, at output tril(Ā)= tril(Σ̄), where Σ=LL>.
for j = N to 1, in steps of −1:

r, d, B, c = level2partition(L, j)
r̄, d̄, B̄, c̄ = level2partition(Ā, j)
d̄← d̄− c> c̄/d[
d̄
c̄

]
←
[

d̄
c̄

]/
d

r̄← r̄−
[
d̄ c̄>

][r
B

]
B̄← B̄− c̄r
d̄← d̄/2

return Ā

4.2 Level 3 routines

The LAPACK routine DPOTRF also updates the lower-triangular part of an array A in place with
its Cholesky decomposition. However, this routine updates blocks at a time, rather than single
column vectors, using the following partitions:

7

function level3partition(A, j, k)
R = Aj:k, 1:j−1

D = Aj:k, j:k

B = Ak+1:N, 1:j−1

C = Ak+1:N, j:k

return R, D, B, C

where A =

. . .

R D

B C
. . .

Only the lower-triangular part of D, the matrix on the diagonal, is referenced. The algorithm
below loops over each diagonal block D, updating it and the matrix C below it. Each diagonal
block (except possibly the last) is of size Nb×Nb. The optimal block-size Nb depends on the
size of the matrix N, and the machine running the code. Implementations of LAPACK select the
block-size with a routine called ILAENV.

function chol blocked(A, Nb)

If at input tril(A)= tril(Σ)= tril(LL>), at output tril(A)=L, for integer Nb≥1.
for j = 1 to at most N in steps of Nb:

k← min(N, j+Nb−1)
R, D, B, C = level3partition(A, j, k)
D ← D− tril(RR>)
D ← chol unblocked(D)

C ← C− BR>

C ← C tril(D)−>

return A

The computational cost of the blocked algorithm is dominated by Level 3 BLAS operations for
the matrix-matrix multiplies and for solving a triangular system. The unblocked Level 2 routine
from Section 4.1 (DPOTF2 in LAPACK) is also called as a subroutine on a small triangular block. For
large matrices it may be worth replacing this unblocked routine with one that performs more
Level 3 operations (Gustavson et al., 2013).

Forwards-mode differentiation:

Following the same strategy as for the unblocked case, we obtained the algorithm below. As
before, the input sensitivities Σ̇ij =

∂Σij
∂x can be updated in-place to give L̇ij =

∂Lij
∂x , the sensitivities

of the resulting Cholesky decomposition. Again, these updates could be accumulated at the
same time as computing the original Cholesky decomposition.

function chol blocked fwd(L, Ȧ)

If at input tril(Ȧ)= tril(Σ̇), at output tril(Ȧ)= tril(L̇), where Σ=LL>.
for j = 1 to at most N in steps of Nb:

k← min(N, j+Nb−1)
R, D, B, C = level3partition(L, j, k)
Ṙ, Ḋ, Ḃ, Ċ = level3partition(Ȧ, j, k)
Ḋ ← Ḋ− tril(ṘR> + RṘ>)
Ḋ ← chol unblocked fwd(D, Ḋ)

Ċ ← Ċ− ḂR> − BṘ>

Ċ ← (Ċ− CḊ>) D−>

return Ȧ

The unblocked derivative routine is called as a subroutine. Alternatively, chol blocked fwd could
call itself recursively with a smaller block size, we could use the symbolic result (8), or we could
differentiate other algorithms (e.g. Gustavson et al., 2013).

Minor detail: The standard BLAS operations don’t provide a routine to neatly perform the
first update for the lower-triangular Ḋ. One option is to wastefully subtract the full matrix

8

(ṘR>+RṘ>), then zero out the upper-triangle of Ḋ, meaning that the upper triangle of Ȧ can’t
be used for auxiliary storage.

Reverse-mode differentiation:

Again, deriving the reverse-mode algorithm and arranging it into a convenient form was more
involved. The strategy is the same as the unblocked case however, and still relatively mechanical.

function chol blocked rev(L, Ā)

If at input tril(Ā)= L̄, at output tril(Ā)= tril(Σ̄), where Σ=LL>.
for k = N to no less than 1 in steps of −Nb:

j← max(1, k−Nb+1)
R, D, B, C = level3partition(L, j, k)
R̄, D̄, B̄, C̄ = level3partition(Ā, j, k)
C̄ ← C̄D−1

B̄← B̄− C̄R
D̄ ← D̄− tril(C̄>C)
D̄ ← chol unblocked rev(D, D̄)

R̄← R̄− C̄>B− (D̄ + D̄>)R
return Ā

The partitioning into columns is arbitrary, so the reverse-mode algorithm doesn’t need to select
the same set of blocks as the forwards computation. Here, when the matrix size N isn’t a
multiple of the block-size Nb, we’ve put the smaller blocks at the other edge of the matrix.

As in the blocked forwards-mode update, there is a call to the unblocked routine, which can be
replaced with alternative algorithms. In the implementation provided (Appendix A) we use the
symbolically-derived update (10).

5 Discussion and Future Directions

The matrix operations required by the Cholesky algorithms implemented in LAPACK can be
implemented with straightforward calls to BLAS. However, the forwards- and reverse-mode
updates we have derived from these algorithms give some expressions where only the triangular
part of a matrix product is required. There aren’t standard BLAS routines that implement exactly
what is required, and our implementations must perform unnecessary computations to exploit
the fast libraries available. In future, it would be desirable to have standard fast matrix libraries
that offer a set of routines that are closed under the rules for deriving derivative updates.

The automatic differentiation tools that have proved popular in machine learning differentiate
high-level array-based code. As a result, these tools don’t have access to the source code of the
Cholesky decomposition, and need to be told how to differentiate it. Theano (Bastien et al., 2012;
Bergstra et al., 2010), the first tool to be widely-adopted in machine learning, and AutoGrad
(Maclaurin et al., 2015) use the algorithm by Smith (1995). TensorFlow (Abadi et al., 2015) in
its first release can’t differentiate expressions containing a Cholesky decomposition, but a fork
(Hensman and de G. Matthews, 2016) also uses the algorithm by Smith (1995), as previously
implemented by The GPy authors (2015).

The approaches in this note will be an order of magnitude faster for large matrices than the
codes that are in current wide-spread use. Some illustrative timings are given at the end of the
code listing (Appendix A). As the algorithms are only a few lines long, they could be ported to a
variety of settings without introducing any large dependencies. The simple symbolic expressions
(Section 3) could be differentiated using most existing matrix-based tools. Currently AutoGrad
can’t repeatedly differentiate the Cholesky decomposition because of the in-place updates in the
(Smith, 1995) algorithm.

9

The ‘Level 3’ blocked algorithms (Section 4.2) are the fastest forwards- and reverse-mode update
rules for large matrices. However, these require helper routines to perform the updates on
small triangular blocks. In high-level languages (Matlab, Octave, Python), the ‘Level 2’ routines —
similar to the algorithms that automatic differentiation would provide — are slow, and we
recommend using the symbolic updates (Section 3) for the small matrices instead.

It should be relatively easy to provide similar derivative routines for many standard matrix
functions, starting with the rest of the routines in LAPACK. However, it would save a lot of work to
have automatic tools to help make these routines. Although there are a wide-variety of tools for
automatic differentiation, we are unaware of practical tools that can currently create algorithms
as neat and accessible as those made by hand for this note.

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. White paper, Google Research, 2015. Software available from
http://tensorflow.org. TensorFlow is a trademark of Google Inc.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ guide, volume 9. SIAM, 1999. http://www.netlib.
org/lapack/.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, and Y. Bengio.
Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop, 2012.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine
learning: a survey, 2015.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy), 2010.

J. W. Brewer. The gradient with respect to a symmetric matrix. IEEE Transactions on Automatic Control,
22(2):265–267, 1977.

J. J. Dongarra, J. Ducroz, S. Hammarling, and R. Hanson. An extended set of fortran basic linear
algebra subprograms. ACM Transactions on Mathematical Software, 14(1):1–17, 1988a.

J. J. Dongarra, J. Ducroz, S. Hammarling, and R. Hanson. Algorithm 656: An extended set of fortran
basic linear algebra subprograms: Model implementation and test programs. ACM Transactions on
Mathematical Software, 16(1):1–17, 1988b.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.

J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave version 3.0.1 manual: a high-level interactive
language for numerical computations. CreateSpace Independent Publishing Platform, 2009. URL
http://www.gnu.org/software/octave/doc/interpreter. ISBN 1441413006.

M. B. Giles. An extended collection of matrix derivative results for forward and reverse mode automatic
differentiation, 2008.

F. G. Gustavson, J. Waśniewski, J. J. Dongarra, J. R. Herrero, and J. Langou. Level-3 Cholesky
factorization routines improve performance of many Cholesky algorithms. ACM Transactions on
Mathematical Software, 39(2):9:1–9:10, 2013.

S. Harmeling. Matrix differential calculus cheat sheet. Technical Report Blue Note 142, Max Planck
Institute for Intelligent Systems, 2013. http://people.tuebingen.mpg.de/harmeling/bn142.pdf.

10

http://tensorflow.org
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.gnu.org/software/octave/doc/interpreter
http://people.tuebingen.mpg.de/harmeling/bn142.pdf

J. Hensman and A. G. de G. Matthews. GPFlow, 2016. As of February 2016, https://github.com/
GPflow/GPflow.

P. Koerber. Adjoint algorithmic differentiation and the derivative of the Cholesky decomposition, 2015.
Preprint, available at SSRN: http://dx.doi.org/10.2139/ssrn.2703893.

D. Maclaurin, D. Duvenaud, M. Johnson, and R. P. Adams. Autograd: Reverse-mode differentiation
of native Python, 2015. Version 1.1.3, http://github.com/HIPS/autograd and https://pypi.python.

org/pypi/autograd/.
J. R. Magnus and H. Neudecker. The elimination matrix: some lemmas and applications. SIAM Journal

on Algebraic and Discrete Methods, 1(4):422–449, 1980.
J. R. Magnus and H. Neudecker. Matrix differential calculus with application in statistics and econometrics.

3rd edition, 2007. Available from http://www.janmagnus.nl/misc/mdc2007-3rdedition and older
editions from Wiley.

T. Minka. Old and new matrix algebra useful for statistics, 2000. MIT Media Lab note (1997; revised
12/00), http://research.microsoft.com/en-us/um/people/minka/papers/matrix/.

T. E. Oliphant. Guide to NumPy. Provo, UT, 2006.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, 2012. URL http://www.R-project.org/. ISBN 3-900051-07-0.
S. Särkkä. Bayesian filtering and smoothing. Cambridge University Press., 2013.
S. P. Smith. Differentiation of the Cholesky algorithm. Journal of Computational and Graphical Statistics, 4

(2):134–147, 1995.
The GPy authors. GPy: A Gaussian process framework in Python, 2015. Version 0.8.8, http://github.

com/SheffieldML/GPy.
S. F. Walter. Structured higher-order algorithmic differentiation in the forward and reverse mode with application

in optimum experimental design. PhD thesis, Humboldt-Universität zu Berlin, 2011.

11

https://github.com/GPflow/GPflow
https://github.com/GPflow/GPflow
http://dx.doi.org/10.2139/ssrn.2703893
http://github.com/HIPS/autograd
https://pypi.python.org/pypi/autograd/
https://pypi.python.org/pypi/autograd/
http://www.janmagnus.nl/misc/mdc2007-3rdedition
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
http://www.R-project.org/
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

A Illustrative Python code

Equations (11) and (15) were checked numerically using Octave/Matlab code, not provided here.

The rest of the equations and algorithms in this note are illustrated below using Python code
that closely follows the equations and pseudo-code. There are differences due to the note using
Matlab/Fortran-style ranges, which are one-based and inclusive, e.g. 1 :3=[1, 2, 3]. In contrast,
Python uses zero-based, half-open ranges, e.g. 0 :3= : 3=[0, 1, 2]. The code is also available as
pseudocode port.py in the source tar-ball for this paper, available from arXiv.

Development of alternative implementations in multiple programming languages is on-going. At
the time of writing, Fortran code with Matlab/Octave and Python bindings, and pure Matlab code
is available at https://github.com/imurray/chol-rev. The Fortran code is mainly useful for
smaller matrices, as for large matrices, the time spent inside BLAS routines dominates, regardless
of the language used. The code repository also contains a demonstration of pushing derivatives
through a whole computation (the log-likelihood of the hyperparameters of a Gaussian process).

1 # D e m o n s t r a t i o n c o d e f o r C h o l e s k y d i f f e r e n t i a t i o n
2 # I a i n Murray , F e b r u a r y 2 0 1 6
3

4 # T h e s e r o u t i n e s n e e d P y t h o n >=3.5 and NumPy >= 1 . 1 0 f o r m a t r i x
5 # m u l t i p l i c a t i o n w i t h t h e i n f i x o p e r a t o r ”@ ” . F o r e a r l i e r P y t h o n / NumPy ,
6 # r e p l a c e a l l u s e s o f ”@” w i t h t h e np . d o t () f u n c t i o n .
7

8 # T e s t e d w i t h P y t h o n 3 . 5 . 0 , NumPy 1 . 1 0 . 4 , and S c i P y 0 . 1 7 . 0 , w i t h MKL
9 # f r o m A n a c o n d a ' s d i s t r i b u t i o n w i t h a q u a d c o r e i 5 −3470 CPU @ 3 . 2 0 GHz .

10

11 import numpy as np
12 from numpy import tril
13 from scipy.linalg import solve_triangular as _solve_triangular
14

15 # T h e r e a r e o p e r a t i o n s t h a t a r e n o t p e r f o r m e d i n p l a c e b u t c o u l d b e by
16 # s p l i t t i n g up t h e o p e r a t i o n s , and / o r u s i n g l o w e r − l e v e l c o d e . I n t h i s
17 # v e r s i o n o f t h e c o d e , I ' v e i n s t e a d t r i e d t o k e e p t h e P y t h o n s y n t a x
18 # c l o s e t o t h e i l l u s t r a t i v e p s e u d o−c o d e .
19

20 # Where t h e p s e u d o c o d e c o n t a i n s i n v e r s e s o f t r i a n g u l a r m a t r i c e s , i t ' s
21 # c o m m o n l y u n d e r s t o o d t h a t t h e m a t r i x p r o d u c t o f t h e i n v e r s e w i t h t h e
22 # a d j a c e n t t e r m s h o u l d b e f o u n d by s o l v i n g t h e r e s u l t i n g l i n e a r s y s t e m o f
23 # e q u a t i o n s . The c o d e b e l o w c o n t a i n s s o m e c o m m e n t e d−o u t l i n e s w i t h a
24 # s t r a i g h t f o r w a r d r e w r i t i n g o f t h e p s e u d o c o d e u s i n g i n v () , f o l l o w e d by
25 # e q u i v a l e n t b u t m o r e e f f i c i e n t l i n e s c a l l i n g a l i n e a r s o l v e r (s t ()
26 # d e f i n e d b e l o w) . To g e t an i n v f u n c t i o n f o r t e s t i n g we c o u l d d o :
27 # f r o m numpy . l i n a l g i m p o r t i n v
28 # I ' d h a v e t o c a l l t h e u n d e r l y i n g LAPACK r o u t i n e s m y s e l f t o s o l v e t h e s e
29 # s y s t e m s in−p l a c e , a s t h e m a t r i x t r a n p o s e s h a v e n ' t w o r k e d o u t t o m a t c h
30 # w h a t t h e S c i P y r o u t i n e c a n d o in−p l a c e .
31

32 def _st(A, b, trans =0):
33 """
34 solve triangular system "tril(A) @ x = b", returning x
35

36 if trans==1, solve "tril(A).T @ x = b" instead.
37 """
38 if b.size == 0:
39 return b
40 else:
41 return _solve_triangular(A, b, trans=trans , lower=True)

12

https://github.com/imurray/chol-rev

43 def Phi(A):
44 """ Return lower -triangle of matrix and halve the diagonal """
45 A = tril(A)
46 A[np.diag_indices_from(A)] *= 0.5
47 return A
48

49 def chol_symbolic_fwd(L, Sigma_dot):
50 """
51 Forwards -mode differentiation through the Cholesky decomposition
52

53 This version uses a "one -line" symbolic expression to return L_dot
54 where "_dot" means sensitivities in forwards -mode differentiation ,
55 and Sigma = L @ L.T.
56 """
57 # i n v L = i n v (L)
58 # r e t u r n L @ P h i (i n v L @ S i g m a d o t @ i n v L . T)
59 return L @ Phi(_st(L, _st(L, Sigma_dot.T).T))
60

61 def chol_symbolic_rev(L, Lbar):
62 """
63 Reverse -mode differentiation through the Cholesky decomposition
64

65 This version uses a short symbolic expression to return
66 tril(Sigma_bar) where "_bar" means sensitivities in reverse -mode
67 differentiation , and Sigma = L @ L.T.
68 """
69 P = Phi(L.T @ Lbar)
70 # i n v L = i n v (L)
71 # r e t u r n P h i (i n v L . T @ (P + P . T) @ i n v L)
72 return Phi(_st(L, _st(L, (P + P.T), 1).T, 1))
73

74 def level2partition(A, j):
75 """ Return views into A used by the unblocked algorithms """
76 # d i a g o n a l e l e m e n t d i s A [j , j]
77 # we a c c e s s [j , j : j + 1] t o g e t a v i e w i n s t e a d o f a c o p y .
78 rr = A[j, :j] # row
79 dd = A[j, j:j+1] # s c a l a r on d i a g o n a l / \
80 B = A[j+1:, :j] # B l o c k i n c o r n e r | r d |
81 cc = A[j+1:, j] # c o l u m n \ B c /
82 return rr, dd, B, cc
83

84 def chol_unblocked(A, inplace=False):
85 """
86 Cholesky decomposition , mirroring LAPACK 's DPOTF2
87

88 Intended to illustrate the algorithm only. Use a Cholesky routine
89 from numpy or scipy instead.
90 """
91 if not inplace:
92 A = A.copy()
93 for j in range(A.shape [0]):
94 rr, dd, B, cc = level2partition(A, j)
95 dd[:] = np.sqrt(dd - rr@rr)
96 cc[:] = (cc - B@rr) / dd
97 return A

13

99 def chol_unblocked_fwd(L, Adot , inplace=False):
100 """
101 Forwards -mode differentiation through the Cholesky decomposition
102

103 Obtain L_dot from Sigma_dot , where "_dot" means sensitivities in
104 forwards -mode differentiation , and Sigma = L @ L.T.
105

106 This version uses an unblocked algorithm to update sensitivities
107 Adot in place. tril(Adot) should start containing Sigma_dot , and
108 will end containing the L_dot. The upper triangular part of Adot
109 is untouched , so take tril(Adot) at the end if triu(Adot ,1) did
110 not start out filled with zeros.
111

112 If inplace=False , a copy of Adot is modified instead of the
113 original. The Abar that was modified is returned.
114 """
115 if not inplace:
116 Adot = Adot.copy()
117 for j in range(L.shape [0]):
118 rr, dd, B, cc = level2partition(L, j)
119 rdot , ddot , Bdot , cdot = level2partition(Adot , j)
120 ddot [:] = (ddot/2 - rr@rdot) / dd
121 cdot [:] = (cdot - Bdot@rr - B@rdot - cc*ddot) / dd
122 return Adot
123

124 def chol_unblocked_rev(L, Abar , inplace=False):
125 """
126 Reverse -mode differentiation through the Cholesky decomposition
127

128 Obtain tril(Sigma_bar) from L_bar , where "_bar" means sensitivities
129 in reverse -mode differentiation , and Sigma = L @ L.T.
130

131 This version uses an unblocked algorithm to update sensitivities
132 Abar in place. tril(Abar) should start containing L_bar , and will
133 end containing the tril(Sigma_bar). The upper triangular part of
134 Adot is untouched , so take tril(Abar) at the end if triu(Abar ,1)
135 did not start out filled with zeros. Alternatively , (tril(Abar) +
136 tril(Abar).T) will give the symmetric , redundant matrix of
137 sensitivities.
138

139 If inplace=False , a copy of Abar is modified instead of the
140 original. The Abar that was modified is returned.
141 """
142 if not inplace:
143 Abar = Abar.copy()
144 for j in range(L.shape [0] - 1, -1, -1): # N−1 ,N− 2 , . . . , 1 , 0
145 rr, dd, B, cc = level2partition(L, j)
146 rbar , dbar , Bbar , cbar = level2partition(Abar , j)
147 dbar -= cc @ cbar / dd
148 dbar /= dd # / T h e s e two l i n e s c o u l d b e
149 cbar /= dd # \ d o n e i n o n e o p e r a t i o n
150 rbar -= dbar*rr # / T h e s e two l i n e s c o u l d b e d o n e
151 rbar -= cbar @ B # \ w i t h o n e m a t r i x m u l t i p l y
152 Bbar -= cbar[:,None] @ rr[None ,:]
153 dbar /= 2
154 return Abar

14

156 def level3partition(A, j, k):
157 """ Return views into A used by the blocked algorithms """
158 # Top l e f t c o r n e r o f d i a g o n a l b l o c k i s [j , j]
159 # B l o c k s i z e i s NB = (k− j)
160 R = A[j:k, :j] # Row b l o c k / \
161 D = A[j:k, j:k] # t r i a n g u l a r b l o c k on D i a g o n a l | |
162 B = A[k:, :j] # B i g c o r n e r b l o c k | R D |
163 C = A[k:, j:k] # Column b l o c k \ B C /
164 return R, D, B, C
165

166 def chol_blocked(A, NB=256, inplace=False):
167 """ Cholesky decomposition , mirroring LAPACK 's DPOTRF
168

169 Intended to illustrate the algorithm only. Use a Cholesky routine
170 from numpy or scipy instead."""
171 if not inplace:
172 A = A.copy()
173 for j in range(0, A.shape[0], NB):
174 k = min(N, j + NB)
175 R, D, B, C = level3partition(A, j, k)
176 D -= tril(R @ R.T)
177 chol_unblocked(D, inplace=True)
178 C -= B @ R.T
179 #C [:] = C @ i n v (t r i l (D)) . T
180 C[:] = _st(D, C.T).T
181 return A
182

183 def chol_blocked_fwd(L, Adot , NB=256, inplace=False):
184 """
185 Forwards -mode differentiation through the Cholesky decomposition
186

187 Obtain L_dot from Sigma_dot , where "_dot" means sensitivities in
188 forwards -mode differentiation , and Sigma = L @ L.T.
189

190 This version uses a blocked algorithm to update sensitivities Adot
191 in place. tril(Adot) should start containing Sigma_dot , and will
192 end containing the L_dot. Take tril() of the answer if
193 triu(Adot ,1) did not start out filled with zeros. Unlike the
194 unblocked routine , if the upper triangular part of Adot started
195 with non -zero values , some of these will be overwritten.
196

197 If inplace=False , a copy of Adot is modified instead of the
198 original. The Abar that was modified is returned.
199 """
200 if not inplace:
201 Adot = Adot.copy()
202 for j in range(0, L.shape[0], NB):
203 k = min(N, j + NB)
204 R, D, B, C = level3partition(L, j, k)
205 Rdot , Ddot , Bdot , Cdot = level3partition(Adot , j, k)
206 Ddot [:] = tril(Ddot) - tril(Rdot @ R.T + R@Rdot.T)
207 # c h o l u n b l o c k e d f w d (D , Ddot , i n p l a c e = T r u e) # s l o w i n P y t h o n
208 Ddot [:] = chol_symbolic_fwd(D, Ddot + tril(Ddot , -1).T)
209 Cdot -= (Bdot@R.T + B@Rdot.T)
210 # C d o t [:] = (C d o t − C@Ddot . T) @ i n v (t r i l (D)) . T
211 Cdot [:] = _st(D, Cdot.T - Ddot@C.T).T
212 return Adot

15

214 def chol_blocked_rev(L, Abar , NB=256, inplace=False):
215 """
216 Reverse -mode differentiation through the Cholesky decomposition
217

218 Obtain tril(Sigma_bar) from L_bar , where "_bar" means sensitivities
219 in reverse -mode differentiation , and Sigma = L @ L.T.
220

221 This version uses a blocked algorithm to update sensitivities Abar
222 in place. tril(Abar) should start containing L_bar , and will end
223 containing the tril(Sigma_bar). Take tril(Abar) at the end if
224 triu(Abar ,1) did not start out filled with zeros. Alternatively ,
225 (tril(Abar) + tril(Abar).T) will give the symmetric , redundant
226 matrix of sensitivities.
227

228 Unlike the unblocked routine , if the upper triangular part of Abar
229 started with non -zero values , some of these will be overwritten.
230

231 If inplace=False , a copy of Abar is modified instead of the
232 original. The Abar that was modified is returned.
233 """
234 if not inplace:
235 Abar = Abar.copy()
236 for k in range(L.shape[0], -1, -NB):
237 j = max(0, k - NB)
238 R, D, B, C = level3partition(L, j, k)
239 Rbar , Dbar , Bbar , Cbar = level3partition(Abar , j, k)
240 # C b a r [:] = C b a r @ i n v (t r i l (D))
241 Cbar [:] = _st(D, Cbar.T, trans =1).T
242 Bbar -= Cbar @ R
243 Dbar [:] = tril(Dbar) - tril(Cbar.T @ C)
244 # c h o l u n b l o c k e d r e v (D , Dbar , i n p l a c e = T r u e) # s l o w i n P y t h o n
245 Dbar [:] = chol_symbolic_rev(D, Dbar)
246 Rbar -= (Cbar.T @ B + (Dbar + Dbar.T) @ R)
247 return Abar
248

249 # T e s t i n g c o d e f o l l o w s
250

251 def _trace_dot(A, B):
252 """ _trace_dot(A, B) = trace(A @ B) = A.ravel() @ B. ravel()"""
253 return A.ravel() @ B.ravel()
254

255 def _testme(N):
256 """ Exercise each function using NxN matrices """
257 import scipy as sp
258 from time import time
259 if N > 1:
260 Sigma = np.cov(sp.randn(N, 2*N))
261 Sigma_dot = np.cov(sp.randn(N, 2*N))
262 elif N == 1:
263 Sigma = np.array ([[sp.rand ()]])
264 Sigma_dot = np.array ([[sp.rand ()]])
265 else:
266 assert(False)
267 tic = time()
268 L = np.linalg.cholesky(Sigma)
269 toc = time() - tic
270 print('Running np.linalg.cholesky:')

16

271 print(' Time taken: %0.4f s' % toc)
272 tic = time()
273 L_ub = tril(chol_unblocked(Sigma))
274 toc = time() - tic
275 print('Unblocked chol works: %r'
276 % np.all(np.isclose(L, L_ub)))
277 print(' Time taken: %0.4f s' % toc)
278 tic = time()
279 L_bl = tril(chol_blocked(Sigma))
280 toc = time() - tic
281 print('Blocked chol works: %r'
282 % np.all(np.isclose(L, L_bl)))
283 print(' Time taken: %0.4f s' % toc)
284 tic = time()
285 Ldot = chol_symbolic_fwd(L, Sigma_dot)
286 toc = time() - tic
287 hh = 1e-5
288 L2 = np.linalg.cholesky(Sigma + Sigma_dot*hh/2)
289 L1 = np.linalg.cholesky(Sigma - Sigma_dot*hh/2)
290 Ldot_fd = (L2 - L1) / hh
291 print('Symbolic chol_fwd works: %r'
292 % np.all(np.isclose(Ldot , Ldot_fd)))
293 print(' Time taken: %0.4f s' % toc)
294 tic = time()
295 Ldot_ub = tril(chol_unblocked_fwd(L, Sigma_dot))
296 toc = time() - tic
297 print('Unblocked chol_fwd works: %r'
298 % np.all(np.isclose(Ldot , Ldot_ub)))
299 print(' Time taken: %0.4f s' % toc)
300 tic = time()
301 Ldot_bl = tril(chol_blocked_fwd(L, Sigma_dot))
302 toc = time() - tic
303 print('Blocked chol_fwd works: %r'
304 % np.all(np.isclose(Ldot , Ldot_bl)))
305 print(' Time taken: %0.4f s' % toc)
306 Lbar = tril(sp.randn(N, N))
307 tic = time()
308 Sigma_bar = chol_symbolic_rev(L, Lbar)
309 toc = time() - tic
310 Delta1 = _trace_dot(Lbar , Ldot)
311 Delta2 = _trace_dot(Sigma_bar , Sigma_dot)
312 print('Symbolic chol_rev works: %r'
313 % np.all(np.isclose(Delta1 , Delta2)))
314 print(' Time taken: %0.4f s' % toc)
315 tic = time()
316 Sigma_bar_ub = chol_unblocked_rev(L, Lbar)
317 toc = time() - tic
318 Delta3 = _trace_dot(Sigma_bar_ub , Sigma_dot)
319 print('Unblocked chol_rev works: %r'
320 % np.all(np.isclose(Delta1 , Delta3)))
321 print(' Time taken: %0.4f s' % toc)
322 tic = time()
323 Sigma_bar_bl = chol_blocked_rev(L, Lbar)
324 toc = time() - tic
325 Delta4 = _trace_dot(Sigma_bar_bl , Sigma_dot)
326 print('Blocked chol_rev works: %r'
327 % np.all(np.isclose(Delta1 , Delta4)))

17

328 print(' Time taken: %0.4f s' % toc)
329

330 if __name__ == '__main__ ':
331 import sys
332 if len(sys.argv) > 1:
333 N = int(sys.argv [1])
334 else:
335 N = 500
336 _testme(N)
337

338 # E x a m p l e o u t p u t f o r N = 500
339 # −−−−−−−−−−−−−−−−−−−−−−−−−−
340 # Running np . l i n a l g . c h o l e s k y :
341 # Time t a k e n : 0 . 0 0 3 6 s
342 # U n b l o c k e d c h o l w o r k s : T r u e
343 # Time t a k e n : 0 . 0 3 1 9 s
344 # B l o c k e d c h o l w o r k s : T r u e
345 # Time t a k e n : 0 . 0 3 5 6 s
346 # S y m b o l i c c h o l f w d w o r k s : T r u e
347 # Time t a k e n : 0 . 0 1 4 3 s
348 # U n b l o c k e d c h o l f w d w o r k s : T r u e
349 # Time t a k e n : 0 . 0 5 9 2 s
350 # B l o c k e d c h o l f w d w o r k s : T r u e
351 # Time t a k e n : 0 . 0 1 1 2 s
352 # S y m b o l i c c h o l r e v w o r k s : T r u e
353 # Time t a k e n : 0 . 0 1 6 5 s
354 # U n b l o c k e d c h o l r e v w o r k s : T r u e
355 # Time t a k e n : 0 . 1 0 6 9 s
356 # B l o c k e d c h o l r e v w o r k s : T r u e
357 # Time t a k e n : 0 . 0 0 9 3 s
358

359 # E x a m p l e o u t p u t f o r N = 4 0 0 0
360 # −−−−−−−−−−−−−−−−−−−−−−−−−−
361 # Running np . l i n a l g . c h o l e s k y :
362 # Time t a k e n : 0 . 4 0 2 0 s
363 # U n b l o c k e d c h o l w o r k s : T r u e
364 # Time t a k e n : 2 5 . 8 2 9 6 s
365 # B l o c k e d c h o l w o r k s : T r u e
366 # Time t a k e n : 0 . 7 5 6 6 s
367 # S y m b o l i c c h o l f w d w o r k s : T r u e
368 # Time t a k e n : 3 . 9 8 7 1 s
369 # U n b l o c k e d c h o l f w d w o r k s : T r u e
370 # Time t a k e n : 5 1 . 6 7 5 4 s
371 # B l o c k e d c h o l f w d w o r k s : T r u e
372 # Time t a k e n : 1 . 2 4 9 5 s
373 # S y m b o l i c c h o l r e v w o r k s : T r u e
374 # Time t a k e n : 4 . 1 3 2 4 s
375 # U n b l o c k e d c h o l r e v w o r k s : T r u e
376 # Time t a k e n : 9 6 . 3 1 7 9 s
377 # B l o c k e d c h o l r e v w o r k s : T r u e
378 # Time t a k e n : 1 . 2 9 3 8 s
379

380 # T i m e s a r e m a c h i n e and c o n f i g u r a t i o n d e p e n d e n t . On t h e s a m e t e s t
381 # m a c h i n e , my L e v e l 3 F o r t r a n i m p l e m e n t a t i o n i s o n l y ˜10% f a s t e r
382 # f o r N= 4 0 0 0 , a l t h o u g h c a n b e a l o t f a s t e r f o r s m a l l m a t r i c e s .
383 # A L e v e l 2 F o r t r a n i m p l e m e n t a t i o n i s n ' t a s b a d a s t h e P y t h o n
384 # v e r s i o n , b u t i s s t i l l >15x s l o w e r t h a n t h e b l o c k e d P y t h o n c o d e .

18

	 Introduction
	 Computational setup and tasks
	 Symbolic differentiation
	 Differentiating Cholesky algorithms
	 Level 2 routines
	 Level 3 routines

	 Discussion and Future Directions
	 Illustrative Python code

